
HAL Id: hal-01523720
https://inria.hal.science/hal-01523720

Submitted on 16 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Context-Based File Block Classification
Luigi Sportiello, Stefano Zanero

To cite this version:
Luigi Sportiello, Stefano Zanero. Context-Based File Block Classification. 8th International Confer-
ence on Digital Forensics (DF), Jan 2012, Pretoria, South Africa. pp.67-82, �10.1007/978-3-642-33962-
2_5�. �hal-01523720�

https://inria.hal.science/hal-01523720
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 5

CONTEXT-BASED FILE
BLOCK CLASSIFICATION

Luigi Sportiello and Stefano Zanero

Abstract Because files are typically stored as sequences of data blocks, the file
carving process in digital forensics involves the identification and collo-
cation of the original blocks of files. Current file carving techniques that
use the signatures of file headers and footers could be improved by first
classifying each data block in the storage media as belonging to a given
file type. Unfortunately, file block classification techniques tend to have
low accuracy. One reason is that they do not account for compound
files that contain subcomponents encoded as different data types. This
paper presents a context-based classification approach that accounts for
compound files and improves on block-by-block classification schemes
by exploiting the contiguity of file blocks belonging to the same file on
the storage media.

Keywords: File carving, file block classification

1. Introduction

An important task in digital forensics is the retrieval of deleted files
from storage media. Since files are typically stored as sequences of data
blocks, the retrieval process involves the identification and collocation of
the original blocks of each file. This is often performed using file system
structures, which due to the persistence of file system metadata, still
point to deleted data. When old data has to be retrieved or when the
file system has extensive damage, it is necessary to use a “file carving”
technique that reconstructs files based on their content. This is usually
performed by relying on the signatures of known file headers and footers
to detect the beginning and the end of each file on the storage media
[10]. Of course, this creates problems when reassembling fragmented
files in which blocks belonging to different files are interleaved [5].

68 ADVANCES IN DIGITAL FORENSICS VIII

To perform file carving without relying on headers and contiguity, it
is useful to classify blocks according to their file types based entirely
on their content. Another application of file block classification is the
detection of data hidden in locations that are not pointed to by the
file system or residual data (e.g., in memory dumps or swap files and
temporary files). A review of file carving techniques [9] underscores the
importance of block classification in creating novel file carving solutions.

When using a classifier to perform file block classification, it is impor-
tant to have a high detection rate because missing blocks may compro-
mise file reconstruction. Also, it is necessary to have a low false positive
error rate to reduce the computational complexity of file recovery.

However, existing classifiers [4, 12, 13] exhibit two problems. First,
classification performance is far from perfect: false positives and false
negatives are present, and they may hinder the reconstruction process.
Thus, an improvement of the block-by-block classification approach is
required. Second, some file types (e.g., doc and pdf) are inherently
“compound” in nature, meaning that they may contain data encoded in
other file type formats (e.g., an image embedded in a pdf file); this must
be taken into consideration when creating the classifier.

This paper first demonstrates the impact that compound files have
on a statistical block classification approach; this underscores the im-
portance of considering compound files when designing and testing a
statistical block classification approach. Next, a context-based classifi-
cation approach is proposed that improves on block-by-block classifica-
tion schemes of compound files by exploiting the contiguity of file blocks
belonging to the same file on the storage media.

2. Related Work

Two primary approaches for classifying file blocks into their original
file types are: (i) using a distance measure between a given input block
and each reference model/sample; and (ii) applying machine learning
techniques to create an appropriate classifier.

A distance-based approach [7, 8] performs the classification based on
the frequencies of byte values and the differences between the values of
consecutive bytes in a block. A set of files of each file type is used to
compute the frequency model. If the distance between the frequencies of
an unclassified block and one of the models is below a threshold, then the
block is associated with the corresponding file type. Some solutions (e.g.,
[1, 2]) measure the distance between a pair of blocks by comparing the
compression of the two individual blocks with the compression of their
concatenation. In this case, a block is classified by computing its distance

Sportiello & Zanero 69

from sample blocks representing different file types and associating the
block with the file type of the closest sample block.

A machine learning approach uses statistical values as a set of input
features in a classification algorithm. The algorithm is then used to
classify new samples based on the learned model. A learning algorithm
typically employs Fisher’s linear discriminant [4, 13] or a support vector
machine (SVM) [12]. Since multiple file types exist, the problem can be
categorized as multi-class classification. Binary classifiers can be used to
distinguish between the multiple file types by generating several one-to-
one classifiers [4] that distinguish individual file types from each other.
Alternatively, one-to-many classifiers [12] can be created to separate a
single file type from other file types. Two variations of multiple classifiers
for identifying blocks have been proposed: one directly assigns a file type
to a given input block; the other discerns specific file type blocks in a
block set [13].

3. File Block Classifiers

The purpose of file block classification is to assign a file type to a
file block based only on its content. This work addresses the problem of
detecting all the blocks belonging to a specified target file type in a block
set (e.g., disk image). This is structured as a one-to-many classification
problem in which a binary classifier for each file type is trained to discern
blocks of the target type from among all the other file types.

A support vector machine (SVM) [3] is used as the classifier. An
SVM performs binary classification based on a training set (xi, yi), i =
1, . . . , l, with each sample xi represented by n attributes (features) in
the space Rn and labeled with a class yi ∈ {1,−1}. The SVM obtains
a maximally separating hyperplane of the form w · x + b = 0 by solving
the optimization problem:

min
w,b,ξ

1

2
wTw + C

l
∑

i=1

ξi

subject to yi(w
T φ(xi) + b) ≥ 1− ξi

ξi ≥ 0

Such a hyperplane linearly separates the space Rn into two regions
representing the two classes {1,−1}. A new data sample is assigned to a
class according to the side of the hyperplane where the sample lies. Since
the training samples xi may not be linearly separable in Rn, to improve
the classification, they are mapped to a higher dimensional space by the

70 ADVANCES IN DIGITAL FORENSICS VIII

function φ. The linear separation is achieved in the higher dimensional
space, resulting in a non-linear separation in the original space Rn.

The mapping uses a suitable kernel function K(xi,xj) ≡ φ(xi)T φ(xj).

In our approach, we use the RBF kernel function K(x, y) = eγ∥x−y∥2 , γ >
0, a popular choice that is suitable for many problems [6]. Thus, the
classifier parameters are: γ (kernel function parameter) and C (misclas-
sification penalty parameter).

In a classification process, it is important to represent the samples
using a set of features that highlight the differences between items from
different classes. Our classification technique uses the features defined
by Sportiello and Zanero [12]. These features include:

Byte Frequency Distribution (BFD): This feature is based on
the frequencies fv of each possible byte value v ∈ {0, . . . , 255} in
the block.

Rate of Change (RoC): This feature is based on the frequencies
of the differences between two consecutive bytes bi and bi+1 in a
block (i.e., distribution of bi − bi+1).

Word Frequency Distribution (WFD): This feature is similar
to BFD, but it considers a block as a sequence of 16-bit words and
computes their frequency values.

Mean Byte Value: This feature interprets a block as a sequence
of bytes and computes the average value.

Entropy: This feature interprets a block as a sequence of bytes
and computes the entropy value.

Lempel-Ziv Complexity: This feature interprets a block as a
binary stream and computes the Lempel-Ziv complexity.

Various combinations of these features were tested. The feature com-
binations that provided the most accurate classification results were used
for file block classification.

3.1 Compound File Problem

Storage media may contain a variety of file types. Many of these file
types encode data in a similar pattern throughout the length of the file.
Good examples are image and video files. They are called “primitive”
files because the blocks corresponding to these file types tend to present
common features that can be exploited in identifying the blocks.

On the other hand, “compound” files have distinctive file structures
in which data encoded in the form of primitive types may be embedded.

Sportiello & Zanero 71

Such files are created, for example, when an image is embedded in a
document file by a word processor or when a video is included in a pre-
sentation. In these cases, the file blocks corresponding to the file do not
present uniform properties because the blocks related to the embedded
data are statistically different from the other file blocks.

To perform file block classification in the presence of compound files,
Roussev and Garfinkel [11] recommend classifying each block as a prim-
itive type and then, during compound file recovery, use their internal
structures to recover the complete file. Conducting this type of recovery
requires the ability to distinguish blocks that constitute the basic struc-
ture of a compound file from the data blocks of other formats. This is,
in fact, the focus of this paper.

Certain problems posed by compound files must be taken into con-
sideration when creating models for block classification. In particular,
with regard to a supervised learning approach, the training set should be
prepared in a proper manner. To understand this, consider the training
set for a given primitive file type. The training set would comprise ex-
amples and counterexamples. However, the training set would mislead
the classifier if blocks from a compound file with embedded data that
is encoded according to the target type format were to be mistakenly
included among the counterexamples. In fact, the training set would
comprise blocks of the target file type data that are labeled as both tar-
get and non-target, inducing poor classification performance. For this
reason, when compound files are included in a training set, it is prudent
to use compound file types that do not contain embedded data.

3.2 Experimental Setup

Classifiers were constructed using the methodology described in [12],
except for differences in data set preparation to account for the com-
pound file problem. The experiments used the same data set of ran-
domly downloaded files as in [12], which includes bmp, doc, exe, gif,
jpg, mp3, odt and pdf files. Because doc, exe, odt and pdf are com-
pound file types, the corresponding files were inspected for embedded
data. In constructing the file block classifiers, all files containing em-
bedded data were replaced with files without embedded data that were
randomly downloaded from the Internet using the same approach as in
[12].

The collected files were decomposed into 512-byte blocks, yielding an
average of 28,000 blocks per file type. The length of 512 bytes was
selected because it is the smallest block size that is commonly used to
manage storage media. Also, as described in [12], a smaller block size

72 ADVANCES IN DIGITAL FORENSICS VIII

Table 1. Feature set used to represent file blocks.

Feature Description

Entropy File block entropy
Complexity File block Lempel-Ziv complexity
BFD Frequency of byte values in the file block
Entropy-Complexity-BFD Concatenation of entropy, complexity and BFD
RoC Frequency of differences between two consecutive

byte values in the file block

renders the classification task more difficult; therefore, using the smallest
value yields conservative performance results.

For each file type, we constructed an SVM classifier to detect the cor-
responding blocks. For each classifier, it was necessary to set the relative
values of the parameters γ and C, and to select the features for block
representation. To identify the best feature-parameter combination for
each file type, a seven-fold cross validation was conducted, which split
the data set into a training set and test set containing 2,000 and 8,000
blocks, respectively. In each training set, half of the blocks were of the
target file type, while the remaining blocks uniformly represented the
other file types. For each file type we trained and tested a series of clas-
sifiers by varying the parameters γ ∈ {2−15, 2−13, 2−11, . . . , 25, 27} and
C ∈ {2−5, 2−3, 2−1, . . . , 213, 215}, and attempting combinations of all the
features as well as reduced versions (e.g., BFD related only to ASCII
byte values) and concatenations (e.g., Entropy-Complexity-BFD) [12].
The feature set selected was the combination that maximized the func-
tion 0.5 · TP + 0.5 · (1 – FP), where TP and FP denote the true positive
and false positive error rates, respectively. After the best combinations
for each file type were identified, they were used to create a final set of
classifiers that relied on the entire block collection, with training sets of
28,000 blocks and test sets of 112,000 blocks.

3.3 Experimental Results

Table 1 lists the features used to test file type classification. Table 2
presents the SVM parameters used for each file type and the final clas-
sification results. The concatenation Entropy-Complexity-BFD proved
to be the most effective feature representation for all the file types, ex-
cept for bmp, for which RoC is marginally better. Thus, this file block
representation can work well for most different file types.

Because the compound files were removed, the classification results
are better than those presented in [12]. This is particularly evident for

Sportiello & Zanero 73

Table 2. File block classification by SVMs (no embedded data in compound files).

Feature γ, C TP FP

bmp RoC 21, 29 99.6 1.7
doc Entropy-Complexity-BFD 23, 23 91.0 2.4
exe Entropy-Complexity-BFD 21, 25 87.1 0.1
gif Entropy-Complexity-BFD 25, 21 95.5 3.9
jpg Entropy-Complexity-BFD 25, 21 96.4 3.9
mp3 Entropy-Complexity-BFD 25, 21 96.9 2.8
odt Entropy-Complexity-BFD 25, 21 96.8 16.7
pdf Entropy-Complexity-BFD 23, 21 94.4 19.8

Average 94.7 6.4

FP per File Type
bmp doc exe gif jpg mp3 odt pdf

bmp – 8.0 3.0 0.1 0.2 0.2 0.1 0.3
doc 10.4 – 5.2 0.2 0.2 0.7 0.1 0.3
exe 1.3 3.6 – 0.3 0.2 0.1 0.0 0.3
gif 0.7 5.3 1.7 – 3.2 2.7 6.8 6.9
jpg 0.4 0.5 1.2 2.1 – 6.0 10.7 6.2
mp3 0.9 0.6 2.9 2.6 5.3 – 4.8 2.5
odt 0.4 6.6 8.5 12.3 20.4 10.6 – 57.7
pdf 0.5 6.2 7.7 16.1 16.9 7.2 84.0 –

the FP rate of the doc classifier, which decreased from 19.8% in [12] to
the current value to 2.4%. Also, the FP rates against gif and jpg (two
common types of embedded data in doc files) reduced by 6% and 28%,
respectively. Likewise, the elimination of compound files improved the
gif and jpg classifiers; their specific FP rates against doc files decreased
by 3% and 15%, respectively.

The classifiers support data recovery of primitive file types (e.g., bmp
and jpg). However, because the recovery of compound files (e.g., doc
and pdf) requires the handling of embedded data, the classifiers pro-
vide limited support for compound file types (techniques such as those
described in [11] should be used for these file types).

4. Context-Based Block Classification

Most of the files of interest in a forensic recovery process (e.g., doc-
uments, images and videos) are typically not small in size and, thus,
span multiple blocks [5]. Modern file systems tend to reduce file frag-
mentation, meaning that blocks belonging to the same file are stored in
contiguous locations to the extent possible. When fragmentation occurs,

74 ADVANCES IN DIGITAL FORENSICS VIII

 Context Size

º Bi-5 Bi-4 Bi-3 Bi-2 Bi-1 Bi Bi+1 Bi+2 Bi+3 Bi+4 Bi+5 º
 º Ci-4 Ci-3 Ci-2 Ci-1 Ci Ci+1 Ci+2 Ci+3 Ci+4 º

 º CCi-1 CCi CCi+1 º.

CCi = f(Ci-ContextSize, º, Ci-1, [Ci],Ci+1,ºCi+ContextSize)

File Blocks

Classifier

Basic Block Classification

Context Evaluation

Context ±Based Block Classification

Figure 1. Context-based file block classification.

the most common scenario is bi-fragmentation, where a file is stored as
two series of contiguous blocks far from each other on the media [5].
Thus, it follows that blocks are typically surrounded by other blocks of
the same file (and the same file type), except for those at the beginning
and at the end of a file or its fragments.

Even if the error rates of a block classifier are low, the misclassi-
fications that occur are multiplied when dealing with many terabytes
of data; this can significantly impact the final results. Therefore, it is
necessary to improve the precision of block classification. Also, when
there is insufficient information to make a correct decision, it is prefer-
able to mark a block as “not-classified” instead of giving it an incorrect
classification. This helps reduce errors in the processes that use the
classification information [11].

Our approach exploits file block contiguity. When classifying a block
Bi, we rely on the classifications of its neighboring blocks because they
tend to belong to the same file. We call such blocks the “context” of Bi

(Figure 1). We use the ContextSize parameter to denote the number of
neighbor blocks to be considered on each side of Bi, and combine the clas-
sifications of the blocks with the classification Ci of the block itself. This
yields a “context-based” classification CCi = f(Ci−ContextSize, . . . , Ci−1,
[Ci], Ci+1, . . . , Ci+ContextSize). The idea is that if a good, but not per-
fect, classifier is available, a more robust evaluation may be achieved by
relying on a series of classifications (context).

4.1 Block Context Evaluation

The block context evaluation classification model is binary: for a given
target file type, for each generic block Bi, the classifier outputs classifi-
cation Ci ∈ {−1, 1}, where 1 means the block is of the target type and
−1 means it is not.

The context-based classification CCi for a block Bi is performed ac-
cording to Algorithm 1. The classification of the context blocks preced-

Sportiello & Zanero 75

Algorithm 1 : Context-based classification CCi of a block Bi

LeftClassifications={Ci−1 , Ci−2, ..., Ci−ContextSize}
RightClassifications={Ci+1, Ci+2, ..., Ci+ContextSize}
LeftEvaluation=ContextEvaluation(LeftClassifications)
RightEvaluation=ContextEvaluation(RightClassifications)
if LeftEvaluation>0 && RightEvaluation>0 then

if Ignore Ci then
CCi = 1

else if Consider Ci then
if Ci>0 then

CCi = 1
else

CCi = NC [Not-Classified]
end if

end if
else if LeftEvaluation<0 && RightEvaluation<0 then

if Ignore Ci then
CCi = −1

else if Consider Ci then
if Ci<0 then

CCi = −1
else

CCi = NC [Not-Classified]
end if

end if
else if LeftEvaluation==0 && RightEvaluation!=0 then

if Ci>0 && RightEvaluation>0 then
CCi = 1

else if Ci<0 && RightEvaluation<0 then
CCi = −1

else
CCi = NC [Not-Classified]

end if
else if LeftEvaluation!=0 && RightEvaluation==0 then

if LeftEvaluation>0 && Ci>0 then
CCi = 1

else if LeftEvaluation<0 && Ci<0 then
CCi = −1

else
CCi = NC [Not-Classified]

end if
else

CCi = NC [Not-Classified]
end if

ing Bi (i.e., “left” context) is performed using the ContextEvaluation
function, which returns a value from {−1, 1} expressing the number of
considered blocks that correspond to the target or non-target (positive

76 ADVANCES IN DIGITAL FORENSICS VIII

Table 3. Context evaluation functions.

ContextEvaluation(C1, C2, ..., Cn)

Uniform 1
n

Pn
i=1 Ci

Exponential
Pn

i=1
Cie

−(i− 1
2)/n

weight with weight =
Pn

i=1 e−(i− 1
2)/n

Linear
Pn

i=1

Ci(1−
1
n (i− 1

2))

weight with weight =
Pn

i=1 1− 1
n (i− 1

2)

or negative value, respectively). The context blocks following Bi (“right”
context) are evaluated in a similar manner.

Our experiments compared two variants of the algorithm. The first
variant ignores the classification Ci of Bi and relies only on the context.
The second variant includes Ci with the context during classification.
The final classification CCi is deemed a “target” if both the evaluations
of the context have positive values (this is interpreted as Bi being in
the middle of the target file). Similarly, if the two evaluations present
negative values, then the block is deemed a “non-target.” In the second
variant, where Ci is taken into account, if its value agrees with the
two context evaluations, then the final classification is the same as that
obtained using the first variant; otherwise, the output is “not-classified”
because of the mismatch in the available information.

Some special cases are considered. If one of the two context eval-
uations returns zero (perhaps because the context is placed over the
blocks of two different contiguous files), then the block classification Ci

is compared with the non-null evaluation; if they agree, then the block
is classified accordingly, otherwise, “not-classified” is returned. Also, if
the two evaluations disagree or are both equal to zero, then the block
is labeled as not-classified. This is because the available information is
inconsistent.

Note that the left context is null for the first block of a disk image.
It grows in size for each following block until it reaches the defined
ContextSize. Symmetric behavior occurs at the end of the disk image,
where RightEvaluation = 0 for the last block.

Table 3 shows the three ContextEvaluation functions that were tested.
The Uniform function computes the average of the classifications of all
the blocks in a context without any weights. The Exponential and Linear
functions give higher weights to classifications of blocks that are closer
to Bi. The idea is that these blocks are more likely to be part of the
same file as Bi, so their support for the final decision is higher.

Sportiello & Zanero 77

4.2 Experimental Setup

The second set of experiments focused on improving the detection of
gif files using context-based classification. The gif files were chosen
because they are a primitive file type whose classifier, as shown in Table
2, performs well. In fact, we show that a good classifier can be used as
a basis in our context-based algorithm to achieve better classification.
Note, however, that the concept is general although our experiment uses
SVM classifiers as described above.

The experiments used a new data set comprising 1.5 MB of files down-
loaded from the Internet, each file was roughly 100 KB in size. All the
collected files were divided into 512-byte block sequences. Four “disk
image” scenarios were created:

Scenario 1: The files were randomly concatenated to create a
disk image without fragmentation.

Scenario 2: The files were split into two equal fragments that
were randomly concatenated to create a bi-fragmented disk image.

Scenario 3: The files were split into three equal fragments that
were randomly concatenated to create a tri-fragmented disk image.

Scenario 4: The files were split into ten equal fragments that were
randomly concatenated to create a ten-fragmented disk image.

These scenarios were designed to test the context-based classification
technique on common situations (corresponding to Scenarios 1-3) [5].
Scenario 4 corresponds to a possible, albeit unlikely, high fragmentation
situation.

The experiments involved two stages. First, the gif classifier was
used on all the blocks of a generated disk image to yield their basic
classifications. Next, the context-based classification for each block was
computed using the output of the gif classifier. The experiments com-
pared the two variants of the algorithm that include and ignore the
classification Ci of the block itself. Also, they explored ContextSize
parameter values of 3, 5, 8 and 10.

4.3 Experimental Results

Figures 2 and 3 present the true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) rates, along with the not-
classified (NC) rates, since TP + FN < 100% and TN + FP < 100%
due to the presence of NC blocks. Figure 2 shows the context-based file
block classification results for the non-fragmented and bi-fragmented

78 ADVANCES IN DIGITAL FORENSICS VIII

%NC (No Fragmentation)

15

13

11

9

7

5

3

1
3 5 8 10

Context Size (N blocks)

4

3

2

1

0
3 5 8 10

Context Size (N blocks)

%FP (No Fragmentation)

3 5 8 10
0

2

4

6

8

Context Size (N blocks)

%FN (No Fragmentation)

%TN (No Fragmentation)

100

97.5

95

92.5

90

87.5

85
3 5 8 10

Context Size (N blocks)

%TP (No Fragmentation)

100

90

80

70

60

50
3 5 8 10

Context Size (N blocks)
3 5 8 10

50

60

70

80

90

100

Context Size (N blocks)

%TP (2 Fragments per File)

3 5 8 10
85

87.5

90

92.5

95

97.5

100

Context Size (N blocks)

%TN (2 Fragments per File)

3 5 8 10
0

1

2

3

4

Context Size (N blocks)

%FP (2 Fragments per File)

3 5 8 10
0

2

4

6

8

Context Size (N blocks)

%FN (2 Fragments per File)

3 5 8 10
1

3

5

7

9

11

13

15

Context Size (N blocks)

%NC (2 Fragments per File)

Uniform

Exp

Linear

Uniform+C

Exp+C

Linear+C

No-Context

i

i
i

Figure 2. Context-based file block classification results.

Sportiello & Zanero 79

Uniform

Exp

Linear

Uniform+C

Exp+C

Linear+C

No-Context

i

i
i

3 5 8 10
50

60

70

80

90

100

Context Size (N blocks)

%TP (10 Fragments per File)

3 5 8 10
85

87.5

90

92.5

95

97.5

100

Context Size (N blocks)

%TN (10 Fragments per File)

3 5 8 10
0

1

2

3

4

Context Size (N blocks)

%FP (10 Fragments per File)

3 5 8 10
0

2

4

6

8

Context Size (N blocks)

%FN (10 Fragments per File)

3 5 8 10
1

3

5

7

9

11

13

15

Context Size (N blocks)

%NC (10 Fragments per File)

3 5 8 10
50

60

70

80

90

100

Context Size (N blocks)

%TP (3 Fragments per File)

3 5 8 10
85

87.5

90

92.5

95

97.5

100

Context Size (N blocks)

%TN (3 Fragments per File)

3 5 8 10
0

1

2

3

4

Context Size (N blocks)

%FP (3 Fragments per File)

3 5 8 10
0

2

4

6

8

Context Size (N blocks)

%FN (3 Fragments per File)

3 5 8 10
1

3

5

7

9

11

13

15

Context Size (N blocks)

%NC (3 Fragments per File)

Figure 3. Context-based file block classification results.

80 ADVANCES IN DIGITAL FORENSICS VIII

file scenarios. Figure 3 shows the context-based file block classification
results for the tri-fragmented and ten-fragmented file scenarios. The
graphs also show the basic classification results, achieved using the gif
classifier without a context as a baseline.

The first key result concerns the FP and FN rates. Both the error rates
are strongly improved (i.e., decreased) compared with the basic classifi-
cation for all the fragmentation scenarios and parameter values. For the
first three scenarios, the TN rates are improved when the classification
of the block itself is ignored. On the other hand, the TP rate decreases
with increasing fragmentation, but increases in Scenario 1 (note that
that non-fragmentation is the most likely condition for a file). These
results can be explained by the presence of a long series of contiguous
non-gif blocks that provide a wide base for the context-based classifica-
tion of non-target blocks, while smaller block series related to gif files
and their fragments are present to be exploited in target block identifi-
cation. Also, roughly 3% of all blocks in Scenarios 1-3 are not-classified
due to the gif blocks being incorrectly classified as target blocks. This
is clearer in the graphs for Scenario 4, where a drop in the TP rate is
correlated with an increase in the NC rate.

As expected, the classification performance decreases when the frag-
mentation rate increases. However, in context-block classification, the
TP and TN rates tend to be converted to NC rather than to FP and
FN, keeping the rates low and maintaining a lower classification error.

Increasing the ContextSize parameter helps reduce the FP and FN
rates; the TN rate is also slightly increased, except that for the last
high fragmented scenario. However, the TP rate does not seem to be
positively affected, probably due to the absence of target block series
long enough to be exploited by the enlarged context. A ContextSize
value of five appears to represent a good trade-off in our experiments.

The results suggest that it is better to ignore the classification of the
block itself when classifying a block. In fact, taking Ci into account
negatively affects the TP and TN rates, leaving the FP and FN rates
substantially similar, due to an increased NC rate.

The three ContextEvaluation functions exhibit comparable perfor-
mance. The Linear function performs worse than the other two functions
for a ContextSize value of three, probably because the short context
causes the function to focus mainly on the two contiguous blocks of Bi.
On the other hand, the Linear function outperforms the others in the
high fragmentation scenario. In this scenario, it effectively reduces the
effect of the non-target blocks in the context (a typical situation close to
fragment boundaries), relying on the context blocks closer to the block
under classification.

Sportiello & Zanero 81

The classification approach tends to concentrate NC blocks mostly at
the boundaries of files or fragments. A file carver could exploit this fact
to identify block regions belonging to a specific file type and related to
a file or fragment on the storage media, but with “faded” boundaries –
correct classification in the middle of fragments with NC values near the
ends. Then, the file carver could attempt to collate these block regions,
varying their length in the range identified by the relative NC areas, until
a complete file is recovered (the various combinations could be checked
using a file validator [5]).

5. Conclusions

This paper makes two contributions to file block classification for
forensic data carving applications. The first is a technique that improves
the performance of single block file block classifiers – false positive and
false negative error rates are reduced using training sets restricted to
primitive file types. The second is a context-based classification method-
ology that exploits the spatial coherence of data, i.e., the contiguity of
blocks related to a given file. This methodology improves block clas-
sification performance by covering misclassifications at the cost of in-
troducing a limited number of non-classified blocks. The methodology
is general and can be applied in conjunction with other content-based
file block classification algorithms. Our future research will focus on this
aspect and will also assess the impact of the methodology on other block
classification strategies.

The views expressed in this paper are those of the authors and do not
reflect the official policy or position of the European Commission.

Acknowledgements

This research was partially supported by the Prevention, Preparedness
and Consequence Management of Terrorism and Other Security-Related
Risks Program of the European Commission under Project i-Code: Real-
Time Malicious Code Identification; and by the EU Seventh Framework
Program (FP7/2007-2013) under Grant No. 257007 – SysSec.

References

[1] S. Axelsson, The normalized compression distance as a file fragment
classifier, Digital Investigation, vol. 7(S), pp. S24–S31, 2010.

[2] S. Axelsson, Using normalized compression distance for classifying
file fragments, Proceedings of the Fifth International Conference on
Availability, Reliability and Security, pp. 641–646, 2010.

82 ADVANCES IN DIGITAL FORENSICS VIII

[3] C. Burges, A tutorial on support vector machines for pattern recog-
nition, Data Mining and Knowledge Discovery, vol. 2(2), pp. 121–
167, 1998.

[4] W. Calhoun and D. Coles, Predicting the types of file fragments,
Digital Investigation, vol. 5(S), pp. S14–S20, 2008.

[5] S. Garfinkel, Carving contiguous and fragmented files with fast ob-
ject validation, Digital Investigation, vol. 4(S), pp. S2–S12, 2007.

[6] C. Hsu, C. Chang and C. Lin, A Practical Guide to Support Vector
Classification, Technical Report, Department of Computer Science
and Information Engineering, National Taiwan University, Taipei,
Taiwan, 2003.

[7] M. Karresand and N. Shahmehri, File type identification of data
fragments by their binary structure, Proceedings of the IEEE Infor-
mation Assurance Workshop, pp. 140–147, 2006.

[8] M. Karresand and N. Shahmehri, Oscar – File type identification
of binary data in disk clusters and RAM pages, Proceedings of the
Twenty-First International Information Security Conference, pp.
413–424, 2006.

[9] A. Pal and N. Memon, The evolution of file carving, IEEE Signal
Processing, vol. 26(2), pp. 59–71, 2009.

[10] G. Richard and V. Roussev, Scalpel: A frugal, high performance file
carver, Proceedings of the Fifth Digital Forensics Research Work-
shop, 2005.

[11] V. Roussev and S. Garfinkel, File fragment classification – The case
for specialized approaches, Proceedings of the Fourth IEEE Inter-
national Workshop on Systematic Approaches to Digital Forensic
Engineering, pp. 3–14, 2009.

[12] L. Sportiello and S. Zanero, File block classification by support
vector machines, Proceedings of the Sixth International Conference
on Availability, Reliability and Security, pp. 307–312, 2011.

[13] C. Veenman, Statistical disk cluster classification for file carving,
Proceedings of the Third IEEE International Symposium on Infor-
mation Assurance and Security, pp. 393–398, 2007.

