Skip to Main content Skip to Navigation
Journal articles

Modular polynomials on Hilbert surfaces

Enea Milio 1 Damien Robert 2
1 CARAMBA - Cryptology, arithmetic : algebraic methods for better algorithms
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
2 LFANT - Lithe and fast algorithmic number theory
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
Abstract : We describe an evaluation/interpolation approach to compute modular polynomials on a Hilbert surface, which parametrizes abelian surfaces with maximal real multiplication. Under some heuristics we obtain a quasi-linear algorithm. The corresponding modular polynomials are much smaller than the ones on the Siegel threefold. We explain how to compute even smaller polynomials by using pullbacks of theta functions to the Hilbert surface.
Document type :
Journal articles
Complete list of metadata

Cited literature [73 references]  Display  Hide  Download
Contributor : Damien Robert Connect in order to contact the contributor
Submitted on : Thursday, January 9, 2020 - 12:58:48 PM
Last modification on : Saturday, December 4, 2021 - 3:43:47 AM


Files produced by the author(s)




Enea Milio, Damien Robert. Modular polynomials on Hilbert surfaces. Journal of Number Theory, Elsevier, 2020, ⟨10.1016/j.jnt.2020.04.014⟩. ⟨hal-01520262v3⟩



Les métriques sont temporairement indisponibles