
HAL Id: hal-01519634
https://inria.hal.science/hal-01519634

Submitted on 8 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

It’s Duck (Typing) Season!
Nevena Milojković, Mohammad Ghafari, Oscar Nierstrasz

To cite this version:
Nevena Milojković, Mohammad Ghafari, Oscar Nierstrasz. It’s Duck (Typing) Season!. ICPC 2017
- 25th International Conference on Program Comprehension, May 2017, Buenos Aires, Argentina.
�hal-01519634�

https://inria.hal.science/hal-01519634
https://hal.archives-ouvertes.fr

It’s Duck (Typing) Season!
Nevena Milojković, Mohammad Ghafari, Oscar Nierstrasz

Software Composition Group, University of Bern
Bern, Switzerland

{nevena, ghafari}@inf.unibe.ch
scg.unibe.ch

Abstract—Duck typing provides a way to reuse code and allow
a developer to write more extensible code. At the same time,
it scatters the implementation of a functionality over multiple
classes and causes difficulties in program comprehension.

The extent to which duck typing is used in real programs is not
very well understood. We report on a preliminary study of the
prevalence of duck typing in more than a thousand dynamically-
typed open source software systems developed in Smalltalk.

Although a small portion of the call sites in these systems
is duck-typed, in half of the analysed systems at least 20% of
methods are duck-typed.

Keywords-duck typing, dynamically-typed languages, cross-
hierarchy polymorphism

I. INTRODUCTION

Duck typing was named after the “duck test”, by James
Whitcomb Riley: “When I see a bird that walks like a duck
and swims like a duck and quacks like a duck, I call that
bird a duck”1. Duck typing, also known as cross-hierarchy
polymorphism, refers to the implementation of methods that
have the same signature and belong to distinct classes that
do not have a common superclass defining the method with
the same signature [1]. It indicates that one variable may
point to the objects whose types are unrelated, i.e., do not
have a common parent understanding the methods invoked on
that variable. For example, any object that provides array-like
operators such as indexing, i.e.,[], can be used in any code
where an array is expected. These additional methods are duck-
typed. Duck typing is usually encountered in dynamically-typed
programming languages, although it can be simulated also in
statically-typed languages with the use of interfaces.

Duck typing leads to functionality being scattered throughout
the code, which hinders program comprehension [2]. Combined
with method overriding, it heavily aggravates program compre-
hension in dynamically-typed languages [3], [4]. For instance,
when programmers read a piece of code, they typically need
to make assumptions about the possible types of the variables
used in it. Even though static type information would help a
lot, duck typing introduces false positives in the result of type
inference algorithms [5].

We now define terms that will be used in the rest of the paper.
We say that a method is duck-typed if it has the same signature
as another method, neither of which overrides a method with
the same signature of a common parent. We define intr(s)
as the set of duck-typed methods with the same signature s.

1https://en.wikipedia.org/wiki/Duck test

We call the cardinality of this set the duck-typing degree of
signature s. A call-site is duck-typed if it is the call site of a
duck-typed method. We define the degree of a duck-typed call
site as the number of duck-typed methods corresponding to
that call site.

In the light of the impact that duck typing has on program
comprehension, we investigate the prevalence of duck typing
in a large corpus of open source dynamically-typed software.
We pose the following research questions:

RQ1) How diffuse are duck-typed methods and what is the
degree of the corresponding method signatures?

RQ2) How widely present are duck-typed call sites and
what is the degree of these call sites?

We analyse a corpus of more than 1000 software systems
developed in Smalltalk. Our analysis is static, i.e., we do not
analyse the amount of duck typing at run time.

Structure of the Paper. We first define the terminology in
section II. Next we introduce our experimental methodology
and the analysis infrastructure in section III. In section IV we
report on our findings, and discuss the threats to validity in
section V. We present the related work in section VI before
concluding the paper in section VII.

II. TERMINOLOGY

In order to precisely define duck typing as we measure it,
we introduce the following simple set-theoretical model.

sigcs : CS → S (1)
sigm : M → S (2)
defm : M → C (3)

sup : C → C ∪ {⊥} (4)
mets : C → P(M) (5)

Given all source code of a system, C is the set of all classes
that are defined locally in the system, M the set of all methods.
S is the set of all signatures. CS is the set of all method call
sites in the system.

Each method call site cs has the signature, sigcs(cs) (1).
Each method m has a unique signature sigm(m) (2), and is
defined in a unique class c = defm(m) (3). Class c either
has a unique superclass c′ = sup(c) (4) or does not have a
superclass, i.e., sup(c) = ⊥. Each class c has a set of methods
that it defines mets(c) (5).

We can now query the model to compute the metrics
necessary to answer our research questions.

Preprint*

https://en.wikipedia.org/wiki/Duck_test

grok(c, s) = s ∈ sigm(mets(c)) ∨ grok(sup(c), s) (6)
intr(s) = {m ∈ M | sigm(m) = s ∧ (7)

¬grok(sup(defm(m)), s)}
duck-typed(s) = |intr(s)| > 1 (8)

duck-typed(cs) = |intr(sigcs(cs))| > 1 (9)

We use the function grok(c, s) to determine whether the class
c understands the signature s, either because it defines a method
m such that sigm(m) = s or inherits it from a superclass (6).
We define grok(⊥, s) = false, for any signature s. We also
use the function intr(s) to find all methods “introducing” the
signature s, i.e., methods m such that sigm(m) = s and not
overriding the method with the same signature (7).

A signature s is duck-typed if there are at least two classes
in the system defining methods that introduce signature s
i.e., signature s is not introduced by any superclass of these
classes (8). Consequently, elements of the set intr(s) are duck-
typed methods and its cardinality represents the degree of the
signature s.

A call site cs is duck-typed if its signature sigcs(cs) is duck-
typed (9). The degree of call site cs in regard to duck typing
is equal to |intr(sigcs(cs))|.

III. EXPERIMENTAL SETUP

We analysed more than one thousand projects in
Smalltalk [6]. We chose Smalltalk as it is “pure” object-oriented
dynamically-typed language. Since it was designed in the ’80s,
the practice in duck typing usage should be well established.
Thus, the age of subject systems should not influence the results.
We study the projects in the SqueakSource repository used to
host the majority of open-source projects from both industry
and academia. The projects in this representative repository are
also used in an earlier study on polymorphism presence in the
Smalltalk [7]. In order to exclude student and toy projects, we
opt only for projects containing more than 50 classes. Out of
1850 cloned projects, we include 1,128 projects in this study.
These projects contain 125,825 classes and 1,637,228 methods
in total.

To analyse the code, we employed Ecco and Monticello as
parsers [8]. We traverse the body of every class in the system,
and collect the set of signatures that the class introduces:
{s ∈ S|s ∈ sigm(mets(c)) ∧ grok(sup(c), s) = false}.
We then construct the set of methods in a system that
have duck-typed signature, and measure the corresponding
degree, i.e., |intr(s)| for a signature s. Afterward, we traverse
the body of each method to collect the call sites cs for
which duck-typed(cs) = true, as well as their degree, i.e.,
|intr(sigcs(cs))|.

IV. EXPERIMENTAL RESULTS

Our study reveals that 99% of the inspected Smalltalk
projects define and call duck-typed methods. We present a
detailed explanation of our findings in the following section.

Cardinality of duck-typed method definitions

0

35000

70000

105000

140000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 49

Degree of
duck-typed
signatures

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) (b)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

35000

70000

105000

140000

 0

20

 4

0

 6

0

 8

0

 1
00

 %

Distribution of
duck-typed methods

fre
qu

en
cy

degree

Fig. 1. Implementing duck-typed signatures in Smalltalk

A. Implementing duck typing

Figure 1 (a) shows the proportion of methods whose
signatures are duck-typed. While there are outlier projects with
more than 50% of methods being duck-typed, we generally
observe that:
• for half of the projects, at least one out of six methods

(17%) is duck-typed
• most of the analysed projects (about 75%) contain up to

22% of methods being duck-typed
We have also measured the degree of each of the duck-

typed signatures, i.e., |intr(s)|. The results are presented
in Figure 1 (b). We can observe that:
• 75% of duck-typed signatures are implemented in up to

five distinct hierarchies, i.e., have a degree of up to five
• some outliers have more than 200 cross-hierarchy imple-

mentations
Based on this data, we can answer the first research question:

In half of the projects more than one out of six methods
are duck-typed, and 75% of the duck-typed methods have
degree of up to five.

B. Using duck typing

Figure 2 (a) presents the proportion of the call sites that
are duck-typed, i.e., the proportion of ducked-type method
calls. We establish that the average number of call sites in a
project is 6500. In few projects, more than 18% of call sites are
duck-typed which is surprising, but apart from this minority,
we can state that:
• In half of the analysed projects, between 0.55% and 15%

of call sites are duck-typed

Cardinality of duck-typed call-sites

0

200000

400000

600000

800000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree of
duck-typed

call sites

0
.0
0

0
.0
5

0
.1
0

0
.1
5

Distribution of
duck-typed call sites

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

20000

40000

60000

80000

 0

 5

 1
0

15

%
(a) (b)

fre
qu

en
cy

degree

Fig. 2. Using duck-typed signatures in Smalltalk

• In around 20% of the analysed projects, between 1% and
15% of call-sites are duck-typed

We have also measured the degree of duck-typed call
sites, i.e., |intr(sigcs(cs))|. Our findings are presented
in Figure 2 (b). Disregarding the outliers with degree of more
than 200, we observe that:
• 37% of duck-typed call sites have degree of two
• about 30% of duck-typed call sites have degree of three

or four
• about 28% of call sites have degree varying from five to

17
We can now answer the second research question accord-

ingly:

All projects contain to some extent duck-typed call
sites. 80% of them have up to 1% of duck-typed call sites.
Degrees of these call-sites vary from two to more than
200.

C. Discussion

The average degree of a duck-typed call site is six. While
the degree of duck typing only considers newly introduced
duck-typed signatures, we do not explicitly explore subclasses
overriding these methods. Since we do not consider subtype
polymorphism in this study, this means that number of method
candidates for these call sites may be even larger due to method
overriding.

When analysing a call site that has commonly used method
signature, a developer is often reluctant to explore all the
method candidates statically, due to the possibly long list
of selector implementors [4]. This forces her to run the
code, if possible, in order to obtain the desired information.
Static type information would probably eliminate the cost

of running the software [9]. Yet, duck typing, together with
subtype polymorphism are frequently labeled as one of the
biggest obstacles for static type analysis and type inference in
particular [5].

We deem important, as future work, to perform empirical
studies that would explore in depth and quantify the actual
impact that duck typing has on program comprehension. As
static type information facilitates program analysis [10], we
think it is necessary to explore ways to improve simple type
inference algorithms, which suffer greatly in the presence of
(cross-hierarchy) polymorphism.

Most of the analysed duck-typed signatures have degree of
up to five, that is, five independent class hierarchies define
the same method signature. IDE tools for dynamically-typed
languages usually employ the same algorithm that we have
used in this study [11], hence developers need to navigate
to several method definitions in unrelated classes in order to
understand the execution flow. We propose the need for tool
support in the presence of duck typed methods specialised in
displaying up to five method implementations. This would be
useful, as developers would not have to open many navigation
windows and pollute working space [12]. Consequently, it
would decrease the number of navigation actions.

V. THREATS TO VALIDITY

We have used a very simple algorithm based only on the
method signature to detect duck typing. Our analysis may
have over-estimated the actual presence of duck typing, and
it may be that more precise analysis would provide different
results. The best way to justify the results would be to use
dynamic analysis. However, collecting run-time information
for the studied corpus would be impractical due to the large
number of analysed projects.

Due to the experimental setup, in our analysis we do not
consider methods that are inherited and overridden from outside
a project, i.e., from libraries. This may produce false positives
in the case of methods that appear to be duck-typed, but actually
inherit from a common parent outside the studied project.

Since we analysed only open-source projects, we cannot
generalise our findings to proprietary software systems. Finally,
this study was dedicated to Smalltalk, and studying the presence
of duck typing in other dynamically-typed languages may yield
other insights due to different coding idioms.

VI. RELATED WORK

Duck typing has been analysed on a set of 36 Python
programs [13]. Based on the recorded run-types of variables,
the authors state that most variables are monomorphic, i.e.,
point to objects of only one type at run time. However, most
of the rest of the variables do point to the objects of unrelated
types, i.e., duck typing is used at run time.

We are not aware of any large-scale study concerning the
prevalence of duck typing. The most similar studies are those
regarding polymorphism usage in object-oriented code.

A recent study analysed polymorphism usage in Smalltalk
and Java, and found that polymorphism is more prevalent in

Smalltalk than in the Java corpus, and that it is omnipresent
in both analysed corpora [7].

One of the first conducted studies is about the relationship
between code maintainability and the depth of inheritance. Daly
et al. [14] found that inheritance facilitates code maintenance:
a system with three levels of inheritance is easier to understand
than an equivalent system with no inheritance. Cartwright et al.
confirmed the positive impact of inheritance on maintenance
time [15], while Harrison et al. discovered that a system without
inheritance is easier to maintain than the equivalent systems
with more than two levels of inheritance [16].

Tempero et al. performed a study about the usage of
inheritance in Java corpus [17]. Their work showed a high
usage of inheritance and the variation in the use of inheritance
between interfaces and classes. They also studied method
overriding in Java open source projects [18]. Their study
showed that most subclasses override at least one method
and many classes only declare overriding methods.

VII. CONCLUSION

We performed an empirical study of duck typing on the
corpus of open source systems written in Smalltalk. We found
that nearly all projects define and use duck-typed methods.

We found that in half of the projects at least 17% of methods
are duck-typed, and that most of the corresponding signatures
have degree of up to five. These methods usually count for
less than 1% of call sites, but there are projects with almost
one fifth of duck-typed call sites, most of which have degree
of up to 17.

In order to precisely measure duck typing usage, we intend
to preform dynamic analysis on the part of the studied projects.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software
Analysis” (SNSF project No. 200020-162352, Jan 1, 2016 -
Dec. 30, 2018). We also gratefully acknowledge the financial
support of the Swiss Group for Object-Oriented Systems and
Environments (CHOOSE) and the European Smalltalk User
Group (ESUG). We thank David Röthlisberger, Romain Robbes,
Mircea Lungu and Andrea Caracciolo for implementing the
infrastructure used for analysis.

REFERENCES

[1] D. Thomas, C. Fowler, and A. Hunt, Programming Ruby 1.9: The
Pragmatic Programmers’ Guide, 3rd ed. Pragmatic Bookshelf, 2009.

[2] A. Dunsmore, M. Roper, and M. Wood, “Object-oriented inspection in the
face of delocalisation,” in Proceedings of ICSE ’00 (22nd International
Conference on Software Engineering). ACM Press, 2000, pp. 467–476.

[3] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and
answering questions during a programming change task,” IEEE Trans.
Softw. Eng., vol. 34, pp. 434–451, Jul. 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1446226.1446241

[4] J. Kubelka, A. Bergel, and R. Robbes, “Asking and answering
questions during a programming change task in the Pharo language,”
in Proceedings of the 5th Workshop on Evaluation and Usability
of Programming Languages and Tools, ser. PLATEAU ’14. New
York, NY, USA: ACM, 2014, pp. 1–11. [Online]. Available:
http://doi.acm.org/10.1145/2688204.2688212

[5] N. Milojković and O. Nierstrasz, “Exploring cheap type inference
heuristics in dynamically typed languages,” in Proceedings of the
2016 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2016.
New York, NY, USA: ACM, 2016, pp. 43–56. [Online]. Available:
http://scg.unibe.ch/archive/papers/Milo16b.pdf

[6] A. Goldberg and D. Robson, Smalltalk 80: the Language and its
Implementation. Reading, Mass.: Addison Wesley, May 1983. [Online].
Available: http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.
pdf

[7] N. Milojković, A. Caracciolo, M. Lungu, O. Nierstrasz, D. Röthlisberger,
and R. Robbes, “Polymorphism in the spotlight: Studying its
prevalence in Java and Smalltalk,” in Proceedings of the 2015
IEEE 23rd International Conference on Program Comprehension.
IEEE Press, 2015, pp. 186–195, published. [Online]. Available:
http://scg.unibe.ch/archive/papers/Milo15a.pdf

[8] R. Robbes, M. Lungu, and D. Roethlisberger, “How do developers react
to API deprecation? The case of a Smalltalk ecosystem,” in Proceedings
of the 20th International Symposium on the Foundations of Software
Engineering (FSE’12), 2012, pp. 56:1 – 56:11. [Online]. Available:
http://scg.unibe.ch/archive/papers/Rob12aAPIDeprecations.pdf

[9] J. K. Ousterhout, “Scripting: Higher level programming for the 21st
century,” IEEE Computer, vol. 31, no. 3, pp. 23–30, Mar. 1998. [Online].
Available: http://www.cs.indiana.edu/classes/c102/read/Ousterhout.pdf

[10] S. Spiza and S. Hanenberg, “Type names without static type checking
already improve the usability of APIs (as long as the type names
are correct): An empirical study,” in Proceedings of the 13th
International Conference on Modularity, ser. MODULARITY ’14.
New York, NY, USA: ACM, 2014, pp. 99–108. [Online]. Available:
http://doi.acm.org/10.1145/2577080.2577098

[11] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and
M. Denker, Pharo by Example. Square Bracket Associates, 2009.
[Online]. Available: http://pharobyexample.org

[12] D. Röthlisberger, O. Nierstrasz, and S. Ducasse, “Autumn leaves: Curing
the window plague in IDEs,” in Proceedings of the 16th Working
Conference on Reverse Engineering (WCRE 2009). Los Alamitos, CA,
USA: IEEE Computer Society, 2009, pp. 237–246. [Online]. Available:
http://scg.unibe.ch/archive/papers/Roet09fAutumnLeaves.pdf

[13] B. Åkerblom and T. Wrigstad, “Measuring polymorphism in Python
programs,” in Proceedings of the 11th Symposium on Dynamic Languages,
ser. DLS 2015. New York, NY, USA: ACM, 2015, pp. 114–128.
[Online]. Available: http://doi.acm.org/10.1145/2816707.2816717

[14] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood, “Evaluating
inheritance depth on the maintainability of object-oriented software,”
Empirical Software Engineering, vol. 1, no. 2, pp. 109–132, 1996.
[Online]. Available: http://dx.doi.org/10.1007/BF00368701

[15] M. Cartwright, “An empirical view of inheritance,” Information and
Software Technology, 1998.

[16] R. Harrison, S. Counsell, and R. Nithi, “Experimental assessment of the
effect of inheritance on the maintainability of object-oriented systems,”
J. Syst. Softw., vol. 52, no. 2-3, pp. 173–179, Jun. 2000. [Online].
Available: http://dx.doi.org/10.1016/S0164-1212(99)00144-2

[17] E. Tempero, J. Noble, and H. Melton, “How do Java programs
use inheritance? An empirical study of inheritance in Java software,”
in Proceedings of the 22Nd European Conference on Object-
Oriented Programming, ser. ECOOP ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 667–691. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-70592-5 28

[18] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “The Qualitas Corpus: A curated collection of Java code
for empirical studies,” in Software Engineering Conference (APSEC),
2010 17th Asia Pacific, Dec. 2010, pp. 336 –345.

http://portal.acm.org/citation.cfm?id=1446226.1446241
http://doi.acm.org/10.1145/2688204.2688212
http://scg.unibe.ch/archive/papers/Milo16b.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://scg.unibe.ch/archive/papers/Milo15a.pdf
http://scg.unibe.ch/archive/papers/Rob12aAPIDeprecations.pdf
http://www.cs.indiana.edu/classes/c102/read/Ousterhout.pdf
http://doi.acm.org/10.1145/2577080.2577098
http://pharobyexample.org
http://scg.unibe.ch/archive/papers/Roet09fAutumnLeaves.pdf
http://doi.acm.org/10.1145/2816707.2816717
http://dx.doi.org/10.1007/BF00368701
http://dx.doi.org/10.1016/S0164-1212(99)00144-2
http://dx.doi.org/10.1007/978-3-540-70592-5_28
http://dx.doi.org/10.1007/978-3-540-70592-5_28

