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Abstract�In this article, we study how combined motor
imageries can be detected to deliver more commands in a
Brain-Computer Interface for controlling a robotic arm. Motor
imageries are a major way to deliver commands in BCI. Never-
theless only a few systems use more than three motor imageries:
right hand, left hand and feet. Combining them allow to get four
additional commands. We present an electrophysiological study
to show that i) simple motor imageries have mainly an electrical
modulation over the cortical area related the body part involved
in the imagined movement and that ii) combined motor imageries
re�ect a superposition of the electrical activity of simple motor
imageries. A shrinkage linear discriminant analysis has been
used to test as a �rst step how a resting state and seven motor
imageries can be detected. 11 healthy subjects participated in
the experiment for which an intuitive assignment has been done
to associate motor imageries and movements of the robotic arm
with 7 degrees of freedom.

I. INTRODUCTION

Motor imagery (MI) is the ability to imagine perform-
ing a movement without executing it [1]. According to
Jeannerod [2], MI represents the result of conscious access to
the content of the intention of a movement, which is usually
performed unconsciously during movement preparation [3].
MI has two different components, namely the visual-motor
imagery and the kinesthetic motor imagery (KMI) [4]. KMI
generates an event-related desynchronization (ERD) and an
event-related synchronization (ERS) in the contralateral sen-
sorimotor area, which is similar to the one observed during
the preparation of a real movement (RM) [5]. More precisely,
compared to a resting state taken before a motor imagery,
several power modulations are observed in in the alpha (7-
13 Hz) and in the beta (18-25 Hz) bands of the electroen-
cephalographic signal measured over the sensorimotor area
corresponding to the body part involved in the motor imagery.
Firstly there is a gradual power decrease in the alpha and in
the beta bands, called ERD. Secondly, a low power level is
maintained during the movement. Finally, from 300 to 500
milliseconds after the end of the motor imagery, there is a
power increase called ERS or post-movement beta rebound
with a duration of about one second. Although several studies
showed an activity uniquely in the contralateral area [6], other
studies showed that ERD and ERS are also in the ipsilateral
area [7].

Emergence of ERD and ERS patterns during and after a MI
has been intensively studied in the Brain-Computer Interface
(BCI) domain [8] in order to de�ne detectable commands
for the system. BCI systems consist of a combination of
modules that allow recording the user brain activity in order to
analyze it and �nd speci�c patterns indicating that the person is
executing a particular mental task, which in turn is associated
to a speci�c command for controlling the function of certain
devices, such as computers, robotics, wheelchairs, prostheses,
orthoses, etc. In this way, BCIs replace the natural nervous
system pathways by arti�cial ones, which allow people with
a severe motor impairment to interact with their environment
by using only their brain activity. Most of BCI applications
aim at improving the quality of life of their users, who have
lost certain function(s) due to a degenerative disease or an
accident, in which case the system will attempt to restore the
missing ability.

In order to explore new solutions for overcoming the exist-
ing limitations of EEG-based neuroprostheses, we explored
new alternative that have been implemented and motivated
by a JACO 3-�ngers robotic arm. This study consists to
control the three body parts of this robotic arm in increasing
the number of MI commands. Indeed, we will present a 8-
class database; which comprises EEG signals from 11 healthy
subjects inducing the eight mental states that it is possible
to generate by the motor tasks involving the use of the right
hand, left hand, both feet together, and rest. We will present
a qualitative analysis on the ERD patterns that are found
in the EEG signals during the eight different tasks and the
classi�cation performance for each subjects.

II. MATERIAL AND METHODS

A. The JACO 3-�ngers robotic arm
The proposed approach has been motivated by a commercial

device model JACO 3-�ngers by KinovaTM1, which affords a
full 3D control through fourteen prede�ned motions; including
six reaching movements along the three axis, six rotations
around the three axis, and a grasping function. These functions
are distributed in three main articulations-like that resemble the

1http://www.kinovarobotics.com/assistive-robotics/products/manipulation/



forearm, with which the device is able of approaching objects,
the wrist, with which it is possible to turn the hand towards any
direction, and the �ngers, which allows to open and close the
hand (Figure 1). Regarding the use of the �ngers, even when
the device allows controlling each pair separately, we have
decided to consider them all together. In this way the number
of required commands decreases without loss of functionality,
since the grasping action by using two or three of the �ngers
has almost the same effect.

Fig. 1. 3-axis operation mode. The robotic arm affords a full 3D control
through fourteen prede�ned motions; including six reaching movements along
the three axis (A), six rotations around the three axis (B), and a grasping
function (C). These functions are distributed in three main articulations-like
that resemble the forearm, the wrist, and the �ngers. Note that we have decided
to use all �ngers together, so that the number of required commands decreases
without loss of functionality, since the grasping action by using two or three
of the �ngers has almost the same effect.

1) Implementation challenges: The appropriate use of this
robotic arm implies several challenges that must be addressed
from different perspectives. For instance, users’ training is
one of the most dif�cult aspects. Even when powerful feature
extraction and classi�cation techniques are implemented, the
control of this kind of devices becomes unsatisfactory if users
are not able of properly modulating their brain activity. In
this sense, the proposed paradigm adds a greater dif�culty
in comparison to the standard protocols, since the movement
imagination of more than one body part at the same time
requires a higher degree of coordination. Furthermore, training
sessions can be long and tedious for users, specially if the
task is not well accomplished, which might cause frustration
and make the training process even more dif�cult. It must be
mentioned that this aspect represents one of the main areas of
BCI research, which was beyond of the scope of the present
project and, therefore, it remains to be addressed as part of
the related feature work.

2) Multiple commands: As shown in Figure 1 this device
offers several prede�ned motions, which on the one hand

facilitates the interaction with the subject, but on the other
hand demands a considerable number of different brain states
to be properly induced and classi�ed. In this regard there
are at least two aspects to be considered; �rst, the number
of body parts with which it is possible to offer an intuitive
control and whose related sources are separated enough to
distinguish the induced activity is limited, and second, the
classi�cation task becomes more dif�cult as the amount of
classes increases, which can lead to misclassi�ed responses
that hinder the correct use of the device. Because of these
considerations we have decided to explore the use of combined
motor imageries, since in contrast with the standard scheme,
this approach has the advantage of considerably increasing the
amount of afforded commands while using the same number
of body parts (in order of 2P compared to P , where P is
the number of body parts). However, even when the use of
combined movements is considered, there might be not enough
commands to control devices as the one we are describing. For
instance, in the present work we have decided to consider the
use of the left hand, right hand and both feet together. Given
that these body parts are intuitively associated with movement.
It is worth mentioning that feet are considered together given
the proximity of the two sources, which may be dif�cult to
distinguish.

Under this scheme users are afforded only with eight com-
mands if the rest condition is also considered (i.e., left hand,
feet, left hand in combination with feet, right hand, both hands
together; right hand in combination with feet; both hands
together with feet, and rest), which are not suf�cient to control
the fourteen available motions. To overcome the insuf�ciency
of commands we have designed a smart switching-mode
scheme that allows controlling different actions by using the
same command.

The combination of the three body parts included in the
paradigm together with the rest condition, afford users with
eight different commands. However, since it is essential to
keep the rest condition unassigned to any movement, only
seven classes remain to control the device. To this end, an
implementation based on three modes has been proposed:
one mode for controlling the arm position (see Figure 1-A),
another one for the wrist (see Figure 1-B), and the third one for
opening and closing the �ngers (see Figure 1-C). Each mode
assigns a speci�c class to a speci�c motion. The combination
of the three motor imageries (both hands and feet) has been
established to be used as a switch that allows changing from
one mode to the next one (arm, wrist, �ngers, arm...). In
this way it is possible to manage different actions by using
the same mental command to control the fourteen available
motions (see Figure 2).

B. Participants
Eleven right-handed healthy volunteer subjects took part in

this experiment (8 men and 3 women, 19 to 43 years old). They
had no medical history which could have in�uenced the task.
All experiments were carried out with the consent agreement
(approved by the ethical committee of INRIA) of each partici-



Fig. 2. Arm control. The different MIs that users were asked to perform are
shown in the �rst column with their associated cue stimuli in the second one.
The last three columns present the different robotic movements associated to
each mode. Note that the rest condition is not linked to any action, and that
motor imagery including the combination of all body parts represents a switch
to change from one mode to another.

pant and following the statements of the WMA declaration of
Helsinki on ethical principles for medical research involving
human subjects [9].

C. Protocol
Subjects were seated in a comfortable chair with the arms at
their sides in front of a screen showing the task cue to be
performed, which consisted of one of the eight kinesthetics
motor imageries that it is possible to generate with all com-
binations including the use of the right hand, left hand, both
feet together, and rest (i.e., right hand; left hand; feet; both
hands together; left hand in combination with feet; right hand
in combination with feet; both hands together with feet, and
rest). The whole session consisted of 4 runs, containing each
one 10 trials per task, which totals 40 trials per class (320
trials considering the 8 classes). For the stimulation, three
panels were simultaneously displayed on the screen, which
were associated from left to right, to the left hand, feet and
right hand. Each trial was randomly presented and lasted for 12
seconds, starting at second 0 with a cross at the center of each
panel and an overlaid arrow indicating for the next 6 seconds
the task to be performed: an arrow pointing to the left side
on the left panel for left hand, an arrow pointing down on the
central panel for feet, an arrow pointing to the right side on the
right panel for right hand, and the simultaneous combination of
all of them for the corresponding combined tasks (see Figure
3 and column 2 of Figure 2). The rest condition was also
considered and it was indicated by the absence of arrows.
After second 6, the task cue disappeared and the crosses were
remaining for the next 6 seconds indicating the pause period
before the next trial started.

D. Electrophysiological data
EEG signals were recorded by the OpenViBE [10] plat-

form from �ftenn right-handed healthy subjects at 256 Hz
using a commercial REFA ampli�er developed by TMS
InternationalTM. The EEG cap was �tted with 26 passive
electrodes, namely Fp1; Fpz; Fp2; Fz; FC5; FC3; FC1; FCz;

Fig. 3. Time scheme. Each trial was randomly presented and lasted for 12
seconds. During the �rst 6 seconds, users were asked to perform the motor
imagery indicated by the task cue, which was launched throughout three
simultaneously displayed panels associated, from left to right, to left hand,
feet and right hand. The use of each body part was indicated by the presence
of arrows: an arrow pointing to the left side on the left panel for left hand, an
arrow pointing down on the central panel for feet, an arrow pointing to the
right side on the right panel for right hand, and the simultaneous combination
of all of them for the corresponding compound motor imageries. After second
6, the task cue disappeared and the crosses were remaining for the next 6
seconds indicating the pause period before the next trial started.

FC2; FC4; FC6; C5; C3; C1; Cz; C2; C4; C6; CP5; CP3;CP1;
CPz; CP2; CP4; CP6 and Pz, re-referenced with respect to
the common average reference across all channels and placed
by using the international 10-20 system positions to cover the
primary sensorimotor cortex.

E. ERD/ERS patterns
To evaluate more precisely the modulation which appeared

during the two different time windows, we computed the
ERD/ERS% using the �band power method� [5] with a Matlab
code. First, the EEG signal was �ltered in the mu frequency
band (7-13 Hz) for all subjects using a 4th-order Butterworth
band-pass �lter. Then, the signal was squared for each trial
and averaged over trials. Then it is smoothed using a 250-
ms sliding window with a 125 ms shifting step. The averaged
power computed for each window was subtracted and then
divided by the averaged power of a baseline corresponding to
a 2s window before each trial. Finally, the averaged power
computed for each window was subtracted and then divided
by the averaged power of a baseline corresponding 2s before
each trial. Trials were considered 2 seconds before the task cue
appeared on the screen and 6 seconds after it disappeared, so
that each segment corresponds to a 14s-length signal segment
over 26 electrodes (Figure 5, Figure 6 and Figure 7).

F. Classi�cation
Each subject performed 4 runs of motor imageries. Each

run contains 10 trials for each class (Rest, Left Hand, Right
Hand, Both hands, Feet, Left hand & Feet, Right hand & Feet,
Both hands & Feet). Thus 40 trials per class are available for
each subject. From each trial 26 features (one per channel)
have been extracted from the �ltered signal computing the
logarithm of the variance of the amplitude values between
0.5 and 3.5s after the GO signal. For classi�cation a 8-classes
Shrinkage Linear Discriminant Analysis (sLDA) [11] has been
used via the python library scikit-learn [12]. The reason to use
a shrinkage estimator is due to the small number of samples
per class. For the same reason, a cross validation has been



done using 3 runs for train and 1 run for test. Thus 240 trials
for train and 80 trials for test for every step of a the cross
validation.

III. RESULTS

A. Oscillatory power analysis
Figure 4 shows a topographic representation for one of

the subjects along all conditions of the ERD/ERS% values
obtained for all electrodes and averaged over the 4-second
period starting one second after the task cue was presented. It
can be observed that the lowest values appear on the regions
associated to the limbs that are engaged at each motor task
(broadly, right hand over electrode C3, feet over electrode Cz,
and left hand over electrode C4).

Fig. 4. Distribution of the relative oscillatory power along the sensorimotor
cortex during the course of the different motor tasks for subjet 2. ERD/ERS%
values were obtained for all electrodes within the mu frequency range and
averaged over the 4-second period starting one second after the task cue was
presented. Negative values indicate ERD% modulation, which is characteristic
of a motor task execution that appears over the contralateral hemisphere of
the body part used in the process (broadly, electrode C4 for left hand, Cz for
feet, and C3 for right hand). Note that each topographic map is independently
normalized to enhance the corresponding patterns.

If we take a closer look over the time course of ERD/ERS%
over electrode C3 (i.e, the activity source associated with
the use of the right hand) presented in Figure 5, we can
observe that all motor imageries involving the use of the
right hand (i.e., right hand, right hand in combination with
feet, both hands, and both hands in combination with feet)
present considerably lower ERD/ERS% values than those that
do not include it (i.e., rest, left hand, feet, and left hand in
combination with feet).

Similarly, Figure 6 presents the time course of ERD/ERS%
over electrode Cz (i.e, the activity source associated with the
use of the feet). Over this region it can also be observed that
the motor imageries involving the use of the feet (i.e., feet,
left hand in combination with feet, right hand in combination
with feet, and both hands in combination with feet) present
lower ERD/ERS% values than those that do no it include it
(i.e., rest, left hand, right hand, and both hands). However, in
comparison to the contrast observed over electrode C3 between
the tasks involving the use of the right hand and those that do
not involve it, differences are not as signi�cant. In fact, we can
observe that the use of both left and right hands induce some
desynchronization over the central region, possible because
the associated sources are quite close to electrode Cz, which
might cause it to incorporate some of this activity.

Finally, the same comparison is illustrated in Figure 7 for
the time course of ERD/ERS% generated over electrode C4
(i.e, the activity source linked to the use of the left hand).
In this case, similarly to the analysis over electrode C3, it
is possible to observe a signi�cant contrast between the low

ERD/ERS% values obtained from the activity induced by the
motor imageries involving the use of the left hand (i.e., left
hand, left hand in combination with feet, both hands, and both
hands in combination with feet) from the high ERD/ERS%
values associated to the tasks that do not involve the use of
the left hand (i.e., rest, feet, right hand, and right hand in
combination with feet).

Fig. 5. ERD/ERS% time series within the mu range for all motor tasks over
electrode C3 (i.e, the activity source associated with the use of the right hand).
ERD/ERS values were estimated over the EEG trials from subject 2. Note that
all motor imageries involving the use of the right hand (i.e., right hand, right
hand in combination with feet, both hands, and both hands in combination
with feet) present considerably lower values that those that do not include it
(i.e., rest, left hand, feet, and left hand in combination with feet).

Fig. 6. ERD/ERS% time series within the mu range for all motor tasks
over electrode Cz. ERD/ERS values were estimated over the EEG trials from
subject 2. Note that the motor imageries involving the use of the feet (i.e.,
feet, left hand in combination with feet, right hand in combination with feet,
and both hands in combination with feet) present lower ERD/ERS% values
than those that do no it include it (i.e., rest, left hand, right hand, and both
hands). However, this contrast is not as signi�cant as the one observed on
electrode C3, possibly due to the fact that the regions associated to both the
left and right hands are quite close to electrode Cz, which might cause it to
incorporate some of this activity.

B. Statistical analysis
We present a series of box plots for comparing the power

spectrum magnitudes at 12 Hz between all motor tasks over
the regions associated to the main sources. Again, it is possible
to observe that motor imageries involving the use of the
limb associated to each electrode present similar low power
values at these positions, whether those that are not engaged
generate higher values. This is particularly visible from �gure
8, which presents the corresponding analysis over electrode
C3 (i.e., the region associated to the right hand). Note that
the distribution of the mean values con�rm that there is no
signi�cant difference between motor imageries including the
use of the right hand over this region, independently from



Fig. 7. ERD/ERS% time series within the mu range for all motor tasks
over electrode C4. ERD/ERS values were estimated over the EEG trials from
subject 2. Note that all motor imageries involving the use of the left hand (i.e.,
left hand, left hand in combination with feet, both hands, and both hands in
combination with feet) present considerably lower values that those that do
not include it (i.e., rest, right hand, feet, and right hand in combination with
feet).

the fact of whether the motor imagery is simple or combined.
In contrast there is a signi�cant difference with all the other
tasks that do not include the use of the right hand which,
in turn, present a uniform distribution between them. The
same analysis is presented for electrode Cz (i.e., the region
associated to the feet) and electrode C4 (i.e., the region
associated to the left hand) in �gures 9 and 10 respectively.

Fig. 8. Box plots for subjet 2 comparing the power spectrum magnitude at 12
Hz within the time interval from [2-5 s] among all the considered conditions
over electrode C3. The distribution of data shows that there is no signi�cant
difference between motor imageries including the use of the right hand over
this region, independently from the fact of whether the motor imagery is
simple or combined. In contrast there is a signi�cant difference with all the
other tasks that do not include the use of the right hand which, in turn, present
a uniform distribution between them.

C. Classi�cation
Table I reports the accuracy for 8 classes obtained by a

shrinkage LDA for 11 subjects. The mean accuracy of 31.6
% is low even compared to a random assignment (12.5 %).
However, it should be noted that two subjects have better
performance (S2 and S11) compared with other subjects. It is
interesting to see that the best subject in term of accuracy had
also the powerful ERD during the MI-task (Figure 5, Figure
6 and Figure 7). Thus, in the next section, we will discuss
possible solutions to improve the classi�cation accuracy.

Fig. 9. Box plots for subjet 2 comparing the power spectrum magnitude at 12
Hz within the time interval from [2-5 s] among all the considered conditions
over electrode Cz. The distribution of data re�ects what was observed from
the ERD/ERS% time series, and con�rms that EEG activity around the central
region is in�uenced by the surrounding sources.

Fig. 10. Box plots for subjet 2 comparing the power spectrum magnitude at 12
Hz within the time interval from [2-5 s] among all the considered conditions
over electrode C4. The distribution of data shows that there is no signi�cant
difference between motor imageries including the use of the left hand over this
region, independently from the fact of whether the motor imagery is simple
or combined. In contrast there is a signi�cant difference with all the other
tasks that do not include the use of the left hand which, in turn, present a
uniform distribution between them.

Table II shows the main misclassi�cations. In particular, feet
motor imageries have been confused with a resting state (Rest
! Feet, Feet ! Rest, Both hands ! Feet, Left hand & Feet
! Left hand, Right hand & Feet ! Right hand, Both hands &
Feet ! Both hand). One explanation could be that the activity
of the right hand (respectively the left hand and both hands)
goes over the Cz location.

Each class is described by a few number of samples (30 for
training and 10 for testing). Increase the number of samples
for each class should improve the performance. The low
classi�cation rate could also be linked with the dif�culty
to properly imagine a kinesthetic movement. An incremental
motor imagery learning using �rst real movements and then
intented movements could be useful to train the user to
produce a good motor imagery.



TABLE I
ACCURACY OBTAINED BY A SHRINKAGE LDA FOR EACH SUBJECT FOR

8-CLASS OF MOTOR IMAGERIES.

Subject 8-class accuracy
1 21.9% � 3.4%
2 58.1% � 5%
3 34.7% � 2.7%
4 28.4% � 6.6%
5 26.9% � 4%
6 23.7% � 1.8%
7 27.8% � 6.6%
8 26.6% � 3.5%
9 20.3% � 2%
10 35.3% � 3%
11 43.4% � 5.2%
AVG 31.6% � 10.5%

IV. CONCLUSION

To control a robotic arm with 14 commands using a EEG-
based BCI, we presented a mapping of these commands with
a set of simple and combined motor imageries. Our study
shows that the electrical activity of combined motor imageries
measured on the scalp is very similar to the electrical activity
measured for each simple motor imagery taken individually.
Thus an ef�cient classi�cation should be able to distinguish
them. The accuracy obtained by a shrinkage linear discrim-
inant analysis is not good enough to allow a control of
the robotic arm. Further works will focus on ensemble of
binary classi�ers to allow the use the ef�cient common spatial
pattern algorithm [13] as pre-processing to increase by linear
combination of the channels the amplitude of the signal for
one class and decrease it for the other one. Then one-versus-
one approach, one-versus-the-rest approach or a hierarchical
approach should improve the detection of combined motor
imageries.
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