A Novel Model for Semantic Learning and Retrieval of Images

Abstract : In this paper, we firstly propose an extended probabilistic latent semantic analysis (PLSA) to model continuous quantity. In addition, corresponding EM algorithm is derived to determine the parameters. Then, we apply this model in automatic image annotation. In order to deal with the data of different modalities according to their characteristics, we present a semantic annotation model which employs continuous PLSA and traditional PLSA to model visual features and textual words respectively. These two models are linked with the same distribution over all aspects. Furthermore, an asymmetric learning approach is adopted to estimate the model parameters. This model can predict semantic annotation well for an unseen image because it associates visual and textual modalities more precisely and effectively. We evaluate our approach on the Corel5k and Corel30k dataset. The experiment results show that our approach outperforms several state-of-the-art approaches.
Type de document :
Communication dans un congrès
Zhongzhi Shi; David Leake; Sunil Vadera. 7th International Conference on Intelligent Information Processing (IIP), Oct 2012, Guilin, China. Springer, IFIP Advances in Information and Communication Technology, AICT-385, pp.337-346, 2012, Intelligent Information Processing VI. 〈10.1007/978-3-642-32891-6_42〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01524960
Contributeur : Hal Ifip <>
Soumis le : vendredi 19 mai 2017 - 10:43:19
Dernière modification le : vendredi 19 mai 2017 - 10:45:56

Fichier

978-3-642-32891-6_42_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Zhixin Li, Zhiping Shi, Zhengjun Tang, Weizhong Zhao. A Novel Model for Semantic Learning and Retrieval of Images. Zhongzhi Shi; David Leake; Sunil Vadera. 7th International Conference on Intelligent Information Processing (IIP), Oct 2012, Guilin, China. Springer, IFIP Advances in Information and Communication Technology, AICT-385, pp.337-346, 2012, Intelligent Information Processing VI. 〈10.1007/978-3-642-32891-6_42〉. 〈hal-01524960〉

Partager

Métriques

Consultations de la notice

16

Téléchargements de fichiers

10