E. Bach, Improved approximations for Euler products, Number theory, CMS Conference Proceedings, pp.13-28, 1994.

K. Belabas, Topics in computational algebraic number theory, Journal de Th??orie des Nombres de Bordeaux, vol.16, issue.1, pp.19-63, 2004.
DOI : 10.5802/jtnb.433

URL : http://www.numdam.org/article/JTNB_2004__16_1_19_0.pdf

K. Belabas and E. Friedman, Computing the residue of the Dedekind zeta function, Mathematics of Computation, vol.84, issue.291, pp.357-369, 2015.
DOI : 10.1090/S0025-5718-2014-02843-3

URL : https://hal.archives-ouvertes.fr/hal-00916654

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A Fresh Approach to Numerical Computing, SIAM Review, vol.59, issue.1
DOI : 10.1137/141000671

J. Biasse and C. Fieker, Abstract, LMS Journal of Computation and Mathematics, vol.17, issue.A, pp.385-403, 2014.
DOI : 10.1007/978-3-642-13013-7_25

W. Brown, Null ideals and spanning ranks of matrices, Communications in Algebra, vol.1, issue.2, pp.2401-2417, 1998.
DOI : 10.1080/00927879808826285

H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol.138, 1993.
DOI : 10.1007/978-3-662-02945-9

A. Danilevsky, The numerical solution of the secular equation, Matem. Sbornik, pp.169-171, 1937.

W. Decker, G. M. Greuel, G. Pfister, and H. Schönemann, Singular ? A computer algebra system for polynomial computations

E. Dobrowolski, On the maximal modulus of conjugates of an algebraic integer, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys, vol.26, issue.4, pp.291-292, 1978.

L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR, ACM Transactions on Mathematical Software, vol.33, issue.2, pp.13-14, 2007.
DOI : 10.1145/1236463.1236468

URL : https://hal.archives-ouvertes.fr/inria-00070266

M. Giesbrecht and A. Storjohann, Computing Rational Forms of Integer Matrices, Journal of Symbolic Computation, vol.34, issue.3, pp.157-172, 2002.
DOI : 10.1006/jsco.2002.0554

W. Hart, ANTIC: Algebraic Number Theory in C, Computeralgebra Rundbrief 56, Fachgruppe Computeralgebra, 2015.

W. Hart, F. Johansson, and S. Pancratz, FLINT: Fast Library for Number Theory
DOI : 10.1007/978-3-642-15582-6_18

URL : http://wrap.warwick.ac.uk/41629/1/WRAP_Hart_0584144-ma-270913-flint-extended-abstract.pdf

F. Johansson, Arb, ACM Communications in Computer Algebra, vol.47, issue.3/4
DOI : 10.1145/2576802.2576828

URL : https://hal.archives-ouvertes.fr/hal-01394258

M. Monagan and R. Pearce, Sparse polynomial division using a heap, Journal of Symbolic Computation, vol.46, issue.7, pp.807-822, 2011.
DOI : 10.1016/j.jsc.2010.08.014

URL : http://doi.org/10.1016/j.jsc.2010.08.014

M. Monagan and R. Pearce, Parallel sparse polynomial multiplication using heaps, Proceedings of the 2009 international symposium on Symbolic and algebraic computation, ISSAC '09, pp.263-269, 2009.
DOI : 10.1145/1576702.1576739

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Monagan, R. Pearce, V. P. Gerdt, W. Koepf, E. W. Mayr et al., Sparse Polynomial Powering Using Heaps, Computer Algebra in Scientific Computing. CASC 2012, pp.236-247, 2012.
DOI : 10.1007/978-3-642-32973-9_20

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Parisse and R. De-graeve, Giac/Xcas version 1.2, 2016.

M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, 1997.
DOI : 10.1017/CBO9780511661952

R. J. Schoof, Quadratic fields and factorization, In Computational methods in number theory, Part II, Sage Developers, SageMath, the Sage Mathematics Software System, pp.235-286, 1982.

M. Soltys, Berkowitz's algorithm and clow sequences, The Electronic Journal of Linear Algebra, Int. Linear Algebra Society, vol.9, pp.42-54, 2002.

A. Steel, A New Algorithm for the Computation of Canonical Forms of Matrices over Fields, Journal of Symbolic Computation, vol.24, issue.3-4, pp.409-432, 1997.
DOI : 10.1006/jsco.1996.0142

E. Vinberg, A Course in Algebra, p.229, 2003.
DOI : 10.1090/gsm/056