
HAL Id: hal-01523496
https://hal.inria.fr/hal-01523496

Submitted on 16 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPARUB: SPARQL UPDATE Benchmark
Damien Graux, Pierre Genevès, Nabil Layaïda

To cite this version:
Damien Graux, Pierre Genevès, Nabil Layaïda. SPARUB: SPARQL UPDATE Benchmark. 2017.
<hal-01523496>

https://hal.inria.fr/hal-01523496
https://hal.archives-ouvertes.fr


SPARUB: SPARQL UPDATE Benchmark

Damien Graux, Pierre Genevès, and Nabil Layaïda

Inria, Cnrs, lig and Univ. Grenoble Alpes, France
{damien.graux,nabil.layaida}@inria.fr

pierre.geneves@cnrs.fr

Abstract. One aim of the rdf data model, as standardized by the w3c,
is to facilitate the evolution of data over time without requiring all the
data consumers to be changed. To this end, one of the latest addition
to the sparql standard query language is an update language for rdf
graphs. The research on efficient and scalable sparql evaluation meth-
ods increasingly relies on standardized methodologies for benchmarking
and comparing systems. However, current rdf benchmarks do not sup-
port graphs updates. We propose and share sparub: a benchmark for
the sparql update language on rdf graphs. The aim of sparub is not
to be yet another rdf benchmark. Instead it provides the mean to au-
tomatically extend and improve existing rdf benchmarks along a new
dimension of data updates, while preserving their structure and query
scenarios.

1 Introduction

The research on efficient and scalable sparql evaluation methods increasingly
relies on standardized methodologies for benchmarking and comparing systems.
Indeed, there are many benchmarks designed for evaluating rdf systems, for in-
stance [3,8,18,13,5,21,2,23]. Some of them are particularly popular e.g. lubm [13]
or watdiv [2] and are becoming de facto standards to compare new evalua-
tors with the already existing ones: see for instance some evaluator descriptions
(sparqlgx [11], rya [19]) or surveys such as [7]. This profusion of benchmarks
even leads to studies that compare benchmarks [9,20].

However, data dynamicity –which is an important criterion that affects the
way data management systems are built and should also be evaluated– is rarely
considered in the literature. The spectrum of data dynamicity is wide with im-
mutable datasets on one end and data streams on the other end. In the literature,
most papers on benchmarks for query evaluation consider immutable datasets
(see e.g. [3,8,18]) with the exception of [23] that considers the other extrema by
focusing on streaming rdf data.

In many practical applications however, datasets are neither streams nor
immutable, but rather exhibit a small level of dynamicity; i.e. a large amount
of the dataset remains unchanged and a slight portion of the data evolves over
time, to reflect the changes of the entities they describe. This is the setting that
we consider in this paper, and for which we develop extended benchmarking



methodology. In this setting, more or less frequent data updates are required to
correct, add, or delete small portions of the whole dataset.

Several approaches exist for reevaluating queries after such modifications.
They can be roughly divided in two categories: (1) those that re-load from
scratch the whole dataset taking into account the changes and (2) those that
allow slight (incremental) modifications to update an already loaded dataset.
The former category might lead to redundant computations. For the latter cat-
egory, however, the fine-grained incremental propagation of data updates might
lead to the existence of thresholds (in e.g. the size or the complexity of the up-
dated data portion) from which re-loading the whole new dataset yields better
performance when compared to incremental reevaluation. More generally, cur-
rent benchmarking technologies provide only very limited insights on how rdf
systems rank in the presence of data dynamicity.

Contribution. In order to extend standard benchmarking processes with the abil-
ity of evaluating how rdf systems react to data updates, we propose and share
the sparql update benchmark (sparub). The aim of sparub is not to be yet
another rdf benchmark. Instead it provides the mean to automatically extend
and improve existing rdf benchmarks along a new dimension of data updates,
while preserving their structure and query scenarios. The sparub resource is
openly available under the cecill license1 from:

https://github.com/tyrex-team/sparub

Outline. The rest of this study is organized as follows. First, we briefly remind
common Semantic Web standards, the context of our work and the main features
introduced with sparql update which constitute the core of the benchmark
process in Section 2. The detailed behaviour of sparub and the advisable metrics
to look at are described in Section 3. We next present experiments with sparub
on popular evaluators in Section 4. Finally, we review related work in Section 5
before concluding in Section 6.

2 Background

Datasets. The Resource Description Framework (rdf) is a language standard-
ized by w3c to express structured information on the Web as graphs [15]. It
models knowledge about arbitrary resources using Unique Resource Identifiers
(uris), Blank Nodes and Literals. rdf data is structured in sentences –or triples–
written (s p o), each one having a subject s, a predicate p and an object o.

Query Language. In the Semantic Web, querying rdf data is mainly realized
using the Sparql Protocol and Rdf Query Language i.e. sparql which be-
came a standard thanks to the rdf data access working group (dawg) [12]. The
sparql standard language has been studied under various forms and fragments,
1 cecill details at http://www.cecill.info/index.en.html

https://github.com/tyrex-team/sparub
http://www.cecill.info/index.en.html


for instance the Basic Graph Pattern fragment (a.k.a. bgp) which strictly fo-
cuses on conjunctions of triple patterns i.e. a triple where the elements (subject,
predicate, object) are either variable or value such as iri.

Graph store. In the rest of this paper, we will use “store” (instead of “rdf store”
or “Graph store”) to designate a mutable container of rdf graphs managed by a
single service. A store contains an unnamed slot which helds the default graph
and if necessary additional slots named for desambiguation. As a consequence,
operations must specify the target graph or the default one will be considered
for instance using the FROM sparql keyword.

Updates. The w3c extended the sparql syntax [12] – which is the rdf query
language [15] – with a new recommendation dealing with updates [22]. This ex-
tension provides new keywords to add of delete triples from a database using the
classic sparql syntax. Such an evolution allows to build more realistic applica-
tion for the Semantic Web. Thereby, instead of manually (or externally) modify
the datasets, this extension offers a way to perform these changes internally.

Introduced in 2013 by the w3c, sparql update2 [22] – also designated by
“sparul” – is an update language for rdf graphs using a sparql-like syntax. It
is poised to become the standard method to handle modifications in rdf graphs
by providing a set of keywords where each corresponds to an operation on graphs
e.g. inserting triples in a graph store, deleting a whole graph store. . . Indeed,
this fragment extension is part of the sparql 1.1 release of the standard.

More precisely, sparql update allows two categories of operations on rdf
graphs i.e. a set of operations directly deals with graphs (management) where
the other one treates triples of a designated graph (specific updates). From a high
perspective, the fragment provides the following primitives: create, drop, copy,
move and add which repsectively allow to create or delete a graph, to duplicate
data from on graph to an other, to move (or rename) one and to append a graph
to an other one. To deal with updates directly in an already existing graph, the
standard provides these primitives: insert data and delete data are able to
insert or delete specific triples that should be explicitly given; load allows to
add new data coming from a file into a designated graph; clear empties a graph
and delete/insert allows to delete or insert data into a graph according to
solutions extracted from an other graph like the classic behavior of a construct
in the sparql core which returns triples that are solutions of a list of conditions
in the where clauses.

3 SPARUB: the SPARQL UPDATE Benchmark

3.1 General Architecture

In this Section, we present the challenges that rdf updates impose on the design
of a sparql benchmark followed by the practical details of our standardized
process of benchmark generation.
2 https://www.w3.org/TR/sparql11-update/

https://www.w3.org/TR/sparql11-update/


sparul instruction Corresponding sub-step
CREATE A E

INSERT DATA C
DELETE DATA C
INSERT/DELETE D

CLEAR E F G H
LOAD B E F
DROP H
COPY C G
MOVE G
ADD F G

Table 1: Required sparul keywords to complete a sparub sub-step.

Challenges. First of all, in order to test the various possible scenarios allowed
by the standard, the benchmark should maintain the same dataset structure as
the initial one. As a consequence, the creation of the multiple rdf sub-datasets
constitutes a key point of the “realism” of the tool and requires knowledge about
the graph structure.

In parallel, the update benchmark has to respect the initially benchmarked
sparql fragment, e.g. it should only involved conjunctive queries if the given
queries are focusing on. This step will therefore imply to be able to look at the
shapes that are considered originally.

Finally, sparub should build concise sketch of benchmark divided into small
steps so users can rank evaluators on each sub-step.

Concept. The main idea of sparub is to allow an extension of all the existing
rdf/sparql benchmarks i.e. keeping the already run test suite and giving new
scenarios involving dynamicity of data. To do that, sparub takes as inputs an
rdf dataset (typically with the N-Triples format [1] to be easily parsed) and an
optional list of sparql queries. It then returns a set of rdf files and a testing
scenario divided into several sub steps. Technically, sparub starts by analyzing
the various sparql queries in order to list the used sparql keywords and thus
having an idea of the benchmarked fragment. It then splits the input rdf file
into pieces according (1) to statistics of the initial dataset and (2) to the various
sub-fragment that can be extracted from the general tested one.

Sub-steps. The whole benchmark process is actually divided into several sub-
steps. Indeed, each one focuses on a specific set of sparql update functional-
ities and thus on a specific scenario. Moreover, sparub always uses the given
dataset to generate its subsets, it thus guarantees that the tests are done con-
sidering the same graph structure than the initial graph and therefore allows to
extend correctly the already obtained results. Specifically sparub generates in
the following order:

A) The initialization which creates the needed graphs for the benchmark with-
out loading any triples in;



B) A reference run of the initial benchmark to know how the benchmarked
system reacts and to have reference times. This step is composed of the
dataset load and of the evaluation of the given queries (to sparub) if any;

C) The sub-step focuses on updating triples in already existing graphs. It thus
deals with insertions and deletions of pieces of data which are explicit i.e.
the sets of updates are already known and not extracted from specific pat-
terns. Several cases are considered: from inserting only one triple to several
thousands. In addition, this sub-step also offers to compare performances to
insert k triples one by one and k triples in one time;

D) This step is an extension of the previous one since it mainly consists of
moving blocks of data according to specific properties. Indeed, it focuses on
deleting all the triples related to the most common predicate and also plans
to move all the triples related to the most common couple predicate-object ;

E) In this scenario, sparub focuses on comparing updating strategies i.e. it
gives clues to answer “when is it better to re-load everything instead of
inserting the new triples with an insert data?”. To do that, a reference time
is recorded to load k triples, then several size are considered: first sparub
offers to load 99% of the k with an insertion of the 1% left (a 99L-1I), then
a 90%-load with a 10%-insertion (90L-10I) followed by a 75L-25I, a 50L-50I
and finally a 20L-80I. These variations –with increasing size of the updated
part– allow to observe the potential linearity of the updates;

F) [Optional.] –The creation of this sub-step depends on the existence of specific
sparql queries as arguments.– If any, sparub provides specific scenarios for
each given sparql query to measure the impact of updates to evaluate it.
Actually, (1) it starts analyzing the query to generate several subsets of
various size of triples which might be parts of the solutions, (2) it considers
the performance of the sparql query –computed in the sub-step B–, (3) for
each generated sub-step it inserts the potential solutions into the graph and
re-evaluates the query;

G) This penultimate sub-step acts on graphs instead of triples and has thereby
a higher perspective. The graph manipulations in the sparql update frag-
ment mainly consist of copying, moving and adding graphs. One of the sce-
nario is to compare the needed times between these instructions e.g. we con-
sider two graphs G1, G2 and G3 which are respectively non-empty, empty
and empty, first we copy G1 into G2 which leads to two indentical graphs,
then we move G2 into G3 (there are still two identical graphs and an empty)
and finally we add G3 to G2;

H) Finally a cleaning step which empties and then drops the various graphs
used during the benchmark is realized to reset everything.

We present in Table 1 a mapping between the existing keywords of the standard
and the sub-steps where they are required. A quick-look gives an idea of the
fragment coverage of an evaluator.

In Table 2, we present typical examples of the sparub generated sparql
queries for each sub-step. For instance, we can see that the initialization (sub-
step A) only deals with graph creation. This representation allows to notice



Sub-step Typical Generated Queries:
A CREATE graph <name>
B LOAD ./path/dataset INTO GRAPH <name>
C COPY GRAPH <name1> TO GRAPH <name2>

INSERT DATA { GRAPH <name> { <s> <p> <o> . }}
INSERT DATA { GRAPH <name> { <s> <p> <o> . }}

D WITH <name> DELETE ?s <pred> ?o WHERE {?s <pred> ?o .}
E CREATE GRAPH <name>

LOAD ./dataset-k% INTO GRAPH <name>
LOAD ./dataset-(100-k)% INTO GRAPH <name>
CLEAR GRAPH <name>

[optional ] F LOAD ./possible-solutions INTO GRAPH <name>
G COPY GRAPH <ref> TO GRAPH <full>

MOVE GRAPH <full> TO GRAPH <empty>
ADD GRAPH <empty> TO GRAPH <full>

H CLEAR GRAPH <name>
DROP GRAPH <name>

Table 2: Typical queries for each sub-step.

that several sub-steps are thus independant e.g. the sub-steps D & G have no
sparql update keywords in common; it implies that sparub can be seen as a
juxtaposition of several independent scenarios.

3.2 Advisable Metrics

In order to help user to rank the evaluators, sparub also provides a set of metrics
that might be looked at. First of all, it is recommended to save the needed times
of each query.

Since the sparql update fragment is an extension of the sparql core lan-
guage, popular evaluators focus on the main fragment (see Section 5). For this
reason, the first interesting element is the percentage of the language which is
supported by. That is why sparub is divided into several sub-steps (see the pre-
vious sub-section for details), indeed, they can be considered independently and
thus a selection of the possible sub-step can be done using the Table 1.

Moreover, we recommend to pay attention to the way memory or disks are
used during the benchmark. Actually, it is possible that each update creates a
new structure to keep track of the history of modification which is a feature not
required by the standard and thus gaps between stress insertions (see sub-step
C) and a bulk update might be observed for instance.

Finally, some sub-steps aims at providing specific behaviors of the bench-
marked evaluators. Indeed, with sub-steps E and F, i.e. with sub-steps where a
reference time (from sub-step B) is involved, in addition to time considerations,
we also encourage to look at ratios TUpdate/TRef .



Benchmark Dataset Queries sparub
Name Parameter Triple Nb Size Time(s) Query Nb Time(s) Size Time(s)
WatDiv 1 110063 15M 0.7 20 4.7 9.6M 0.5
WatDiv 20 2192105 294M 10.9 20 5.1 60M 10.5
WatDiv 100 10992378 1.5G 56.6 20 7.0 273M 54.9
SP2Bench 100000 100080 11M 0.4 17 0 8M 0.5
SP2Bench 2000000 2000167 214M 8.3 17 0 49M 10.2
SP2Bench 10000000 10000460 1.1G 49.2 17 0 222M 50.5

Table 3: Using sparub with state-of-the-art benchmarks.

4 Experimental Validation

In this Section, we now provide practical information about sparub. The exper-
iments presented are twofold. First, we start by showing the orthogonal aspect
of sparub since it can generate update scenarios from any rdf/sparql bench-
mark. Second, we review how some popular state-of-the-art sparql evaluators
are dealing with rdf updates using some sparub sub-steps.

4.1 Examples with popular benchmarks

Since sparub should be used as an extension of already existing benchmarks –it
takes a rdf dataset and an optional list of sparql queries–, we briefly present
how it behaves taking as sources some popular benchmarks of the literature.

Selected Benchmarks. For the purpose of this study, we select two benchmarks
from the state-of-the-art:

– WatDiv [2] which has been proposed in 2014 by the university of Waterloo.
– SP2Bench [21] which focuses on a DBLP scenario.

These benchmarks both have deterministic dataset generators giving rdf
triples according to the N-Triples format [1]. Nonetheless, their sets of sparql
queries are obtained differently: SP2Bench comes with a set a predefined ones
while WatDiv needs to generate its set according to (1) query patterns and
(2) statistics on the dataset it has just created. We can also notice that the
considered sparql fragments differ a lot between these two benchmarks i.e.
SP2Bench deals with an extension (with e.g. union, optional or also ask) of
the bgp fragment which is the focus of WatDiv.

Observations. In Table 3, we present the obtained results to generate state-of-
the-art benchmarks and their sparub extensions. These results were computed
through a Docker image [17] we designed3 on a four processor machine. The use
of Docker is especially important for reproducibility reasons, allowing users to
3 The Dockerfile is also openly available from our repository.



deploy our benchmark in the same environment. In particular, for each bench-
mark scenario (various scenarios are generated for each benchmark depending
on the scaling factor given to the dataset generator), the Table shows:

– the needed parameters that should be given to the generators.
– information about the generated datasets e.g. the number of rdf triples, the

size of the dataset and the time needed to complete this process.
– information dealing with the sparql queries such as their number and the

time needed to generate them if any.
– the time sparub needs to generate its scenarios taking as inputs the freshly

generated dataset and all its queries.
– the size of the sparub generated files.

We note (Table 3) that the sparub generation time and the dataset genera-
tion time are almost the same for instance ≈10 seconds for WatDiv 20 or ≈50
seconds for SP2Bench with 10000000 triples. This observation is explicated by
two reasons: (1) sparub needs to read several times the input dataset to gener-
ate specific scenarios such as sub-step D and (2) it also splits the input dataset
into parts which have the size of k% of this initial dataset to set up sub-step E
for example. That is why the size of sparub generated files increases with the
size of the initial dataset: the larger is the initial dataset, the larger will be the
updates.

4.2 Examples with SPARQL evaluators

In this Section, we briefly present experimental results obtained with some pop-
ular state-of-the-art systems claiming that they are supporting the sparql up-
date fragment.

Reproducibility. We share (in the sparub repository) the testing scripts and
the installation processes we used in this Section. Moreover, to allow easy de-
ployments, we provide also a Dockerfile to generate the exact same image as
us.

Selected Evaluators. The first matter was to find systems claiming their support
of the sparql fragment extension dedicated to updates. For our experiments,
we selected the following systems:

1. Virtuoso which is a general purpose relational / federated database and
applications platform introduced in [10]. It allows to load rdf data and
then query these datasets using sparql through a relational context i.e. the
rdf datasets are stores in the Virtuoso table warehouse and sparql queries
can be given using the sql command line tool.

2. 4store which is a native rdf solution introduced in [14]. It has an index to
translate uris to identifiers, which allows a space-efficient representation of
triples. For each predicate it uses two indexes (subject to object and object
to subject) for optimizing query evaluation.



Required Operation 4store Virtuoso Jena
Reference Load (sub-step B) 1.187 s 0.983 s 1.269 s

Inserting one triple 0.08 s 0.010 s 0.07 s
Inserting 20 triples 0.08 s 0.020 s 0.13 s

Inserting 500 triples 0.1 s 0.032 s 0.54 s
Inserting 10% of the base Failure Failure Failure

Table 4: Inserting Triples with insert data (i.e. sub-step C) to Watdiv 1.

3. Apache Jena [16] which is a free and open source Java framework for building
semantic web and Linked Data applications. It comes with several apis to
evaluate sparql queries and store rdf datasets.

For these experiments, we remain in a single-node context on the same machine
that the one used previously to test sparub against various popular state-of-
the-art benchmarks.

Observations. Since sparub generates several dozens of sparql queries to test
all the possible scenarios and since none of the tested systems were able to cover
the whole standard extension, we present here an excerpt of the results restricted
to successful sub-steps. Indeed, even simple scenarios such as the sub-step D
seems complicated for some stores (e.g. 4store) which were not able to parse
queries of the kind: “DELETE ?s <friend> ?o WHERE{?s <friend> ?o.}”.

In Table 4, we present the performance of the three tested evaluators to deal
with insert data (and delete data which gives exactly the same results) con-
sidering the WatDiv 1 rdf dataset. This scenario corresponds to the sub-steps B
& C of sparub i.e. inserting one triple, then twenty triples, followed by 500 ones
and finally inserting about 10% of the dataset size. The queries all have the fol-
lowing forms: “insert data where{s1 p1 o1 . s2 p2 o2 . [...]}”. Focus-
ing on this scenario offers us the possibility to test all the update operations
provided by Virtuoso4 i.e. insert data, delete data, load and clear.

For the three evaluators, we notice (see Table 4) that inserting triples is
almost immediate: for example less than one second to compute the update.
However, none of them was able to insert the 10%-update i.e. in our case to
insert about 10’000 triples. These failures pinpoint that these evaluators do not
consider that an update can be larger than several hundreds of triples.

Summary. The main lesson of our experiments is that only a few evaluators
are able to deal with updates. Indeed, they mainly focus on optimizing the
sparql select fragment in the case of static datasets. Second, we also found
that even the sparql update compliant systems were not able to cover the
whole standard extension and they often need the users to adapt the sparql
queries manually because they do not respect exactly the standard. Third, a
4 Virtuoso sparql 1.1 coverage: https://virtuoso.openlinksw.com/dataspace/
doc/dav/wiki/Main/VirtTipsAndTricksSPARQL11Update

https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtTipsAndTricksSPARQL11Update
https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtTipsAndTricksSPARQL11Update


silver lining remains since the systems’ performance with some sub-steps were
very fast i.e. sub-second response times.

5 Related Work

Parallely to the development of sparql evaluators and rdf stores, several
rdf/sparql benchmarks have been published in order to rank the various solu-
tions and thus help users in system selection. Indeed, comparative experiments
are relevant ways to rank available sparql evaluators. For instance, by loading
the same rdf datasets on each system and by querying them after, one can
decide which system is the fastest.

Based on that idea, researchers have developed standardized and reproducible
rdf/sparql benchmarks. These benchmarks are usually made of two parts: first
the datasets and second a list of queries which should be evaluated on these
datasets; sometimes a testing scenario is also presented, for example, it provides
a defined order to execute the queries and suggests that some should be tested
several times. Since, the most important concept of them is to offer reproducibil-
ity to the community, datasets can often be generated – in a deterministic way –
and the list of queries is either pre-defined or generated. It even exists tools to
generate rdf “fake” data from an initial dataset that share the same structure
e.g. GRR [6].

Moreover, these benchmarks are often specialized to test particular frag-
ments of the sparql grammar. First of all, they almost always focus on SPARQL
SELECT queries. In addition, we also notice that the bgp fragment constitutes
the common base which is always tested in the set of queries and sometimes ad-
ditional sparql keywords such as OPTIONAL or UNION are part of the patterns.
Nonetheless, specific benchmarks dedicated to peculiar sparql extensions have
also been developed, for instance the SRBench [23] which focuses on streaming
rdf systems.

Practically, the rdf/sparql benchmarks usually rank sparql evaluators ac-
cording to the temporal performance of the tested systems. Indeed, they often
recommend to pay attention to needed times to load dataset and then to exe-
cute each query. Sometimes they also consider the disk footprint of the system.
Finally, they may also provide mixed metrics where various measurements are
aggregated using for instance averages after several computations of the test
suite.

In the last fifteen years, a large number of benchmarks have been created
and deployed. We provide here a non-exhaustive list of popular benchmarks:

– LUBM [13] is a benchmark proposed in 2005 by the Lehigh University. It fo-
cuses on the bgp fragment with 14 sparql queries which should be evaluated
on generated datasets.

– WatDiv [2] is a more recent benchmark proposed in 2014 by the university
of Waterloo. It provides a deterministic rdf data generator. It then also
provides sets of sparql which should be generated according to 20 query-
shapes and the previously generated dataset. These shapes are divided into



4 types: centralized, stared, linear and “snow flake”. It strictly focuses on the
bgp fragment.

– SP2Bench [21] is settled in the DBLP scenario and comprises both a data
generator for creating arbitrarily large DBLP-like documents and a set of
carefully designed benchmark queries. It also tests a large fragment of sparql
with FILTER, OPTIONAL, UNION, the solution modifiers and also three SPARQL
ASK queries.

– BolowgnaBench [8] provides a framework for evaluating the performance of
rdf systems on a real-world context derived from the Bologna process; it
strains systems using both analytic and temporal queries; and it models
real academic information needs. In terms of sparql fragment, it focuses
on testing bgps and also provides queries with SELECT-aggregators such as
COUNT which are part of the standard since the 1.1 version.

– BSBM [5] has been designed to compare performance of native rdf stores
with the performance of sparql-to-sql rewriters across architectures. It
provides a “query mix” which tests the same sparql fragment as SP2Bench
excepted the ASK but instead it tests also the negation and the CONSTRUCT.

– DBPSB [18] – DBPedia sparql Benchmark – is a general sparql bench-
mark procedure, which uses the DBpedia [4] knowledge base. The benchmark
is based on query-log mining, clustering and sparql feature analysis. In
contrast to other benchmarks, it performs measurements on actually posed
queries against existing rdf data.

– RBench [20] is an application-specific framework to generate rdf bench-
marks: it takes an rdf dataset as a template, and generates a set of synthetic
datasets with similar characteristics including graph structure and literal la-
bels. RBench then analyzes several features from the given rdf dataset,
and uses them to reconstruct a new benchmark graph. A flexible query load
generation process is then proposed according to the design of RBench.

More generally, it even exists federated projects to develop such benchmarks.
For instance, Linked Data Benchmark Council [3] is an european project that
aims to develop industry-strength benchmarks for graph and rdf data manage-
ment systems.

In this study, we did not create an other rdf/sparql benchmark dedicated
to a new variation of a sparql fragment dealing with select queries. Instead,
we tried to benefit from all the already existing research by adding the possibility
of benchmarking a new dimension which is orthogonal to what is usually looked
at i.e. the rdf dynamicity.

6 Conclusion

We present and share a new benchmark dedicated to the sparql update frag-
ment which is a w3c extension of the sparql standard. To the best of our knowl-
edge, it constitutes the first tool openly available which can rank the sparql
evaluators focusing on updates. In addition, we pay attention not to provide a



complex standalone tool, indeed we decided to improve already existing bench-
marks instead of building dedicated rdf graphs from scratch while only requiring
a simple bash environment. In that sense, sparub5 adds a new dimension to al-
ready existing benchmarks and thereby allows to improve the testing scenarios
without invalidating anything.

In addition, the experiments we conducted show that the support of the rdf
data dynamicity is still in a very early stage of development since: (1) only a few
systems are partially supporting this fragment extension and (2) improvements
could also be developed for these covered parts, in particular for supporting
finer-grained updates. For these reasons, we believe that sparub will be helpful
in measuring the progress in implementing the sparql update fragment.

References

1. RDF 1.1 N-Triples: A line-based syntax for an RDF graph (2014),
http://www.w3.org/TR/n-triples/

2. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF
data management systems. In: ISWC. pp. 197–212. Springer (2014)

3. Angles, R., Boncz, P., Larriba-Pey, J., Fundulaki, I., Neumann, T., Erling, O.,
Neubauer, P., Martinez-Bazan, N., Kotsev, V., Toma, I.: The linked data bench-
mark council: a graph and RDF industry benchmarking effort. ACM SIGMOD
Record 43(1), 27–31 (2014)

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A nucleus for a web of open data. Springer (2007)

5. Bizer, C., Schultz, A.: The berlin SPARQL benchmark. IJSWIS (2009)
6. Blum, D., Cohen, S.: Grr: generating random rdf. In: Extended Semantic Web

Conference. pp. 16–30. Springer (2011)
7. Cudré-Mauroux, P., Enchev, I., Fundatureanu, S., Groth, P., Haque, A., Harth,

A., Keppmann, F.L., Miranker, D., Sequeda, J.F., Wylot, M.: NoSQL databases
for RDF: An empirical evaluation. ISWC pp. 310–325 (2013)

8. Demartini, G., Enchev, I., Wylot, M., Gapany, J., Cudré-Mauroux, P.:
Bowlognabench – Benchmarking RDF Analytics. In: International Symposium on
Data-Driven Process Discovery and Analysis. pp. 82–102. Springer (2011)

9. Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and oranges: a com-
parison of rdf benchmarks and real rdf datasets. In: Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data. pp. 145–156. ACM
(2011)

10. Erling, O., Mikhailov, I.: Rdf support in the virtuoso dbms. In: Networked
Knowledge-Networked Media, pp. 7–24. Springer (2009)

11. Graux, D., Jachiet, L., Genevès, P., Layaïda, N.: SPARQLGX: Efficient Distributed
Evaluation of SPARQL with Apache Spark. To appear in ISWC (2016)

12. Group, W.S.W., et al.: SPARQL 1.1 overview (2013),
http://www.w3.org/TR/sparql11-overview/

13. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Web Semantics (2005)

5 Public repository: https://github.com/tyrex-team/sparub, it also contains
demonstration scenarios (with already installed triplestores and considering popular
benchmarks) that are easy to deploy using Docker [17].

https://github.com/tyrex-team/sparub


14. Harris, S., Lamb, N., Shadbolt, N.: 4store: The design and implementation of a
clustered RDF store. SSWS (2009)

15. Hayes, P., McBride, B.: RDF semantics. W3C recommendation 10 (2004),
www.w3.org/TR/rdf-concepts/

16. Jena, A.: A free and open source java framework for building semantic web and
linked data applications. Available online: jena. apache. org/(accessed on 28 April
2015) (2015)

17. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux Journal 2014(239), 2 (2014)

18. Morsey, M., Lehmann, J., Auer, S., Ngomo, A.C.N.: DBpedia SPARQL Benchmark
– Performance assessment with real queries on real data. ISWC pp. 454–469 (2011)

19. Punnoose, R., Crainiceanu, A., Rapp, D.: RYA: a scalable RDF triple store for the
clouds. In: International Workshop on Cloud Intelligence. p. 4. ACM (2012)

20. Qiao, S., Özsoyoğlu, Z.M.: Rbench: Application-specific RDF benchmarking. In:
SIGMOD. pp. 1825–1838. ACM (2015)

21. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: a SPARQL perfor-
mance benchmark. ICDE pp. 222–233 (2009)

22. Seaborne, A., Manjunath, G., Bizer, C., Breslin, J., Das, S., Davis, I., Harris,
S., Idehen, K., Corby, O., Kjernsmo, K., et al.: Sparql/update: A language for
updating rdf graphs. W3c member submission 15 (2008)

23. Zhang, Y., Duc, P., Corcho, O., Calbimonte, J.P.: Srbench: a streaming rdf/sparql
benchmark. The Semantic Web–ISWC 2012 pp. 641–657 (2012)


	SPARUB: SPARQL UPDATE Benchmark

