Ensemble of k-Labelset Classifiers for Multi-label Image Classification

Abstract : In the real world, images always have several visual objects instead of only one, which makes it difficult for traditional object recognition methods to deal with them. In this paper, we propose an ensemble method for multi-label image classification. First, we construct an ensemble of k-labelset classifiers. A voting technique is then employed to make predictions for images based on the created ensemble of k-labelset classifiers. We evaluate our method on Corel dataset and demonstrate the precision, recall and F1 measure superior to the state-of-the-art methods.
Type de document :
Communication dans un congrès
Zhongzhi Shi; David Leake; Sunil Vadera. 7th International Conference on Intelligent Information Processing (IIP), Oct 2012, Guilin, China. Springer, IFIP Advances in Information and Communication Technology, AICT-385, pp.364-371, 2012, Intelligent Information Processing VI. 〈10.1007/978-3-642-32891-6_45〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01524951
Contributeur : Hal Ifip <>
Soumis le : vendredi 19 mai 2017 - 10:43:13
Dernière modification le : vendredi 3 novembre 2017 - 22:24:07

Fichier

978-3-642-32891-6_45_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Dapeng Zhang, Xi Liu. Ensemble of k-Labelset Classifiers for Multi-label Image Classification. Zhongzhi Shi; David Leake; Sunil Vadera. 7th International Conference on Intelligent Information Processing (IIP), Oct 2012, Guilin, China. Springer, IFIP Advances in Information and Communication Technology, AICT-385, pp.364-371, 2012, Intelligent Information Processing VI. 〈10.1007/978-3-642-32891-6_45〉. 〈hal-01524951〉

Partager

Métriques

Consultations de la notice

79

Téléchargements de fichiers

42