Shape from sensors: curve networks on surfaces from 3D orientations

Tibor Stanko 1, 2 Stefanie Hahmann 1 Georges-Pierre Bonneau 3 Nathalie Saguin-Sprynski 2
1 IMAGINE - Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
3 MAVERICK - Models and Algorithms for Visualization and Rendering
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : We present a novel framework for acquisition and reconstruction of 3D curves using orientations provided by iner-tial sensors. While the idea of sensor shape reconstruction is not new, we present the first method for creating well-connected networks with cell complex topology using only orientation and distance measurements and a set of user-defined constraints. By working directly with orientations, our method robustly resolves problems arising from data inconsistency and sensor noise. Although originally designed for reconstruction of physical shapes, the framework can be used for "sketching" new shapes directly in 3D space. We test the performance of the method using two types of acquisition devices: a standard smartphone, and a custom-made prototype called the Morphorider.
Type de document :
Article dans une revue
Computers and Graphics, Elsevier, 2017
Liste complète des métadonnées



https://hal.inria.fr/hal-01524740
Contributeur : Tibor Stanko <>
Soumis le : jeudi 18 mai 2017 - 17:23:48
Dernière modification le : mardi 23 mai 2017 - 01:06:36

Identifiants

  • HAL Id : hal-01524740, version 1

Citation

Tibor Stanko, Stefanie Hahmann, Georges-Pierre Bonneau, Nathalie Saguin-Sprynski. Shape from sensors: curve networks on surfaces from 3D orientations. Computers and Graphics, Elsevier, 2017. <hal-01524740v1>

Partager

Métriques

Consultations de
la notice

78

Téléchargements du document

15