R. 1. Barabási and A. L. , Network science, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.406, issue.6794, 2016.
DOI : 10.1038/35019019

G. Berry and G. Boudol, The chemical abstract machine, Theoretical Computer Science, vol.96, 1992.
DOI : 10.1145/96709.96717

URL : https://hal.archives-ouvertes.fr/inria-00075426

O. Bournez, D. S. Graça, and A. Pouly, Polynomial Time corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length, Journal of the ACM, 2017.

O. Bournez, M. L. Campagnolo, D. S. Graça, and E. Hainry, Polynomial differential equations compute all real computable functions on computable compact intervals, Journal of Complexity, vol.23, issue.3, pp.317-335, 2007.
DOI : 10.1016/j.jco.2006.12.005

URL : https://hal.archives-ouvertes.fr/inria-00102947

O. Bournez, M. L. Campagnolo, D. S. Graça, and E. Hainry, The General Purpose Analog Computer and Computable Analysis are Two Equivalent Paradigms of Analog Computation, International Conference on Theory and Applications of Models of Computation, pp.631-643, 2006.
DOI : 10.1007/11750321_60

URL : https://hal.archives-ouvertes.fr/inria-00102946

O. Bournez, D. S. Graça, and A. Pouly, Polynomial Time corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length. The General Purpose Analog Computer and Computable Analysis are two efficiently equivalent models of computations, 43rd International Colloquium on Automata, Languages , and Programming, ICALP 2016:15. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, pp.1-109, 2016.

O. Bournez, D. S. Graça, and A. Pouly, On the functions generated by the general purpose analog computer, Information and Computation, 2017.

H. J. Buisman, H. M. Ten-eikelder, P. A. Hilbers, and A. M. Liekens, Computing Algebraic Functions with Biochemical Reaction Networks, Artificial Life, vol.15, issue.1, pp.5-19, 2009.
DOI : 10.1016/S1369-5274(03)00033-X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.547.6363

N. Busi and R. Gorrieri, On the Computational Power of Brane Calculi, Transactions on Computational Systems Biology VI cMSB'05 Special Issue, pp.16-43, 2006.
DOI : 10.1007/11880646_2

L. Cardelli and L. Zavattaro, Turing universality of the Biochemical Ground Form, Mathematical Structures in Computer Science, vol.3082, issue.01, pp.45-73, 2010.
DOI : 10.1007/978-3-540-25974-9_3

D. C. Carothers, G. E. Parker, J. S. Sochacki, and P. G. Warne, Some properties of solutions to polynomial systems of differential equations, Electronic Journal of Differential Equations, vol.40, 2005.

H. L. Chen, D. Doty, and D. Soloveichik, Rate-independent computation in continuous chemical reaction networks, Proceedings of the 5th conference on Innovations in theoretical computer science, ITCS '14, pp.313-326, 2014.
DOI : 10.1145/2554797.2554827

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.649.3255

Y. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli et al., Programmable chemical controllers made from DNA, Nature Nanotechnology, vol.2, issue.10, pp.755-762, 2013.
DOI : 10.1038/srep00656

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150546

H. J. Chiang, J. H. Jiang, and F. Fages, Reconfigurable neuromorphic computation in biochemical systems, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015.
DOI : 10.1109/EMBC.2015.7318517

URL : https://hal.archives-ouvertes.fr/hal-01236265

K. Chiang, J. H. Jiang, and F. Fages, Building reconfigurable circuitry in a biochemical world, 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, 2014.
DOI : 10.1109/BioCAS.2014.6981787

URL : https://hal.archives-ouvertes.fr/hal-01103266

T. Y. Chiu, H. J. Chiang, R. Y. Huang, J. H. Jiang, and F. Fages, Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications, PLOS ONE, vol.3, issue.9, 2015.
DOI : 10.1371/journal.pone.0137442.t003

URL : https://hal.archives-ouvertes.fr/hal-01236266

M. Cook, D. Soloveichik, E. Winfree, and J. Bruck, Programmability of??Chemical Reaction Networks, Algorithmic Bioprocesses, pp.543-584, 2009.
DOI : 10.1007/978-3-540-88869-7_27

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.1257

A. Courbet, D. Endy, E. Renard, F. Molina, and J. Bonnet, Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates, Science Translational Medicine, vol.99, issue.4, 2015.
DOI : 10.1073/pnas.042521699

A. Courbet, P. Amar, F. Fages, E. Renard, and F. Molina, Computer-aided biochemical programming of synthetic microreactors operating as logic-gated and multiplexed diagnostic devices

R. Daniel, J. R. Rubens, R. Sarpeshkar, and T. K. Lu, Synthetic analog computation in living cells, Nature, vol.27, issue.7451, pp.619-623, 2013.
DOI : 10.1038/nbt.1591

F. Fages, S. Gay, S. F. Soliman, and S. Soliman, Inferring reaction systems from ordinary differential equations, Theoretical Computer Science, vol.599, issue.4031, pp.64-78, 2008.
DOI : 10.1016/j.tcs.2014.07.032

URL : https://hal.archives-ouvertes.fr/hal-01103692

C. Gérard and A. Goldbeter, Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle, Proceedings of the National Academy of Sciences, vol.30, issue.17, pp.21643-21648, 2009.
DOI : 10.1073/pnas.94.17.9147

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics, vol.22, issue.4, pp.403-434, 1976.
DOI : 10.1016/0021-9991(76)90041-3

D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry, vol.81, issue.25, pp.2340-2361, 1977.
DOI : 10.1021/j100540a008

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.458.4787

D. Graça and J. Costa, Analog computers and recursive functions over the reals, Journal of Complexity, vol.19, issue.5, pp.644-664, 2003.
DOI : 10.1016/S0885-064X(03)00034-7

A. Helmfelt, E. D. Weinberger, and J. Ross, Chemical implementation of neural networks and Turing machines., Proceedings of the National Academy of Sciences, vol.88, issue.24, pp.10983-10987, 1991.
DOI : 10.1073/pnas.88.24.10983

C. Y. Huang and J. E. Ferrell, Ultrasensitivity in the mitogen-activated protein kinase cascade., Proceedings of the National Academy of Sciences, vol.93, issue.19, pp.10078-10083, 1996.
DOI : 10.1073/pnas.93.19.10078

D. A. Huang, J. H. Jiang, R. Y. Huang, and C. Y. Cheng, Compiling program control flows into biochemical reactions, Proceedings of the International Conference on Computer-Aided Design, ICCAD '12, pp.361-368, 2012.
DOI : 10.1145/2429384.2429462

R. Y. Huang, D. A. Huang, H. J. Chiang, J. H. Jiang, and F. Fages, Species minimization in computation with biochemical reactions, IWBDA'13: Proceedings of the fifth International Workshop on Bio-Design Automation. Imperial College, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00935829

H. Jiang, M. Riedel, and K. K. Parhi, Digital Signal Processing With Molecular Reactions, IEEE Design & Test of Computers, vol.29, issue.3, pp.21-31, 2012.
DOI : 10.1109/MDT.2012.2192144

H. Jiang, M. Riedel, and K. K. Parhi, Digital logic with molecular reactions, 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp.721-727, 2013.
DOI : 10.1109/ICCAD.2013.6691194

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.307.614

M. R. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and A. Phillips, Design and analysis of DNA strand displacement devices using probabilistic model checking, Journal of The Royal Society Interface, vol.43, issue.12, pp.1470-1485, 2012.
DOI : 10.1093/comjnl/43.3.224

M. O. Magnasco, Chemical Kinetics is Turing Universal, Physical Review Letters, vol.5, issue.6, 1997.
DOI : 10.1016/0955-0674(93)90111-3

A. A. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov et al., Genetic circuit design automation, Science, vol.13, issue.1, 2016.
DOI : 10.1371/journal.pbio.1002310

K. Oishi and E. Klavins, Biomolecular implementation of linear I/O systems, IET Systems Biology, vol.5, issue.4, pp.252-260, 2011.
DOI : 10.1049/iet-syb.2010.0056

P. Arkin, A. Ross, and J. , Computational functions in biochemical reaction networks, Biophysical Journal, vol.67, issue.2, pp.560-578, 1994.
DOI : 10.1016/S0006-3495(94)80516-8

URL : http://doi.org/10.1016/s0006-3495(94)80516-8

G. Paun and G. Rozenberg, A guide to membrane computing, Theoretical Computer Science, vol.287, issue.1, pp.73-100, 2002.
DOI : 10.1016/S0304-3975(02)00136-6

A. Pouly, Continuous models of computation: from computability to complexity, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01223284

L. Qian, D. Soloveichik, and E. Winfree, Efficient Turing-Universal Computation with DNA Polymers, Proc. DNA Computing and Molecular Programming, pp.123-140, 2011.
DOI : 10.1021/ja906987s

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.185.3099

L. Rizik, Y. Ram, and R. Danial, Noise tolerance analysis for reliable analog and digital computation in living cells, J Bioengineer & Biomedical Sci, vol.6, issue.186, 2016.

A. Rizk, G. Batt, F. Fages, and S. Soliman, Continuous valuations of temporal logic specifications with applications to parameter optimization and robustness measures, Theoretical Computer Science, vol.412, issue.26, pp.2827-2839, 2011.
DOI : 10.1016/j.tcs.2010.05.008

URL : https://hal.archives-ouvertes.fr/hal-01431314

H. M. Sauro and K. Kim, Synthetic biology: It's an analog world, Nature, vol.10, issue.7451, pp.572-573, 2013.
DOI : 10.1162/089976698300017052

L. A. Segel, Modeling dynamic phenomena in molecular and cellular biology, 1984.

P. Senum and M. Riedel, Rate-independent constructs for chemical computation, PLOS One, vol.6, issue.6, 2011.

C. Shannon, Mathematical Theory of the Differential Analyzer, Journal of Mathematics and Physics, vol.XXII, issue.1-4, pp.337-354, 1941.
DOI : 10.2307/3607893

K. Weihrauch, Computable Analysis: an Introduction, 2000.