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Classi cation of Drivers Manoeuvre for Road Intersection Crossing with
Synthetic and Real Data

Mathieu Barbier'2, Christian Laugier?, Olivier Simonin3 and Javier Ibafiez-Guzman?

Abstract—When approaching a road intersection, drivers at a physical level is not enough to accurately understand the
consider several factors and choose amongst different likely pehavior of other drivers [2]. However, at each intersection,
manoeuvres. For an autonomous agent, it is fundamental 10y 5iactories can be different because of local factors such as
understand what other drivers are doing before deciding their . . . .
own manoeuvres. These are seldom be the same as intersectionsOCCIUS'on' nar.row rgad ora W"?'e turnlng angle. On, a daily
differ and the situations too. Whilst, learning techniques can Commute a driver will pass multiple times the same intersec-
be used to process features of trajectories and to predict tion and be exposed to various scenarios. Thus he/she will
manoeuvres of others cars. The problem with such approaches adapts his/her manoeuvres to that speci ¢ intersection. It also
is the dif cult process of recording data for each intersection, affects his/her comprehension of other drivers manoeuvres
not only of the subject vehicle but of the other vehicles. . . . . ’

To address this problem, a hybrid data set was constructed. thus 'mF?rOV'“g h'_S/her understanding of the scene. .

It is built in a simulated environment and completed with real Learning techniques have been used to address different
data after has driven multiple times across the intersection. types of situations (overtaking, merging, intersection). The
To analyze these data, classi cation technique is used to nd work done on a single intersection with thousands of tra-
the common range of features for each manoeuvre. Random ;o qrjes shows that it is possible to identify manoeuvres.

forest classi ers are used in conjunction with our functional H ina dif culty is th ilabili fd
discretization to analyze the trajectories of cars approaching owever, a recurring dif culty Is the availability ot datasets

an intersection. The classi ers can determine the longitudinal and the complexity to gather thousands of passages in
manoeuvre as well as the direction. We show how our approach an intersection. Furthermore, the model learnt cannot be
performs compared to other classi ers and space discretization. ysed for another intersection, thus requiring to rerecording
In addition, we demonstrate the impact and the usefulness of ,,,sands of trajectories. In order to reduce the cost and
the mixture between simulated and real data. An improvement . . . ) .
of 30% accuracy is obtained with the hybrid data set, and (ime of testing and validation, simulation tools are used to
5% using our functional discretization with respect to baseline generate hundreds of test scenarios with realistic trajectories.
approach. The idea is to use simulation techniques to generate synthetic
informations for training machine learning algorithm. In our
context the nominal manoeuvre of cars can be learnt within
a simulation and can be enriched while driving on the real
intersection. This process is similar to human drivers on their

Whilst road mortality has seen a reduction due to imeaily commute. Discovering for the rst time an intersection,
provement in vehicle design and legislation, accidents at roaldey apply their knowledge about nominal behaviour to
intersections remain high. In France alone[1] there were 33§#tedict what the other drivers are doing. After multiple times
deaths in 2014 and a cost of 37.3B for the society. he/she adapts his/her manoeuvres and the analyses of the
With occlusion, the main problem invoked by drivers isscene helped by past experiences in this speci c intersection.
the misunderstanding of manoeuvres of others drivers amd this paper, the performances of data sets composed of
pedestrians. different percentages of real and simulated data will be

Approaching an intersection, a car has few manoeuvigiscussed.
choices. First the car can decide to pass in the intersection ifin a previous work [3], we showed that the space of an
the context allows it. In case there is not enough informatiojmtersection can be divided in order to take into account how
or a gap in the traf ¢ ow, the driver can decide to yield anddrivers behave. This division will help to divide trajectories
merge with the ow of cars. The last alternative is to stopinto segments more relevant for the classication and to
the car because of road regulation (traf c sign) or if thecreate more accurate classi ers.
upcoming traf ¢ ow does not allow the car to pass.

It is crucial for an autonomous system to know what is o .
the manoeuvre intended by another driver. Reasoning orfiyy Contribution and paper outline

The purpose of this paper is to classify manoeuvre of cars

1Renault S.A.S, 1 av. du Golf, 78288 Guyancourt, France, . . . . . .
name.surmane@renault.com approaching an intersection and to use this classi cation to
2nria Grenoble Rhéne-Alpes , Chroma team,655 Avenue de I'Europgredict other car manoeuvres. We propose to use features
?8330 Montbonnot-Saint-Martin, France name.surmane@inria.frl generated from segments of a trajectory, to train Random
INSA Lyon, CITI Lab., Inria Chroma team,655 Avenue de I'Europe, . . . .

Forest Classi ers (RCF). A different classi er will be used

38330 Montbonnot-Saint-Martin, France name.surmane@inria.fr
This work is supported by a CIFRE fellowship from Renault S.A.S for each areas from [3]. Performances of the approach are

I. INTRODUCTION
A. Rationale



compared with another classi er (SVM) as well as anothea large range of drivers. However they require a huge amount
manner to discretized the space (Rectangular). Synthetic antdwork to be built and resulting classi ers might overt
real data were used for training. The advantage of using an the observed intersection. Thus it would not be possible
hybrid data set will be highlighted and discussed. to set up such system for a larger number of intersections.
This paper is organized as follows. Section Il presentSimulation tools have the advantage of being able to generate
related work on manoeuvre classi cation. Principle of rana large amount of data in a short period of time. Recorded
dom forest classi cation and its application to our problentrajectories are complete (no data missing) and the level of
is presented in section Ill. Section IV describes how data hawise in the measurement can be controlled. However, the
been gathered from real and simulated environment. Sectiembedded model for manoeuvres generations might not be
V presents and comments on a comparison between atapable to grasp all details of the intersections. To address

approach against other classi er and discretization. this problem, a simulation tool is used to generate a part of
the data set then completed with real measurements while
1. RELATED WORK driving.

Different techniques of machine learning have been ap-

A manoeuvre refers to actions that a driver can do whilglied for road intersection crossing. Garcia et al.[5] used
driving. In the case of a road intersection there are multiplgultilayer perceptron, a neural like model, to predict behav-
actions that can be combined. The rst aspect is the directigr primitives at a traf c light. This problems is similar to the
that the car will follow at the intersection. It could be turningyie|d problem since drivers have to choose their manoeuvre
left/right or going straight regarding where the driver wantyith uncertain informations. However in their scenario, the
to go. Secondly, the longitudinal movement that is divide@bserved vehicle only reacted to the passage from green
into three categories at an intersection: stop, pass and yiel@ht to red light. Thus the behavior is highly dependent
that motion is constrained by trafc ow and trafc law. At of the trafc light state. At a yield sign the behavior is
last if the driver complies with what the situation required oinore dependent of other cars and local problems such as
if he/she followed an erratic behavior. In this paper the rsipcclusions.
two aspects will be used as classes for training classi ers. Aoude et al.[8] used SVM combined with Bayesian Iter

In most studies, same measurements are used for mg-analyze the behavior of drivers at an intersection. They
noeuvre classi cation. Velocity, acceleration and distanceocus on the compliance of drivers at a traf ¢ light. Their
to the intersection are the most relevant to the analysis @pproach shows that SVM can be used to learn manoeuvres
the longitudinal aspect of the manoeuvre [4][5]. Whereageatures. Their Bayesian lter is used to Iter the output of
heading and lateral position in the lane are more relevant fgie SVM across time avoiding jump in the prediction.
the direction. Other contextual information such as trafc Using Random forest classi er, Gross et al.[4] trained their
light status or distance to the intersection can also help thgassi er with trajectories recorded from a eet of cars. Their
classi cation. They can be recorded by CAN bus or withdata is sparse due to a low sample rate (1 Hz). Therefore
a perception system. If it is possible to look at the drivershey aggregated 4 measurements (dynamic information and
other information such as gaze, pressure on brake pedal gaformation about the preceding car) to create their feature
be recorded and can provide clues about what the driveggctors. They managed to classify direction and stopping
intend to do [6]. However the latter option causes a privacitent for multiple intersections. However they address the
issue and is more dependent to the driver. Thus, informatiqnomem of Stopping as a binary prob|ems whereas in real
from the ego vehicle that could also be perceived were usggk there are many different ways to stop or pass. Also their
to train local classi ers. feature space is composed of 35 features. Thus many trees

Turning light is mandatory when doing a turning manoeuwith a large depth are required to obtain an accuracy score
vre approaching an intersection, thus their states would leg 0.76 for direction and 0.77 for stopping intent.
highly relevant for classi cation. However, a recent study[7]

shows that in 1 out of 4 situations where there would be n
required, they are not used correctly. Because of this and i
the complexity to perceived turning light, most of the author: Random Forest classi er
choose ignore them. Thus, it increases the robustness of théPopularized by [9], random forest classi er (RFC) are
classi er against drivers errors. better or at least comparable to other state of the art ap-
One of the dif culties for machine learning is the con-proaches for classi cation problems. Several aspects related
struction of a data set. There is no, to our knowledgep their implementation make them attractive for multiple
publicly available data set that contains the previously statddnd of problems. First, they are fast for both learning and
measurements (velocity, acceleration, position) with a larggassi cation. Second, they can be easily parallelized for
number of passages in the same intersection. [8][4] used the@#duced calculation time [10]. They are also more robust
own data set with respectively 300 000 and 50 000 passagbsn other approaches to noise in the data set [9]. RFC are
in intersections to train their classi er. Naturalistic data haslso able to solve multi-classes problems without any further
for advantage to contain most of manoeuvres that coulievelopment compare to Support Vector Machine that need
happened at an intersection with different traf ¢ densities antb be adapted.

. PROPOSED FRAMEWORK



than another tree has perform better to split that part of the
data set. It is important to test different sets of parameters
and to compare them in term of Out-of-bag error to nd

True .
X[4] <= -1.4706 / approprlate values.

gini = 0.144
samples = 640
value =[50, 0, 590, 0]

/ l B. Functional discretization

In our previous work[3], a functional discretization has

x{i?”r‘n;i:;? been proposed and applied to road intersection crossing
value = 42, 0,9, 0] (example given in gure 6). It aims to simplify problems that
requires a discretization of space by segmenting it differently.
gnico0 | X <= 1114 Trajectories from multiple cars have been used to train
vl 122.0.6.01 A Gaussian processes to represent trajectories patterns. Areas

of most likely collisions and approaching areas were found

by analyzing these trajectory patterns. Then, this model
"M — 0386 A has been divided in different parts given their overlapping
vatve = 10,0, 3,01 [] || ¥ae = 10.0.0.01 and probability distributions. The approaching branch of the
intersection is then divided in multiple areas with a similar

. . context. For the classi cation of manoeuvre problems, the
Fig. 1. Example of tree classi er, the gure focus on a branch that generate

pure nodes in green and an impure nodes in red. The rst row of a node %p_proachlng areas are useq since they_represent areas where
the selected test, the second the Gini score of the test drivers should have a consistent behavior.

C. Framework

An RFC builds multiple independent trees, each of them An original aspect of our approach is the use of different

to be trained with a different bootstrapped data set. A,__ . . . .
. . . _classiers for each area found in section IlI-B instead of

bootstrapped data set is a sub-set of the available trainin . .
one for the entire space. For each area, a RFC is created

data. Thus a part of the data is used for learning, sampl?os classify the direction manoeuvre and one other for the

not included are refereed as Out-of-bag samples and will o . .
used to estimate the Out-of-bag-error(OOBE). This meth(? ngitudinal manoeuvre. The advantage of local classi ers is

helos to reduce over- tting and variance. With this a roacﬁ at the segment of the trajectories used for training has been
P . g anc s P executed in a similar context. During the training phase, each
some trees will be more quali ed to classify some labels.

At each node of the a sinale tree a set of random test grajectory of the data set is segmented using our functional
9 Ulscretization. Then features of each segment are computed

the feature space is generated. Each test is judged regardin used to train both REC of the local area. To test a

a quality measurement (in our case the Gini index) and the . .
q Y ( ). new input, all the measurement recorded in area are used

W3 compute the new feature vector. Then the feature vector

until each node is pure (only one class in the node) or whejg test by the corresponding local classi ers to estimate the

a certain depth is reached. Example of a tree is given I onoeuvre of the observed car
gure 1. A treet can be written as a functiofy (x; ¢) : ’

X 1Y with X the feature space and the class space.
. D. Measurement, features and labels
¢ captures stochastic elements of the tree (tests for each ) ] i . . .
decision nodes) and is a feature vector. Thus the entire AS discussed in section II, information from proprio-
forest can be written a = ffq;::ftgwith T the number Ceptive sensors were used to record trajectories. Available
of tree and the probability of a clagsgivenx is : measurements were velocity, position (in UTM referential),
yaw of the car and time. UTM position of the real car were
_ 1 _ converted in the referential of the simulated environment.
plkix) = = pe(kix) (1)  From this measurement the acceleration of the vehicle was
t=1 computed. Training classi ers directly with these measure-

Another advantage is a few tuning parameters required toents would be complex due to noise and relatively small
construct the classi er. Firstly, the number of trees used ideviation due to human errors. Positions of the car were left
the forestT. After a certain amount of trees in the classi er,out of the feature space and used to match a measurement to
there is no more improvement on precision or variancdhe correct area. The feature space is composed of 6 features
Secondly, the depth is used to controls the number of split #hat correspond to the extrema of different measurements in
each tree. Normally a branch of a tree stops to grow once tleg€e area.
purity measurement is below a certain threshold. However, Vpax ; Vmin :Maximum and minimum velocities corre-
this process might require too many splittings and this depth  sponding to extremas in the velocity pro le ims *.
parameter stops the growth after a certain number of splits.  Amax ; Amin :Maximum and minimum acceleration cor-
Theses two parameters work together, stopping the growing responding to the extrema of the car acceleration in
of tree allows to fasten computation, and it can be expected ms 2.
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Fig. 2. Example of trajectories with their given labels, dashed curves are
synthetic velocity pro les, plain curves are real velocity pro les, horizontal
line correspond to velocity threshold of the class.

Hmax ; Hmin :Maximum right and left deviation from
the mean heading in radian.
Then direction and longitudinal motion of each trajectory
were annotated. For the direction the rst and the last mea-
surement are used to group trajectories of the same directions
together. Then the minimum velocity in the overall trajectory (b)
is used to classify the longitudinal motion. With a minimumFig. 3. Satellite view (a) and ground view from the branch A (b) of the
velocity of 0.8 m/s and below the trajectory is labeled asiersection. It can be found at 45°13'02.2"N 5°48'46.0"E
stop. It could be discussed that this value should be 0 m/s.
But during eld experiment drivers reduced their speed as if
they would stop and kept a low speed instead of coming to
stop as recommended by the traf ¢ law. Between 0.8 m/s and
3.8 m/s, the trajectory is labeled as yield for car that reduced
their speed to let an other driver pass or uncertain about the
behavior of another driver. All trajectories over 3.8m/s were
labeled as passing. Drivers reduced their speed according to
the trafc law but are con dent that their passage in the
intersection is possible. Example of velocity proles and
classi cation is shown in gure 2. In the future these classes
should be enriched with perception systems in order to take

into account dynamic context and to create more classes. _ , _ _ _
Fig. 4. Simulation environment in Scaner, cars drove freely at various

speeds
V. DATA ACQUISITION

The experiment was conducted on a T-intersection in a
urban area close to Grenoble. The gure 3 shows a satellitghd will be used for the rest of the paper. Drivers chose
and ground view of the intersection. There is no othefreely to turn right or to continue straight. This branch is the
intersection in a 50 meter range and cars can approagibst interesting, because of its yield sign that force drivers
the intersection with a maximum velocity of 50 km/h.tg choose between three possibles manoeuvres: pass, yield
Trajectories of our experimental platform were recorded witind stop. Each trajectory was given a label regarding the
an X-sens, that combined inertial measurement informatiqgwest velocity during the manoeuvre. The table | shows the
and GPS, to accurately locate our vehicle in space. Velocityomposition of the data set that was gathered by simulation
position and heading of the car were recorded at 100 Hand eld experimentations.
Three different drivers carried out multiple manoeuvres in
an uncontrolled environment. The traf c was relatively low
(no more than two vehicles interacting together) and with- V. RESULTS AND DISCUSSION
out pedestrians. This environment was reproduced with the
simulation platform Scaner™ as shown in gure 4. In total, Following results show the performances of the proposed
2.5 hours of 3 cars driving together in the same intersecticapproach. The implementation is made using python and
was recorded. Trajectories from branch A were extractestikit learn[11] for training and testing.



TABLE |
DATA SET COMPOSITION

[ data set [ passage| pass ] yield | stop [ Straight [ turn right |

Simulated 100 43 37 20 39 61
real 37 10 21 6 18 19
Fig. 6. Discretization of the intersection space using the functional
discretization (top) and rectangular segmentation (bottom), the point 0,0
is the center of the intersection
TABLE I
COMPARISON OF THE ACCURACY OF THE CLASSIFICATION USING THE
FUNCTIONAL DISCRETIZATION AND A RECTANGLE DISCRETIZATION
Fig. 5. OOBE error with different parameters for the random forest Discretization] 1 [ 2 [ 3 | 4 [ 5 [ Mean ]

classi ers, with 20 trees of maximum depth 10 a score of 0.20 is obtaingd Functional 0.77] 0.89] 0.81] 0.73] na 0.8
(highlighted in green). Obtained with a data set containing 20% of real data. Rectangle 0.82] 0.85| 0.71 ] 0.69 | 0.67 | 0.746

Improvement +5.4%

(a) Longitudinal manoeuvres classi cation
A. Random forest topology

[ Discretizaton] 1 [ 2 | 3 [ 4 [ 5 [ Mean |
The depth and the number of tree are important parametersFunctional | 0.84 | 093 | 0.77 | 0.71 | na | 0.81
that control the creation of the RFC. Thus, it is important to__Rectangle | 0.84 | 0.89 | 0.67 | 0.67 | 0.70 | 0.752
L. . [ Improvement +5.8%
nd optimized value for each of this parameters. The OOBE — —
is used to control the quality of the learning phase of the (b) Directions classi cation
RFC. Figure 5 shows the errors obtained with different set of
parameters. It can be observed that with trees with more than
10 split (depth parameter) there is no improvement of th€. Comparison to Baseline approach

increased for stability reason. In this con guration an OOBE,, longitudinal manoeuvre aetection an “

. ) . : 2 one-against-one”
of 0.20 is obtained (highlighted in green in Figure 5).

approach is used for the SVM classi cation.

For this experiment, a hybrid data set, composed of 20%
of real data and completed with synthetics ones, were used
B. Functional discretization against Rectangular discretizain conjunction with the functional discretization.
tion Table 1ll shows the results obtained in each area with

. ] ] o ] K-fold cross-validation with k=5. It can be observed that

Using our functional discretization proposed in [3], &mplementation with an RFC performs slightly better than

comparison is made with rectangular areas. The rectangulg{/m. This is due to the variety of tree structures and the

areas are 10 meters wide (similar to [4]). Areas from botRompination of tree outputs. Another interesting result is the
discretization are matched regarding their centroid. Figure 6

shows the results of both discretization.
Accuracy was compute as the result of the classi cation
of real data. It can be observed in table Il an improvement

TABLE il
COMPARISON BETWEENRFC CLASSIFICATION AND AN SVM

of 5.4% for longitudinal manoeuvre and 5.8% for directio Discretization | 1 7 3 ) Mean
detections. Learning Classi er in areas that are more relevant RFC 091 0.88] 068 0.73| 082
to the motion of the car is thus more accurate. Reducirg-ongitudina SVM 0.91 | 088 | 062 | 0.69 | 080

K . . - manoeuvres| Improvement +2.0%
the size of the rectangle segmentation could improve theis REC 092 1T 093 057 [ 070 | 0.803
performances but would have required more classi ers thus Directions SVM 0.81 | 0.70 | 0.60 | 0.68 | 0.712
a more complex system. Improvement +9%




TABLE IV
FEATURES IMPORTANCE

l [ Vimin [ Vimax [ Amax [ Amin [ H max [ H min l
Longitudinal | 0.29 0.29 0.16 0.17 0.02 0.03
Direction 0.21 0.19 0.15 0.17 0.13 0.11

Fig. 9. Receiver operation curves curves obtained with different composi-
tions of dataset for longitudinal classi cation, testing is made against real
data

Fig. 7. Accuracy of the classi cation using different composition of hybrid mylti-class. curves are an average of the ROC of every class.
data set, accuracy is obtain with real data testin s . . . .
dracy Is obtain wi "9 Results in gure 8 where obtained with attempting to classify
real measurements. It shows that the chosen implementation

features importances. For RFC, it correspond to the numblr 2Iways b(_atter than any ot_her approaches. )

of time a feature has been used to split a node. Table The solution using only simulation data can still perform
IV shows results obtained with the same implementatiofP€ttér than a random guess (dashed blue line),in gure 9
As expected, features related to velocity and acceleratiGhoWing that information from the simulation are useful in
are more important for longitudinal manoeuvres. Directiof® l€arning. The addition of a certain percentage of real

classi cation required a more balanced usage of features.data improves the classi cation. It can be observed that
with a purely synthetic data-set, classiers still managed

] ) to perform slightly better than the random guess. It shows
D. Results with the hybrid data set that the information provided by the simulation help the
For this part different data set composition will be used telassi cation. Only the ratio of synthetic and real information
train the same RFC with the functional discretization. Théaas been discussed in this paper. It would also be interesting
accuracy score is obtain using only real data. Figure 7 shows look at the impact of the volume of data required. For our
the evolution of the performances using different percentagexperimentation the size of data sets were relatively low,
of real data in the training set. It can be observed that witbspecially the real part. If more simulation time is spent,
20% of real data the performances have doubled for thtee performances of classi cation could increase. But, as
direction manoeuvre and rise by 30% for the longitudinalhinted with these results, the use of even a small amount
It shows that with a rather small amount of real datapf real data increases performances. The model learnt with
performances of the classi er improved rapidly. our approach could be re-injected in the simulation tool in
order to provide more accurate cars behaviors for validation
of other problems.
_ _ The use of the functional discretization always improved
E. Discussion the result of the classi cation. This discretization take into
Results showed that the proposed classi cation schen&count where drivers are most likely to adapt their trajecto-
with RFC, the functional discretization and the hybrid datdies to the local context. Thus resulting classi ers are tted
set should perform better than any combination of classi cat0 a more relevant feature range. For example, leaving area
tion, data set composition and discretization. In order to assés the driver is expected to slow down to adapt his speed
the quality of a classi er, receiver operation curve (ROC) ido the intersection and then entering area 3 slow down if an
used to visualize performances of each classi er. The top leyteld or a stop is required. The third area of rectangular
point (in gure 8) being an optimal performance with only discretization is in-between two areas of the functional
true positive and no false positive. The closer the curve is @iscretization and less accurate than its counterpart in the
that point the better is the classi cation. This characteristifunctional discretization. It is caused by the driver being in
in shown trough the area below the curve that can be readtransitional state and features show more change in the
in the legend of the gure 8. The steepness of the curvthird rectangle.
is also important to show how fast the true positive rate The last aspect is the use of RFC rather than an other
increases. The curve is an average of all local classi erglassi cation method. Curves using this approach shows
For the classi cation of longitudinal manoeuvre, which isbetter steepness and a wider area. Thus outperforming the
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(b)

Fig. 8. Receiver operation curves for direction (a) and longitudinal manoeuvre(b). The dashed line corresponds to a random classi cation. The closer the

curve is to the top left corner the better is the classi cation method.

implementation with an SVM. RFC are known to be robust[2]
against over- tting, thus it is possible that the SVM has over-

t on the simulated part of the data set when the RFC did3
not. However this computation time is suf cient for real time
implementation and there is also enough margin to add more
trees if required. A more advanced strategy could be used Ry
train the RFC for on-line learning. For example, starting from

a forest learnt with only synthetic data, some trees could be
replaced by newly trained trees with real data. This would[5]
enhance the management of classi ers in time.

VI. CONCLUSION (6]

In this paper a model for classication of manoeuvres
for a road intersection has been done using Random Forest
Classi er and a functional discretization. Results show bettef’]
performances compared to others baseline approach (SVM
and rectangular discretization). To cope with the requiremenig]
of naturalistic data set, we showed that with a relatively small
data set that contains synthetic data and real data it is possible
to accurately classify real manoeuvres. Only informationd€]
from the proprioceptive sensors were used, but further deved—0
opment could include information for exteroceptive sensors
to add features from the context. It could help to add newti]
labels to more precisely identify the behaviors of drivers.
The feature range for each manoeuvre could be used to tune
trajectory planner to produce trajectories more dependent on
the local situation.
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