=. For-z and . ?1, the input interval overlaps with the branch point at 10 and 100 digits, showing a potential small imaginary part in the output, but at higher precision the imaginary part disappears: [-1, .9999999999{...929 digits...}9899904389 +/-2, pp.99-950

F. Chapeau-blondeau and A. Monir, Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2, IEEE Transactions on Signal Processing, vol.50, issue.9, pp.2160-2165, 2002.
DOI : 10.1109/TSP.2002.801912

URL : https://hal.archives-ouvertes.fr/hal-00845481

R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, On the LambertW function, Advances in Computational Mathematics, vol.1, issue.6, pp.329-359, 1996.
DOI : 10.1007/BF02124750

F. Johansson, Efficient Implementation of Elementary Functions in the Medium-Precision Range, 2015 IEEE 22nd Symposium on Computer Arithmetic, pp.83-89, 2015.
DOI : 10.1109/ARITH.2015.16

URL : https://hal.archives-ouvertes.fr/hal-01079834

F. Johansson, Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic, IEEE Transactions on Computers, issue.99, pp.1-1, 2017.
DOI : 10.1109/TC.2017.2690633

URL : https://hal.archives-ouvertes.fr/hal-01394258

G. A. Kalugin and D. J. Jeffrey, Convergence in C of series for the Lambert W function, 2012.

P. W. Lawrence, R. M. Corless, and D. J. Jeffrey, Algorithm 917, ACM Transactions on Mathematical Software, vol.38, issue.3, p.20, 2012.
DOI : 10.1145/2168773.2168779

R. E. Moore, Methods and applications of interval analysis, SIAM, 1979.
DOI : 10.1137/1.9781611970906

D. Veberi?, Lambert W function for applications in physics, Computer Physics Communications, vol.183, issue.12, pp.2622-2628, 2012.
DOI : 10.1016/j.cpc.2012.07.008

A. Ziv, Fast evaluation of elementary mathematical functions with correctly rounded last bit, ACM Transactions on Mathematical Software, vol.17, issue.3, pp.410-423, 1991.
DOI : 10.1145/114697.116813