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Abstract: Understanding adaptation of bacterial growth for a changing environment is a
fundamental biological problem which also has a great interest from the biotechnological point
of view. This paper extends one of existing bacterial growth models by taking macromolecular
degradation into account and provides new mathematical results. The related dynamic problem
of maximizing biomass accumulation is stated in a specific way so that existence of optimal
resource allocation strategies can be verified. A novel numerical algorithm for approximating
switching curves of the chattering control in the state space is developed. Several realistic
suboptimal feedback control laws are also constructed and successfully tested. The results of
numerical simulations confirm validity of the new problem statement.

Keywords: bacterial growth, macromolecular degradation, resource allocation, optimal control,
chattering, switching curves, suboptimal control.

1. INTRODUCTION

In theoretical biology as well as in biotechnology, it is
important to study mechanisms of bacterial adaptaion for
changes in availability of external nutrients (Schaechter
et al. (2006); Venayak et al. (2015)). Several studies devel-
oped steady-state and dynamic mathematical models to
investigate which control strategies microorganisms em-
ploy for achieving optimal resource allocation of their
protein synthesis capacity over different cellular functions
(Molenaar et al. (2009); Scott et al. (2014); Pavlov and
Ehrenberg (2013); Giordano et al. (2016)). In particu-
lar, Giordano et al. (2016) proposed a model of a self-
replicating prokaryotic cell population by distinguishing
two basic cellular processes: metabolism (converting nutri-
ents to precursors) and gene expression (converting precur-
sors to proteins which constitute biomass). Dynamic opti-
mization methods were used to obtain a resource allocation
strategy leading to maximum biomass accumulation. The
optimal control law was compared with several realistic
suboptimal control strategies. For the sake of simplicity,
the model of Giordano et al. (2016) ignored macromolec-
ular degradation. The aim of this work is to develop an
extended model with such a degradation as well as to
provide wider theoretical and computational analysis of
the related dynamic optimization problem.

The paper is organized as follows. First, we provide our
problem statement and compare it with the statement
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of Giordano et al. (2016). Then we describe the optimal
steady state and verify existence of optimal open-loop
resource allocation strategies (controls). Next, the latter
are characterized via necessary optimality conditions, and
a novel numerical algorithm for approximating switching
curves of the chattering control in the state space is
proposed. We also extend the suboptimal feedback controls
of Giordano et al. (2016) to the current model with
degradation. Finally, the results of numerical simulations
are presented and discussed.

2. PROBLEM STATEMENT

Let P,M,R [g] be the total masses of precursor metabo-
lites (amino acids), metabolic machinery (enzymes in-
volved in nutrient uptake and conversion to precursors),
and gene expression machinery (polymerase, ribosomes) in
the considered self-replicating prokaryotic cell population,
respectively. A scheme of the model is given in Fig. 1.
Metabolic machinery converts external substrates into
precursors, while gene expression machinery transforms
precursors into macromolecules. The latter are involved
either in metabolism or in gene expression itself. This leads
to the system of ordinary differential equations

dP (t)

dt
= VM (t)− VR(t),

dM(t)

dt
= (1− α(t))VR(t) − γMM(t),

dR(t)

dt
= α(t)VR(t) − γRR(t), t ∈ [0, T ],

(1)

where t is the time variable, T > 0 is the time horizon,
VM (t), VR(t)

[
g · h−1

]
are the rates at which the precursors

are formed by metabolism and utilized for gene expression,
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Fig. 1. Scheme of the model.

respectively, γM > 0, γR > 0
[
h−1

]
are the degradation

rates, and α(·) is a dimensionless resource allocation func-
tion. The latter satisfies the constraint 0 6 α(t) 6 1 for all
t ∈ [0, T ] and determines the proportion of the precursors’
mass used for supporting gene expression, so that 1−α(t)
is the proportion for metabolism. Note that system (1)
extends the mathematical model of Giordano et al. (2016)
by including degradation of macromolecules.

According to Giordano et al. (2016), introduce the follow-
ing quantities:

• inverse β > 0
[
L · g−1

]
of the constant cytoplasmic

density;
• volume of the cell population V(t) = β ·(M(t)+R(t))

[L] (only the macromolecules constituting the cells are
included here as opposed to the monomer precursors);
• intracellular characteristics vM (t) = VM (t)/V(t)[

g · L−1 · h−1
]
, vR(t) = VR(t)/V(t)

[
g · L−1 · h−1

]
,

p(t) = P (t)/V(t)
[
g · L−1

]
, r(t) = R(t)/V(t)[

g · L−1
]
, m(t) = M(t)/V(t)

[
g · L−1

]
;

• in the adopted representations vM (t) = eMm(t),
vR(t) = kRr(t)p(t)/(KR + p(t)), constant eM > 0[
h−1

]
specifies the environmental input, and kR > 0[

h−1
]
, KR > 0

[
g · L−1

]
are the rate and half-

saturation constants for gene expression machinery,
respectively;
• new dimensionless time and state variables t̂ = kRt,
p̂
(
t̂
)

= βp(t), r̂
(
t̂
)

= βr(t), m̂
(
t̂
)

= βm(t);

• auxiliary dimensionless parameters T̂ = kRT , EM =
eM/kR, K = βKR, ΓM = γM/kR, ΓR = γR/kR;
• growth rate of the self-replicating system

µ(t) =
1

V(t)
· dV(t)

dt
=

= kR

(
p̂
(
t̂
)
r̂
(
t̂
)

K + p̂
(
t̂
) + (ΓM − ΓR)r̂

(
t̂
)
− ΓM

)
,

and dimensionless variable µ̂
(
t̂
)

= µ(t)/kR.

Then system (1) can be transformed into

dp̂
(
t̂
)

dt̂
=
(
1− r̂

(
t̂
))
EM −

p̂
(
t̂
)
r̂
(
t̂
)

K + p̂
(
t̂
) −

− p̂
(
t̂
)( p̂

(
t̂
)
r̂
(
t̂
)

K + p̂
(
t̂
) + (ΓM − ΓR)r̂

(
t̂
)
− ΓM

)
,

dr̂
(
t̂
)

dt̂
= α

(
t̂
) p̂ (t̂) r̂ (t̂)
K + p̂

(
t̂
) − ΓRr̂

(
t̂
)
−

− r̂
(
t̂
)( p̂

(
t̂
)
r̂
(
t̂
)

K + p̂
(
t̂
) + (ΓM − ΓR)r̂

(
t̂
)
− ΓM

)
,

m̂
(
t̂
)

= 1− r̂
(
t̂
)
, t̂ ∈

[
0, T̂
]
.

(2)

The initial conditions are

p̂(0) = p̂0, r̂(0) = r̂0, (3)

and the constraint on resource allocation functions is

0 6 α
(
t̂
)
6 1 ∀t̂ ∈

[
0, T̂

]
. (4)

Similarly to Giordano et al. (2016), we state the optimal
resource allocation (control) problem for (2)–(4) with the
aim to maximize the biomass produced over the time

interval
[
0, T̂

]
, which leads to the functional

J(α(·)) =

T∫
0

µ(t)dt =

T̂∫
0

µ̂
(
t̂
)
dt̂ −→ max . (5)

This maximum is searched over the set of all admissible
open-loop controls α(·) which are measurable functions on[
0, T̂

]
fulfilling constraint (4).

Assume that the environment (i. e., the nutrient source)
can change only via instantaneous shifts. Each nutrient
upshift or downshift specifies a new separate optimal
control problem (with a new value of the environmental
input eM ). In compliance with Giordano et al. (2016), the
subject of the current investigation is one of such optimal
control problems (for the new model) with a constant
environmental input as a parameter.

The problem of Giordano et al. (2016) was stated with the
infinite time horizon in the overtaking optimality sense
according to Carlson et al. (1991). However, during the
problem analysis, it was implicitly supposed that the op-
timal state trajectories should reach a certain rest point
(with the maximum growth rate) and stay there all the
remaining infinite time, even though a rigorous verification
of this property as well as proving existence of optimal con-
trols remained open challenging problems. Furthermore,
numerical simulations could be conducted only for a finite
time horizon, and they in fact indicated leaving the steady
state a little time before the final instant. Giordano et al.
(2016) intuitively treated these final subarcs as an artifact
for the infinite-horizon study and, therefore, removed them
from plots. Indeed, the general turnpike theory of Trélat
and Zuazua (2015) informally leads to the hypothesis on
disappearance of such “artifactual” subarcs in the infinite-
horizon case, but a rigorous justification for that in the
considered problem also was not given.

Let us propose another approach which is to take a
sufficiently large finite time horizon T̂ and to fix the
terminal state at t̂ = T̂ as the mentioned optimal steady
state

(
p̂∗opt, r̂

∗
opt

)
:

(p̂, r̂)
∣∣
t̂=T̂ =

(
p̂∗opt, r̂

∗
opt

)
, T̂ ∈ (0,+∞) is fixed. (6)

A significant advantage of such a problem statement is that
existence of an optimal open-loop control can be proved
if T̂ is large enough. Certainly, minimum admissible T̂
should depend on initial state (3). Nevertheless, this does
not appear to be a crucial shortcoming, because, as will be
discussed below, some preliminary numerical simulations
using suboptimal controls can help to choose suitable time
horizons for initial states from physically realistic ranges.

For the model of this paper, we show that, in conformity
with the results of Giordano et al. (2016), extremal state



trajectories can enter the optimal steady state only by
chattering (a general theory of chattering optimal con-
trol is introduced by Zelikin and Borisov (1994)). We
also develop a numerical algorithm for approximating the
corresponding chattering switching curve in some neigh-
borhood of the optimal steady state. By formulation, the
algorithm does not depend on a particular time horizon,
and, moreover, it gives the same results when applied
to the related problem with T̂ = +∞ in the overtaking
optimality sense. This is an important argument in favor
of our statement of the optimal control problem with a
sufficiently large finite T̂ and terminal condition (6).

Note that G = {(p̂, r̂) : p̂ > 0, r̂ ∈ [0, 1]} is a strongly
invariant domain for controlled system (2),(4), i. e., for any
initial state (p̂0, r̂0) ∈ G and for any measurable control
α : [0,+∞)→ [0, 1], there exists a unique state trajectory
of (2) defined for all t̂ > 0, and the latter does not leave G.
Hence, we can investigate optimal control problem (2)–(6)
only for (p̂, r̂) ∈ G.

3. OPTIMAL STEADY STATE

In compliance with the approach of Giordano et al. (2016),
let us first find the steady state

(
p̂∗opt, r̂

∗
opt

)
∈ G of

system (2) at which the growth rate µ takes the maximum
value.

Assumption 3.1. Macromolecules used in metabolism
are less stable than those for gene expression: ΓM > ΓR.
The degradation rates ΓM ,ΓR are sufficiently small so that
(1− ΓR)EM > ΓM , ΓR 6 1/K.

Classical maximum conditions in one dimension and direct
calculations lead to the following result.

Theorem 3.1. Under Assumption 3.1, the optimal steady
state together with the corresponding control and growth
rate are represented as

p̂∗opt =
1

(1− ΓR)EM − ΓM

(
ΓREMK +

+

(
(ΓREMK)2 +

1

1 + ΓM − ΓR
KEM ·

· (EM − (ΓM − ΓR)(1−KΓR)) ·

((1− ΓR)EM − ΓM )

) 1
2

)
> 0,

r̂∗opt = r̂∗
(
p̂∗opt
)
∈ (0, 1),

α∗
opt = α∗

(
p̂∗opt
)
∈ (0, 1),

µ̂∗opt = max
p̂∗>0

µ̂∗ (p̂∗) = µ̂∗
(
p̂∗opt
)
> 0,

(7)

where the functions r̂∗ = r̂∗ (p̂∗), α∗ = α∗ (p̂∗), and
µ̂∗ = µ̂∗ (p̂∗) are determined by

r̂∗ (p̂∗) =

(
EM + (1 + p̂∗)

p̂∗

K + p̂∗
+ (ΓM − ΓR)p̂∗

)−1

·

· (EM + ΓM p̂∗) ,

α∗ (p̂∗) = r̂∗ (p̂∗) − (ΓM − ΓR)
K + p̂∗

p̂∗
(1− r̂∗ (p̂∗)) ,

µ̂∗ (p̂∗) = r̂∗ (p̂∗)

(
p̂∗

K + p̂∗
+ (ΓM − ΓR)

)
− ΓM .

One can easily write an analytical expression for the Ja-
cobian matrix D (p̂, r̂;α) of system (2). The next assump-

tion guarantees asymptotic stability of the optimal steady
state.

Assumption 3.2. The Jacobian matrix D
(
p̂∗opt, r̂

∗
opt;α

∗
opt

)
at the optimal steady state has a negative trace and a
positive determinant.

Even if it is difficult to check this assumption analytically,
numerical verification can easily be performed.

4. EXISTENCE OF OPTIMAL CONTROLS

The following restriction on the initial state implies that
admissible state trajectories have positive coordinates for
all t̂ > 0.

Assumption 4.1. 0 < r̂0 6 1, and p̂0 > 0 if r̂0 = 1.

We need to impose one more condition.

Assumption 4.2. α∗opt > ΓR.

For the sake of brevity, let us give only a sketch of the
proof that an optimal open-loop control exists. Due to
the general existence theorem (Afanas’ev et al., 1996,
Chapter VIII, §1, Theorem 1.1), it suffices to obtain
existence of an admissible control such that terminal
constraint (6) is fulfilled.

If
(
p̂
(
t̂1
)
, r̂
(
t̂1
))
∈ intG at some time instant t̂1 > 0 and

there exists a constant ε ∈ (0, 1) such that α
(
t̂
)
∈ [ε, 1−ε]

for all t̂ > t̂1, then the corresponding state trajectory of
system (2) on the time interval

[
t̂1,+∞

)
lies in a compact

subset of G. In G, system (2) with α = α∗opt has only two

steady states: stable node or stable focus
(
p̂∗opt, r̂

∗
opt

)
and

unstable saddle (0, 1). By using Dulac’s theorem (Perko,
2001, Chapter 3, §3.9, Theorem 2) with the function

B (p̂, r̂) =
1

r̂
(
EM + (1 + p̂) p̂

K+p̂ + (ΓM − ΓR)p̂
) ,

one can verify absence of periodic orbits in G for this
system. Moreover, since (p̂, r̂) = (0, 1) is a saddle, the
attracted set in its neighborhood consists of only one
curve, which can be left (if (p̂, r̂) 6= (0, 1)) by changing
the control on a small time subinterval.

Now the following result can be proved with the help
of Poincaré-Bendixson theorem (Perko, 2001, Chapter 3,
§3.7, Theorem 1) and the sufficient local controllability
condition (Lee and Markus, 1986, Chapter 6, §6.1, Theo-
rem 1).

Theorem 4.1. Under Assumptions 3.1, 3.2, 4.1, and 4.2,
there exists an optimal open-loop control in problem (2)–

(6) if time horizon T̂ is sufficiently large.

It is clear that minimum admissible T̂ depends on initial
state (3). A heuristic way of choosing a suitable T̂ is to
integrate system (2) with α = α∗opt numerically till a

sufficiently small neighborhood of
(
p̂∗opt, r̂

∗
opt

)
is reached

and then to take T̂ somewhat greater than the final instant
of the integration. Suboptimal feedback controls α = g (p̂)
and α = h (p̂, r̂) introduced in section 7 can also be used
for this purpose.



5. NECESSARY OPTIMALITY CONDITIONS

According to Pontryagin et al. (1964), first-order necessary
conditions for optimal open-loop controls are known as
Pontryagin’s maximum principle or, in short, PMP. For
our problem (2)–(6), PMP leads to the Hamiltonian

H (p̂, r̂, α, ψ0, ψ1, ψ2) = ψ1

(
(1− r̂)EM −

p̂r̂

K + p̂
−

− p̂
(

p̂r̂

K + p̂
+ (ΓM − ΓR)r̂ − ΓM

))
+ ψ2

(
α

p̂r̂

K + p̂
−

− ΓRr̂ − r̂

(
p̂r̂

K + p̂
+ (ΓM − ΓR)r̂ − ΓM

))
−

− ψ0

(
p̂r̂

K + p̂
+ (ΓM − ΓR)r̂ − ΓM

)
,

adjoint system

dψ1

(
t̂
)

dt̂
= −

∂H
(
p̂
(
t̂
)
, r̂
(
t̂
)
, α
(
t̂
)
, ψ0, ψ1

(
t̂
)
, ψ2

(
t̂
))

∂p̂
,

dψ2

(
t̂
)

dt̂
= −

∂H
(
p̂
(
t̂
)
, r̂
(
t̂
)
, α
(
t̂
)
, ψ0, ψ1

(
t̂
)
, ψ2

(
t̂
))

∂r̂
,

ψ0 ≡ 0 or ψ0 ≡ −1,(
ψ0, ψ1

(
t̂
)
, ψ2

(
t̂
))
6= (0, 0, 0) ∀t̂ ∈

[
0, T̂
]

(one can easily write a complete representation of the
right-hand side here), and Hamiltonian maximum condi-
tion

αextr

(
t̂
)

=


0, ψ2

(
t̂
)
< 0,

1, ψ2

(
t̂
)
> 0,

unknown, ψ2

(
t̂
)

= 0,

which holds necessarily for an optimal open-loop control.
An admissible process (α(·), p̂(·), r̂(·), ψ0, ψ1(·), ψ2(·)) sat-
isfying PMP is called extremal. It is called normal if ψ0 < 0
and abnormal if ψ0 = 0. Since system (2) is autonomous,
the Hamiltonian is conserved along any extremal process.

If ψ2(·) vanishes over some time subinterval, then the cor-
responding control and part (arc) of the related extremal
state trajectory are called singular. Zelikin and Borisov
(1994); Schattler and Ledzewicz (2015) indicate a key role
of singular regimes for optimal control problems arising
in many applied areas such as economics, engineering,
biology, and medical sciences. In conformity with Giordano
et al. (2016), let us exclude abnormal extremal processes
from consideration in view of the fact that they do not
allow singular regimes and, therefore, do not admit a clear
biological interpretation.

The following properties of normal extremal processes can
be obtained from PMP.

Theorem 5.1. Adopt Assumptions 3.1, 3.2, 4.1 and 4.2.
Consider a normal extremal process (α(·), p̂(·), r̂(·),−1,
ψ1(·), ψ2(·)). A switching of the control may appear only
when ψ2(·) reaches zero. For such a switching instant, if
the expression

dψ2

(
t̂
)

dt̂

∣∣∣∣∣
ψ2(t̂)=0

= ψ1

(
t̂
)(

EM +

(
1 + p̂

(
t̂
))
p̂
(
t̂
)

K + p̂
(
t̂
) +

+ (ΓM − ΓR)p̂
(
t̂
))
−

(
p̂
(
t̂
)

K + p̂
(
t̂
) + ΓM − ΓR

)
is negative, then the switching occurs in the direction from
α = 1 to α = 0, and the opposite switching direction
takes place when this expression is positive. Any singular

arc coincides with the optimal steady state
(
p̂∗opt, r̂

∗
opt

)
,

satisfies Kelley condition, and has the second order, i. e., it
can be entered or left only by chattering arcs with infinite
numbers of switchings. For a chattering arc, switchings
from α = 1 to α = 0 happen only in the region

{(p̂, r̂) ∈ (0,+∞)× (0, 1] : r̂ > r̂∗ (p̂)} , (8)

and switchings in the opposite direction happen only in the
region

{(p̂, r̂) ∈ (0,+∞)× (0, 1] : r̂ < r̂∗ (p̂)} (9)

(function r̂∗ = r̂∗ (p̂) is defined in Theorem 3.1).

6. CHATTERING SWITCHING CURVE

A local structure of entering chattering arcs near the
optimal steady state

(
p̂∗opt, r̂

∗
opt

)
can be described by some

switching curve Σ such that the corresponding feedback
control takes value 0 on one side of Σ and value 1 on the
other side. In turn, the optimal steady state divides Σ
into two subcurves Σ0 and Σ1, so that switchings in the
direction from α = 1 to α = 0 happen only on Σ0 and
switchings in the opposite direction happen only on Σ1.
By virtue of Theorem 5.1, Σ0 is contained in set (8), while
Σ1 is contained in set (9).

Let us briefly describe how Σ can be approximated.
According to Naumov (2003), if the directions speci-

fied by the vectors
(
dp̂/dt̂, dr̂/dt̂

) ∣∣∣(p̂,r̂)=(p̂∗opt,r̂∗opt), α=0

and
(
dp̂/dt̂, dr̂/dt̂

) ∣∣∣(p̂,r̂)=(p̂∗opt,r̂∗opt), α=1 coincide with each

other, then this is in fact the direction of the tangent line
to Σ at

(
p̂∗opt, r̂

∗
opt

)
. The latter is vertical, because α(·) does

not explicitly appear in the first equation of (2). Hence, in a
small closed neighborhood of

(
p̂∗opt, r̂

∗
opt

)
, Σ can be approx-

imated as a short vertical line segment L. Since we know
the value µ̂∗opt of the Hamiltonian at the optimal steady
state, then, from its conservation property and switching
condition ψ2 = 0, we can derive an explicit representation
ψ1 = ψ1,L (p̂, r̂) for (p̂, r̂) ∈ L \

{(
p̂∗opt, r̂

∗
opt

)}
. Integrating

dynamic and adjoint equations in reverse time with the
starting positions ψ1 = ψ1,L (p̂, r̂), ψ2 = 0, (p̂, r̂) ∈ L \{(
p̂∗opt, r̂

∗
opt

)}
allows us to find the switching points in

the state space (where ψ2 changes sign) and thereby to
characterize Σ0 and Σ1. The results of related numerical
simulations are presented in section 8.

7. SUBOPTIMAL FEEDBACK CONTROLS

For the model without degradation, Giordano et al. (2016)
proposed and tested three suboptimal feedback control
laws. They were based on biological arguments and de-
signed so that the system eventually approached the op-
timal steady state by using either “measurements” of
nutrients and precursors or the imbalance between pre-
cursors and gene expression machinery. These were the
nutrient-only strategy α = f(EM ), precursor-only strategy
α = g (p̂), and on-off strategy α = h (p̂, r̂). In particular,
the on-off law turned out to be in good agreement with
the control strategy of the signalling molecule ppGpp (in
the enterobacterium Escherichia coli) approximated via
experimental data and a specific kinetic model.

The nutrient-only, precursor-only, and on-off controls allow
extensions to the current model with nonzero degradation



rates, while preserving reasonable biological interpreta-
tions. The nutrient-only strategy is merely α = α∗opt =
const. The on-off strategy is represented in terms of the
precursor-only strategy as follows:

h (p̂, r̂) =


0, r̂ > g (p̂) ,

1, r̂ < g (p̂) ,

α∗opt, (p̂, r̂) =
(
p̂∗opt, r̂

∗
opt

)
.

Hence, it suffices to construct g (p̂).

For the case γM = γR = 0, Giordano et al. (2016) obtained

EM =
(
p̂∗opt

)2
/K from the representation p̂∗opt =

√
EMK

and then determined g = g (p̂) by substituting EM =
p̂2/K into the expression for α∗opt. In our case, (7) does not
give such a trivial representation of EM in terms of p̂∗opt.
However, one can verify that, for some sufficiently small
constant EM > 0, function p̂∗opt = p̂∗opt(EM ) has a positive
derivative and, therefore, strictly increases on the infinite
interval (EM ,+∞). Then the inverse EM = EM

(
p̂∗opt

)
can be constructed numerically on some finite interval.
Suppose that the latter is sufficiently large and contains
the optimal steady state for the considered environmental
input. Outside this finite interval, specify EM = EM

(
p̂∗opt

)
arbitrarily. By substituting the obtained function of vari-
able p̂ into the expression for α∗opt (see Theorem 3.1), we
get g = g (p̂).

Now consider system (2) with the substituted precursor-
only feedback control and given environmental input. By
construction,

(
p̂∗opt, r̂

∗
opt

)
is a steady state of this system,

and it is asymptotically stable under the next assumption.

Assumption 7.1. For the Jacobian matrix of system (2)
with the substituted feedback control α = g (p̂), the trace
and determinant at point

(
p̂∗opt, r̂

∗
opt

)
are negative and

positive, respectively.

By using the framework of Filippov (1988) related to
differential equations with discontinuous right-hand sides,
one can also prove that, under the adopted assumptions,
the optimal steady state is asymptotically stable for sys-
tem (2) with the substituted on-off control α = h (p̂, r̂).

8. NUMERICAL SIMULATIONS

For numerical simulations, take eM = 0.59 h−1 (poor
M63+glycerol medium), β = 0.003 L · g−1, kR = 3.6 h−1,
and KR = 1 g · L−1 according to Giordano et al. (2016).
Set the average half-life time of a macromolecule as 12 h
for metabolic machinery and 24 h for more stable gene
expression machinery. Then γM = ln(2)/12 h−1 and γR =
ln(2)/24 h−1. Such degradation rates conform with the
relevant orders of magnitude given by Mandelstam (1958).

Also choose T̂ = kRT = 20. Initial state (3) is taken as the
optimal steady state for the higher environmental input
e′M = 1.57 h−1 (cAA+glucose medium), i. e., the system
is considered after a nutrient downshift. One can check
that Assumptions 3.1, 3.2, 4.1, 4.2, and 7.1 hold for such
parameters.

Fig. 2 illustrates the chattering switching curves approx-
imated via the algorithm of section 6 for the mentioned
degradation rates and also in case γM = γR = 0. A no-
ticeable difference can be seen only near the corresponding
optimal steady states. Fig. 3 shows time evolution of the

Fig. 2. Chattering switching curve.

suboptimal and approximate optimal processes for the case
of nonzero degradation rates. The optimal open-loop con-
trol was computed by using the Bocop software of Bonnans
et al. (2012). As in the numerical results of Giordano et al.
(2016) related to the case γM = γR = 0, the growth rate
integral for the on-off control is very close to the optimal
value reached by chattering, which may explain that such
a strategy has appeared through biological evolution.

The optimal open-loop control has also been computed for
the greater time horizon T̂ = 40. On the time interval
before the previous horizon T̂ = 20, the evolution is
almost identical, and then the control continues to keep
the system at the optimal steady state till the end (the
corresponding figure is omitted for the sake of brevity).
Thus, validity of our problem statement is confirmed by
this result as well as by the existence result of section 4
and independence of the algorithm of section 6 from a
particular time horizon.

9. CONCLUSION

In this paper, the bacterial growth model of Giordano et al.
(2016) was generalized by taking degradation of macro-
molecules into account. The related dynamic optimization
problem was stated in a different way so that existence
of optimal open-loop controls could be proved. A novel
numerical algorithm for approximating switching curves of
the chattering control in the state space was proposed and
tested. Moreover, the suboptimal feedback control laws of
Giordano et al. (2016) were extended to the new model.

One possible extension of our model is to include addi-
tional terms representing the fact that some of degraded
proteins are recycled into precursors and thereby stay in
cells. From the practical point of view, it is also relevant
to consider bacterial populations growing in bioreactors,
and the model can be extended by introducing one more



Fig. 3. Time evolution of the suboptimal and approximate
optimal processes for γM = ln(2)/12 h−1 and γR =
ln(2)/24 h−1. In the top subfigure, the on-off control
is not illustrated because of a huge amount of its
switchings when the state approaches

(
p̂∗opt, r̂

∗
opt

)
.

reaction, which transforms cellular resources into a certain
product of biotechnological interest. Then it is reasonable
to use the fact that, by regulating an external inducer
(chemical or light), it becomes possible to affect internal
cellular processes and, consequently, biotechnological pro-
duction. The dynamic optimization problem can be stated
as seeking for an optimal inducing strategy that maximizes
the production. These are subjects for future investigation.

Finally, let us discuss one more possible further develop-
ment. Our numerical results indicated that the qualitative
structures of optimal and suboptimal control strategies
were similar to those for the case of zero degradation rates,
even though there was some quantitative difference for a
poor environmental input. The model parameters for the
simulations in fact corresponded to a normal-temperature
case. Nevertheless, the results of Farewell and Neidhardt
(1998) showed a significant increase in protein degradation
at high temperatures. Thus, for a future work, it is worth
investigating to derive suitable parameter values and to

conduct numerical experiments for our model in a high-
temperature case so as to test robustness of the resource.
This can also have a great interest for bioengineering.
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