
HAL Id: hal-01521399
https://hal.inria.fr/hal-01521399

Submitted on 11 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Enhancing Clustering by Exploiting Complementary
Data Modalities in the Medical Domain

Martin Schultz, Michael Krauthammer, Samah Fodeh, Ali Haddad, Cynthia
Brandt

To cite this version:
Martin Schultz, Michael Krauthammer, Samah Fodeh, Ali Haddad, Cynthia Brandt. Enhancing
Clustering by Exploiting Complementary Data Modalities in the Medical Domain. 8th International
Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2012, Halkidiki, Greece.
pp.357-367, �10.1007/978-3-642-33409-2_37�. �hal-01521399�

https://hal.inria.fr/hal-01521399
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Enhancing Clustering by Exploiting 

Complementary Data Modalities in the Medical 

Domain 

 

Samah Jamal Fodeh
1
, Ali Haddad

2
, Cynthia Brandt

3
,
  

Martin Schultz
4
, Michael Krauthammer

5
 

 
(1,3) Yale University School of Medicine, 2 Department of Mathematics, 

 4 Department of Computer Science,  5 Department of Pathology, 

 (Yale University, New Haven, CT, USA) 

{samah.fodeh, ali.haddad, cynthia.brandt, Schultz-martin,  

michael.krauthammer} @yale.edu 

 

 

Abstract. Data Clustering has been an active area of research in many different 

application areas, with existing clustering algorithms mostly focusing on partitioning 

one modality or representation of the data. In this study, we delineate and demonstrate a 

new, enhanced data clustering approach whose innovation is its exploitation of multiple 

data modalities. We propose BI-NMF, a bi-modal clustering approach based on Non 

Negative Matrix Factorization (NMF) that clusters two differing data modalities 

simultaneously. The strength of our approach is its combining of multiple aspects of the 

data when forming the final clusters. To assess the utility of our approach, we performed 

several experiments on two distinct biomedical datasets with two modalities each. 

Comparing the clusters of BI-NMF with NMF clusters of single data modality, we 

observed consistent performance enhancement across both datasets. Our experimental 

results suggest that BI-NMF is advantageous for boosting data clustering. 

Keywords: BI-NMF, clustering, biomedical, images, non negative matrix 

factorization. 

 

1 Introduction 

 

Clustering has been an active area of research in data mining and machine learning due to 

the rapidly growing data in different domains such as biology and clinical medicine. In 

biology, for instance, there is an avalanche of data from novel high throughput and 

imaging technologies. When applied to cancer images, clustering has been effective in 

identifying malignant and normal breast images [1]. Biomedical publications often present 

the results of biological experiments in figures and graphs that feature detailed, 

explanatory footnotes and captions. This annotation comprises a simple, textual 

representation of the images. In the clinical literature, a new semantic representation has 

evolved as a result of mapping the words in physicians’ clinical notes to the corresponding 

semantic descriptors in the Unified Medical Language System (UMLS). Each 

representation of the data e.g. images, captions and semantic descriptors, is a unique data 

modality generated by a particular process wherein the objects have different features, 

structure and dimensionality. Differential encoding of the features of each modality causes 

variability in the obtained partitions when clustering around the individual data modality. 

In this discussion we explore alternative methods of building clusters around the 

complementary data modalities of a particular dataset to obtain more cohesive clusters. 

Unlike current algorithms which cluster on a single data modality, our proposed approach 

creates clusters by extracting information from completely different domains of 

information that describe the same data.  



There have been recent efforts to perform multi-modal clustering. For example, Chen, 

Wang and Dong [10] proposed a co-clustering method using textual data that employs non 

negative matrix factorization (NMF) that draws from two data modalities: textual 

documents and their corresponding categories. Their method, however, is semi-supervised 

and requires user input to allow the algorithm to “learn” the distance metric. Comar, Tan 

and Jain [5] proposed the joint clustering of multiple social networks to identify cohesive 

communities characterized by reduced levels of noise.  In this paper, we propose BI-NMF 

that combines information from two complementary data modalities to enhance clustering. 

NMF is a matrix factorization approach that has been shown to be effective for improving 

data clustering [6] as it produces meaningful clusters due to the non-negative nature of the 

solution. Specifically, NMF aims to factorize a data matrix into two non-negative matrices 

which are more compact (with lower dimensionality) and their product approximates the 

original matrix.  One hopes that the new representation uncovers the hidden clusters in a 

given dataset. In this study, we cluster by drawing information from two different data 

matrices pertaining to complementary data modalities, thereby allowing us to exploit 

different aspects of the data while simultaneously reducing the distortion associated with 

clustering on a single modality. BI-NMF can be useful for any data described with 

multiple sources of information, i.e., modalities. We demonstrate our algorithm on two 

clinical datasets that each has information from two modalities. The first dataset contains 

images and their corresponding text captions and the second features textual notes reported 

by a clinical radiologist and their complementary semantic descriptors. The major 

contribution in this paper is the demonstration of a new method that simultaneously 

clusters two data modalities by jointly factorizing their corresponding matrices. The chief 

advantage of our method is enhanced clustering via the exploitation of information from 

complementary data modalities  

The remainder of this paper is organized as follows. Section 2 presents the related work 

on clustering using NMF. Section 3 derives the proposed method along with the formal 

proofs. Section 4 presents the experimental results, followed by Section 5 featuring some 

concluding remarks.  

2 Related Work 

NMF has gained considerable attention recently in many domains such as pattern 

recognition and machine learning. Paatero and Tapper [6] proposed to use NMF algorithm 

to identify certain parts of objects like human faces. In a similar fashion, Xu, Liu and 

Gong used NMF to find clusters of documents [9]. They considered each dimension in the 

NMF space as one cluster and mapped a document d to the column cluster that has the 

maximum entry with d.  As NMF performs learning in the Euclidean space, it fails to 

consider the intrinsic geometrical structure as suggested in [2], hence the authors extended 

NMF by imposing a new constraint that captures the geometrical representation of the 

data. Unlike previous methods which apply NMF to only one data modality, our proposed 

method aims to learn from two different modalities simultaneously. Reference [5] 

proposed to jointly cluster multiple networks using tri non-negative matrix factorization. 

Their updating rules, however, are different from ours since they minimized the KL-

divergence metric in the cost function. In a similar context, the authors in [10] proposed a 

co-clustering method based on NMF that combines two modalities of the data. Their 

approach requires the user to provide input to learn a distance metric. 



3 Methodology 

BI-NMF is our proposed method for extracting information from two data modalities as a 

means of enhanced clustering. As our method is based on NMF, we describe NMF first 

and then discuss BI-NMF. 

3.1 Non-negative matrix Factorization NMF 

 NMF [3] is a matrix factorization algorithm that deals with non-negative data matrices. 

Given a data matrix X =[x1, x2,.....xn]   R
(pxn)

. NMF produces two non-negative matrices U 

  R
(pxk) 

and V   R
(nxk)

 as a result of minimizing the following objective function:  

   ‖     ‖ 
  (1) 

where ‖ ‖F denotes the matrix Frobenius norm. Lee and Seung [3] proposed an iterative 

approach using multiplicative rules to solve for U and V.  

   
          

 
(  )  

(    )  

 
    (2) 

   
          

 
(   )  

(    )  

 
      (3) 

Each column in the original matrix X is a linear combination of the columns of U weighted 

by the components of the corresponding column in V. Therefore U can be regarded as 

containing a basis that is optimized for the linear approximation of the data in X [3]. It is 

proven by Lee and Seung that the objective function O in (1) is nonincreasing under the 

update rules (2) and (3).  

3.2 BI-NMF 

Our algorithm extends NMF using two modalities of the data. We argue that each 

modality covers certain aspects of the data, therefore utilizing two modalities maximizes 

the gained benefit and potentially improves the clusters. The two data modalities are 

represented by the matrices A and B. Let A   R
(mxn)

, B   R
(pxn)

,     R
(mxk)

,     R
(pxk)

,    

R
(nxk)

, we seek to approximate the new compact representation of the data by 

simultaneously factorizing A and B. BI-NMF minimizes the following objective function:  

   ‖     
 ‖  ‖     

 ‖      (4) 

where V is anticipated to capture the agreement between A and B about the clusters. The 

objective function above can be rewritten as follows: 
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in the second step we used the matrix property tr(XY)=tr(YX)  and tr(X)=tr(X
T
).  The 

objective function J needs to be solved under the constraints u1(i,j)>0, u2(i,j)>0 and 

v(i,j)>0. This is a typical constrained optimization problem that can be solved using 



Lagrange multiplier method. Let    [   ]   
,   [   ]   

 and   [   ]   
 be the 

Lagrange multipliers for the constraints u1(i,j)>0, u2(i,j)> 0 and v(i,j)>0, respectively. For 

notational convenience, we are using the same indices i and j even though the dimensions 

of U1, U2 and V are not necessarily the same. The Lagrange L is: 
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the partial derivatives of the Lagrange function L with respect to U1, U2 and V are: 
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Solving with respect to       and utilizing the Kuhn-Tucker conditions      (   )   , 

     (   )     and     (   )     we get the following equations: 
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after rearranging the last 3 equations we obtain the following update rules: 
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The objective function J in (4) is nonincreasing under the update rules in (13) (14) (15) 

(see appendix). The update rules of U1 , U2 and V converge and the final solution is a local 

minimum. Lee and Seung [3] used an auxiliary function to prove the convergence of (1); 

which essentially minimizes a distance function. Equation (4), however, is the summation 

of two distance functions. Following the steps in [5] show that minimizing the auxiliary 

function of the summation is sufficient to decrease the objective function of the sum of 

distances. The matrix V computed in (15) is used to define the clusters as proposed by [9]. 

Each column V.j corresponds to one cluster and each row Vi. to a point.  A point is assigned 

to the cluster associated to the maximum value in its corresponding row. Formally, assign 

xi to cluster c if           
 

   . Note that the clusters in V are computed by joining 



information from two data modalities represented by the matrices A and B.  It is important 

to mention that we normalized the matrices A and B using TFIDF. Further, we rescaled 

both matrices using the following formula: 

 

         (    )      (16) 

where X is a data matrix and e is a unit vector. Transforming the matrices using (16) 

before applying BI-NMF was proposed in [9]. We noticed that this transformation helped 

improve the clustering results. The pseudo code of our algorithm is summarized below. 

______________________________________________________________ 

Algorithm 1 BI-NMF 

______________________________________________________________ 

Input: data modality  A, data modality B, maximum number of iterations Imax. Clusters C. 

1. Initialize U1
t
, U2

t
, V

t
 , normalize A, B         using   (16) 

2. for t = 1 to Imax do 

 compute u1
t+1

 using  (13) ,  u2
t+1

 using  (14), v
t+1

 using  (15) 

 set u1
t
 = u1

t+1
, 

 
u2

t
=

 
u2

t+1 
, v

t
 =v

t+1
 

3. end 

4. C = AssignClusters(V)  
____________________________________________________________ 

4 Experimental evaluation 

We evaluated the proposed algorithm on two biomedical datasets. We demonstrate the 

effectiveness of BI-NMF by comparing its output clusters with the two NMF clustering 

solutions of each individual data modality, and with the NMF clusters of the two 

modalities merged. In the latter method, classic NMF [3] is applied to the merged 

matrices A and B after normalizing using TFIDF. We also compare BI-NMF with the two 

ensemble clusters computed for each individual data modality and with the combined 

ensemble clustering proposed in [8]. Combined ensemble clustering is fundamentally 

based on combining two data modalities using ensemble clustering. In this method, the 

co-association matrices are generated for each individual data modality and subsequently 

combined into one co-association matrix whereupon k-means is applied to obtain the 

consensus clustering. We also report the clusters of each data modality based on k-means. 

4.1 Datasets 

Pubmed Images Dataset. It consists of 3000 images extracted from articles of PubMed 

Central. Images with no captions were dropped and 2607 were retained. The images in 

the dataset were classified into 5 different categories by domain expert annotators. 

Discrepancies among the annotators were resolved by assigning the image to the category 

with the majority of votes.  The list of annotations is: 564 images were assigned to the 

experimental category, 1131 images to the graph category, 645 images to the diagrams 

category, 86 images to the clinical category, and 181 images were assigned to the others 

category. We generated two modalities for the images. In one modality the images were 

represented using the pictorial and textural features computed using the Haralick method 

[7]. The other modality is a Bag of Words BOW representation generated using captions. 



Radiology Reports Dataset. It consists of radiology reports collected from clinical 

records of patients for research purposes. The radiology reports were annotated by 

domain experts and classified into four categories. The categories and the counts of their 

content reports are: 35 abdominal MRI reports, 486 abdominal CT reports, 248 

abdominal ultrasound reports and 500 non-abdominal radiology reports. For simplicity, 

we will call these MRI, CT, Ultrasound, and non-abdominal, respectively. The reports are 

represented using two data modalities: Textual features BOW and Bag of Concepts 

(BOC). In the BOW modality, the reports are represented using the original words that 

appear in the clinical narratives and weighted using their TFIDF score. In the BOC 

modality, the vectors are indexed by semantic concepts derived from cTAKES [4], a 

natural language processing tool that maps text to concepts from the UMLS ontology.  

4.2 Evaluation metrics 

 

The clustering results are evaluated by comparing to gold standard annotations of images 

and radiology reports. We use three measures to evaluate the quality of the clusters: 

micro-averaged precision, purity and Normalized Mutual Information (NMI). Micro-

averaged precision is an average over data points, which by default gives higher weight 

to those classes with many data points. NMI measures the amount of information by 

which our knowledge about the classes increases upon definition of the clusters.  
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where TP is true positive, FP is false positive, n is the number of data points, k is the 

number of clusters, c is the number of classes, Ci is the i
th

 cluster, Lj is the j
th

 class, I(X;Y) 

is the mutual information between two random variables X (the cluster ) and Y (the class). 

 

4.3 Single Modality Clustering: BI-NMF vs NMF, k-means and Ensemble 

Clustering 

 

We compare the clustering solutions produced by BI-NMF which draws information 

from different data modalities with the output clusters obtained using single data 

modality in order to demonstrate the benefit of leveraging multiple representations of the 

data. We show the performance of regular NMF on single modalities, along with 

comparable approaches such as k-means and ensemble clustering [8]. In ensemble 

clustering, a number of clustering solutions are aggregated in a co-association matrix that 

measures the number of times each pair of data points are placed into the same cluster. K-

means is applied to the co-association matrix to get the final clusters. Table 1 shows a 

comparison between the performances of several clustering methods on single data 

modalities: K-means clusters of each data modality, the cluster ensembles of each data 



modality and NMF applied to each individual data modality. For the sake of clarity, the 

method descriptor has two parts: the applied method and the data modality used. For 

radiology reports, we observed that the ensemble clustering method applied to one data 

modality performed poorly when compared to NMF of single data modality, while 

outperforming single-modality k-means.  With the exceptions discussed below, BI-NMF 

clusters were significantly better than single modality NMF, single modality ensemble 

clusters and k-means clusters as shown in Table 1 vs Table 2. It is important to mention 

that for the Pubmed images data, the clusters of k-means for the captions modality yield 

comparative clusters to BI-NMF based on purity as shown in Table 1. Nevertheless, NMI 

and micro averaged precision measures suggest that BI-NMF clusters are better than k-

means clusters. To further assure this result, we computed the average of 100 BI-NMF 

runs and got consistent results. This result strongly emphasizes the benefit of our method 

that draws information from two data modalities. 

Table 1: One data modality: Performance of different clustering methods of each data modality 

Data Method Descriptor Micro Avg Precision Purity NMI 

R
a

d
io

lo
g
y

  

R
ep

o
rt

s 
 

k-means_words 0.506 0.639 0.240 

Ensemble_words 0.506 0.640 0.238 

NMF_words 0.676 0.791 0.599 

k-means_concepts 0.555 0.758 0.490 

Ensemble_concepts 0.581 0.764 0.503 

NMF_concepts 0.665 0.884 0.787 

P
u

b
m

ed
  

 

Im
a

g
es

  
 

k-means_Haralick 0.318 0.505 0.141 

Ensemble_Haralick 0.306 0.513 0.150 

NMF_Haralick 0.331 0.516 0.145 

k-means_captions 0.456 0.558 0.180 

Ensemble_captions 0.479 0.519 0.153 

NMF_captions 0.445 0.518 0.134 

 

4.4 Two modality clusterting: BI-NMF vs NMF_merged and Combined Ensemble 

Clustering 

To assess the effectiveness of BI-NMF, we compared its performance against another bi-

modality clustering approach called combined ensemble clustering. In combined 

ensemble clustering, two co-association matrices are generated from two data modalities 

then linearly combined into one co-association matrix upon which k-means is applied to 

obtain the final clusters. We also compare the output clusters of our method with the 

clusters obtained when applying NMF to the merged data modalities.  We implemented 

the combined ensemble clustering algorithm in [8] and applied it to our biomedical 

datasets. Table 2 shows a comparison in performance between NMF_merged, combined 

ensemble clustering and BI-NMF for radiology reports data and PubMed images data. 

Recall that in the NMF_merged method the matrices A and B pertaining to both data 

modalities are first combined and NMF is subsequently applied to the combined matrix 

after normalization. The performance of the two methods depends on their respective 

emphases on forming the BI-NMF clusters from various modalities versus combining 

different features of the data modalities prior to the formation of clusters. 



Table 2: Two data modalities: Performance of different clustering methods for both modalities 

Data Method Descriptor Micro Avg Precision Purity NMI 

Radiology 

Reports  

NMF_merged 0.584 0.793 0.599 

Combined Ensemble Clustering 0.582 0.761 0.513 

BI-NMF 0.777 0.903 0.825 

Pubmed 

Images  

NMF_merged 0.367 0.461 0.119 

Combined Ensemble  Clustering 0.483 0.542 0.190 

BI-NMF 0.551 0.558 0.200 

 

The quality of the clusters obtained by BI-NMF was superior compared to that of 

combined ensemble clustering and NMF_merged for both datasets in terms of all 

reported measures. On radiology reports, compared to combined ensemble clustering, BI-

NMF achieved a relative improvement of the order of 33%, 18% and 60% in terms of 

micro averaged precision, purity and NMI, respectively. Similarly, it outperformed 

NMF_merged and yield a better clustering solution with a difference of 32%, 13% and 

38% in terms of micro averaged precision, purity and NMI, respectively. BI-NMF also 

outperformed combined ensemble clustering and NMF_merged for Pubmed images as 

shown in Table 2. The micro averaged precision reported for BI-NMF was .551 

compared to .483 for combined ensemble clustering. Likewise, purity and NMI showed a 

relative improvement of 3% and 5%, respectively. Superior performance is also observed 

for the proposed method compared to  NMF_merged, it yield a relative improvement of 

50%, 21% and 68% in terms of micro averaged precision, purity and NMI, respectively. 

5 Conclusion 

 

In this paper, we demonstrate an enhanced data clustering approach whose innovation is 

its exploitation of multiple data modalities called BI-NMF. Our proposed method is a bi-

modal clustering algorithm based on non negative matrix factorization. It utilizes two 

modalities of the data to improve clustering. We applied the method on two biomedical 

datasets and demonstrated enhanced performance relative to ensemble clustering and 

NMF based on single and merged data modalities, on three standard metrics. Given our 

results, we conclude that BI-NMF is advantageous for enhanced biomedical data 

clustering and potentially useful for data from other domains. 
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Appendix 
 

Theorem 1. The objective function J is non-increasing under the rules (13) (14) (15).  

The proof follows the one given by Lee and Sung [3] since update rules for U1 and U2 do 

not change. For the update rule (15), we use the auxiliary function trick. 

Definition 1.  G(v,v
t
) is an auxiliary function for  ( ) if the following are satisfied: 

 (    )   ( )         (   )   ( ) (18) 

Lemma 1. If   (    )  and   (    )  are auxiliary functions for F1(v) and F2(v) 

respectively, then: (a)  (    )    (    )    (    )  is the auxiliary function for 

 ( )    ( )     , (b)  ( ) is non-increasing under the update:  

            
 

  (    )  (19) 

The proof of (a) is trivial, for (b) we have: 
         (    )          ( 

   )    ( 
   ) 

                                           ( 
      )     ( 

      ) 

                                           ( 
    )     ( 

    )    ( 
 )     ( 

 )    (  )  
   (20) 

Note that the third line is a result of the fact that v
t+1

 minimizes the auxiliary function G, 

then  (        )   (     )      (    )   (  ) as shown in [5]. To conclude the 

proof of Theorem 1, we show that the update rule (15) is the update given by (19), i.e.  

  (   )
           

 
  (   (   )

 ) (21) 

for a suitable auxiliary function  (    )  The objective function of eq.(5) can be written: 
   ∑     (    )    (22) 

where      is a quadratic function that depends only on     , the generic term of the matrix 

V. We need to show that the function      is non-increasing under the update rule (15), or 

equivalently find an auxiliary function for      such that the update rule (15) corresponds to 

(21). We compute the first and second order derivatives of     . One can easily check that: 

     
   (            (  

   +  
   ))               (23) 
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Then we consider: 

  (      
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 )      
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 )(      
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( (  
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  (      
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          (25) 

now we need to show that  (      
 ) corresponds to an auxiliary function for       

It is obvious that  (    
      

 )      (    
 )  We only need to show  (         

 )  

    (    
 ). Since      is a quadratic form, consider the following Taylor series for     : 

    ( )      (    
 )      

 (    
 )(      
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 )(      
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 (26) 

we need to show that: 
( (  

      
   ))   

    
  (  

      
   )    (27) 

the inequality (27) is obvious since 

 
( (  

   ))   
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  (  

   )    (  
   )      (28) 

and the same inequality holds for U2:  
( (  

   ))   

    
  ∑

    
 

    
 

 

(  
   )    (  

   )    (29) 

Thus  (         
 )      (    

 ). We conclude the proof of Theorem 1 by checking that (21) 

corresponds to (15). Indeed, given (22) and (26), we can get by solving   (         
 )      

    
        

 (  
    

 (    
 )

 ( (  
      

   ))   

) (30) 

After arranging the equation, one can easily show that (30) is equivalent to (15).  


