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Abstract. As there are huge gaps between the local micro interactions among 
agents and the global macro emergence of self-organizing system, it is a great 
challenge to design self-organizing mechanism and develop self-organizing 
multi-agent system to obtain expected emergence. Policy-based self-
organization approach is helpful to deal with the issue, in which policy is the 
abstraction of self-organizing mechanism and acts as the bridge between the lo-
cal micro interactions and global macro emergence. This paper focuses on how 
to develop software agents in policy-based self-organizing multi-agent system 
and proposes a BDIP architecture of software agent. In our approach, policy is 
an internal component that encapsulates the self-organizing information and in-
tegrates with BDI components. BDIP agent decides its behaviors by complying 
with the policies and respecting BDI specifications. An implementation model 
and the running mechanism as well as corresponding decision algorithms for 
BDIP agents are studied. A case of self-organizing system is studied to illustrate 
our proposed approach and show its effectiveness. 
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1 Introduction 

Self-organization refers to a process where a system changes its internal structure 
without explicit external and central control. It often results in emergent behavior in 
the global system [1].With the pervasiveness of distributed information systems, self-
organizing systems become more and more attractive to researchers from different 
application areas [2]. Agent technology is considered as an appropriate and powerful 
paradigm to develop large-scale complex systems applications. As a kind of such 
complex systems, self-organizing systems are usually engineered with agent meta-
phor, which views the whole system as MAS (Multi-Agent Systems) and using soft-
ware agents as basic components to construct the systems [4].  
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However, developing self-organizing MAS in an iterative and effective way is still 
a great challenge in the literature of software engineering [5]. The obstacle is how to 
obtain desirable global system characteristic through the local interactions among 
agents. In self-organizing MAS, there is an absence of centralized control node in the 
system and the agents only interact with their local environment. This leaves a sig-
nificant gap between the local interaction and global system characteristic, and brings 
obstacles which are put in evidence during the development of the systems. To obtain 
the desirable global characteristic, the developer therefore must adjust the behaviors 
of agents iteratively. However, self-organizing MAS often consist of large numbers of 
agents and are deployed in complex environment. Designing and deploying such sys-
tems in an iterative way is difficult. How to effectively support the development of 
such systems is still an open issue [5].  

Against the background, we have proposed a policy-based self-organization ap-
proach in our previous work [6] which affects the emergences of multi-agent systems 
by restricting or guiding agents’ behaviors in terms of policy. In order to support the 
development of the PSOMAS (Policy-based Self-Organizing Multi-Agent Systems), 
this paper proposes a BDIP software architecture in which policies are viewed as 
component of the agent. Based on the architecture, an implementation model and 
running mechanisms as well as agent behavior decision algorithms are also provided. 
The rest of this paper is organized as follows: Section 2 gives a brief introduction of 
policy-based self-organizing MAS. Section 3 proposes the agent architecture, policy 
representation, and running mechanism of the software agents. Section 4 discusses the 
policy-based agent decision algorithms and a case study is illustrated in section 5. 
Section 6 discusses the related works as well as conclusions and future works are 
discussed in section 7. 

2 Policy based Approach to Self-Organizing Multi-agent 
Systems 

To intuitively understand the challenges in self-organizing MAS, we firstly introduce 
an example of a group of self-organizing robots whose aims are to explore and carry 
ore in a strange environment. Each robot provides functions to randomly walk in the 
environment to find ore resource, and carry ore back to the base. Furthermore, each 
robot can broadcast its position to other robots. The system searches and takes ore by 
using the self-organization of these robots. When the users search for ore depending 
on these robots in strange environments, they perhaps need to cope with different 
circumstances, such as various landforms and ore distributing and etc. However, it is 
impossible that the fixed behaviors of robots can satisfy all scenarios. On the other 
hand, it is not always feasible that the users redesign and redeploy the robots after 
they have acquired the new requirements, for example the robots are exploring on the 
mars. Then we need a new approach to effectively change the behaviors of agent dur-
ing runtime to meet the variety environment and requirements.  

In human society, policies are often used to restrict and guide the behaviors of 
people. With these policies, human society often presents a self-organizing process 



and results in different emergent phenomena. For example, the economic policies 
often result in the changes of macro economic index, which is owing to the people’s 
economic behaviors like stock transaction are affected by such policies. In the litera-
ture of self-organizing MAS, in order to facilitate the solving of the issues discussed 
above, the policies in human society can be used for self-organizing MAS. By this 
approach, policies give a presentation of the behaviors of agents and the agents must 
to comply with them at runtime. On one hand, developers need to design the policies 
as well as the agents in the design phase of such systems. On the other hand, the be-
haviors of agents are affected by these policies at runtime, and developers can evalu-
ate the system’s macro characteristics whether satisfies the requirements or not. If it 
does not satisfy the requirements, developers can change the policies, which can 
cause changes of the agents’ behaviors and result in the changes of the self-organizing 
process of the whole system.  

3 BDIP Architecture and Running Mechanism 

3.1 BDIP Architecture of Software Agent 

The BDI architecture of software agents had been accepted for a long time both in 
academe and industry. The architecture has three components: Belief, Desire, and 
Intention. Belief means the cognitions of an agent about its environment and internal 
state. Desire means the goals that an agent wants to pursue, and Intention means the 
commitment plans of the agent which is useful for the accomplishment of the goals in 
Desire [7]. We consider that the BDI architecture is useful for analyzing the autono-
mous behaviors of rational agents and easier to accept the policy as a new decision 
component than other architectures (e.g. reactive architecture). This paper proposes a 
BDIP (Belief, Desire, Intention and Policy) agent architecture by extending the BDI 
architecture (see Fig.1). 

 
Fig. 1. BDIP architecture of Agent 

In PSOMAS, the environment of a BDIP agent consists of policies and other 
agents [6], and the BDIP agent can perceive the policies from its local environment. 
The perceived policies are deposited in the Policy component, and are triggered by 



the policy conditions (introduced in section 3.2) which are specified in the Belief 
component. Policies can affect both Desire component and Intention component. For 
the Desire component, a new goal will be created by the policy or some of goals are 
prohibited. For the Intention component, the execution of committed plan will be 
guided by the policy, for example some actions are forbidden to be executed and 
some actions are preferential (corresponding algorithms will be introduced in section 
4). The relationship among Belief, Desire and Intention is same as [7].  

3.2 Representation and Realization of Policy  

Policies can be viewed as a set of rules which restrict the behaviors or states of the 
agents in the system. This paper distinguishes two kinds of policies: Obligation and 
Prohibition. The Obligation represents the action that an agent need to perform or the 
state the agent need to keep as well as the Prohibition represents the action that an 
agent must not to perform or the state not to appear. On the other hand, a policy con-
sists of the conditions to be satisfied and the action (state) to be performed (kept) by 
agents. Formally, it can be described by EBNF as follows: 

Policy:= Obligation (IF Self-condition WHEN Env-event DO (Action∣State))  
    ∣ Prohibition(IF Self-condition WHEN Env-event DO (Action∣State)) 

Self-condition specifies the internal state of an agent to be satisfied and Env-event 
represents the happened event of the environment of the agent. “Obligation(IF Self-
condition WHEN Env-event DO (Action∣State)” means that when the Self-condition 
of the agent is satisfied and Env-event is happening in the environment, the agent need 
to perform the Action or keep the State, Prohibition means the opposite semantics. 
The Self-condition and Env-event can be viewed as policy-condition. 

A policy at the run-time can be in four states: Deployed, Deactived, Executed, or 
Deleted. The initial state of a newly deployed policy is Deployed, what means that the 
policy exists in the system but is not yet perceived by any agents. More interesting is 
the policy inside an agent can has three states. Deactive means either the policy condi-
tions are not satisfied or the behaviors of the agent are complying with the policy i.e. 
the agent does not need to adjust its Desire or Intention component. When the policy 
conditions are satisfied, the policy is transited to Executed.  During this state, agent 
will adjust the Desire and (or) Intention component according to the policy. If there 
are some goals or plans prohibited by the policies, the goals and plans will be sup-
pressed and saved. If a user deletes a policy from the system, the agents will be in-
formed by the system. Before the policy is deleted from Policy component, the policy 
needs to be transited to the Deleted state in which the agent will check the Desire and 
Intention components whether there are goals or plans are suppressed by this policy 
and resume them respectively if existing.  

3.3 Implementation Model and Running Mechanism of BDIP Software Agent  

Fig. 2 depicts the running mechanism of BDIP agents. B, D, I and P represent Belief 
set, Goal set, Plan set and the Policy set of the agent respectively. Agenda can be seen 
as a queue of actions. All executions of plans and other actions must on the agenda. 



DE (Deliberation and Execution) is responsible for executing actions on the agenda 
and adjusting B, D, I, and P. In the DE component, AE (Action Execution) always 
executes the first action of the agenda. After the execution of an action, there may be 
a new action need to be added on the agenda. For example, an agent needs to execute 
action CreateGoal to create a sub-goal in the execution of a plan, and AE can directly 
add these new actions on agenda (direct effects). On the other hand, the execution of 
actions maybe change the state of belief set, DE will inform the CE (Condition 
Evaluation) about these belief changes. CE then checks whether to trigger a goal, a 
plan, or a policy as well as add corresponding actions on the agenda (side effects). 
Moreover, the event in the environment of an agent may also add actions to the 
agenda, e.g. messages that have been received from other agents and messages need 
to be processed (External effects). 

 
Fig. 2. Implementation Model and Running Mechanism of BDIP Agent 

PD (Policy Deliberation) is the component which is used to adjust the D and I 
component. When the policy conditions of a policy are satisfied, CE will add the Tig-
gerPolicy on the agenda, the policy will be transited from Deactived” to Executed 
state. Moreover AE will add ExecutePolicy on the agenda after TiggerPolicy exe-
cuted, and the D and I components will be adjusted by PD after ExecutePolicy exe-
cuted. In the adjusting process, perhaps the actions on the agenda also be regulated by 
PD (agenda regulation), for example add new actions, delete action, and adjust the 
sequence of the actions. On the other hand, when a user changes the policies in the 
system, CE will acquire this message and add PerceivePolicy or DropPolicy on the 
agenda. 

4 Behavior Decision Algorithms of BDIP Agent  

In the agent behaviors adjusting process, PD use different algorithms to cope with the 
different policy type. Table 1 shows the different algorithms for different policy type, 
the italic are the names of algorithms and “Null” means the regulation of this compo-
nent is needless. The details of these algorithms are listed in Table 2. Moreover we 
consider the goal in D component as discussed in [8] is consists of different states at 
runtime: “Active” state means the goal is currently pursued by agent. “Suspended” 
state and “Options” state represent the goal is inactive. Therefore regulation of D 
component is the transition between goal states.  

In the algorithm Obligation_State_for_Goal, the goal(state) means to make the ob-
ligation state as a goal. PD searches this goal in D component, and upgrades the prior-



ity of this goal as soon as the goal is found. If the goal dose not exist in D component, 
PD will create this goal in D. Achieve goal(state) means to pursuer this goal right 
now. In the Algorithm Obligation_Actiion_for_Plan PD creates a plan which obtains 
the execution of the obligated action and adds corresponding actions on the agenda. 
The plan will be deleted as soon as its execution finished. When a certain state of an 
agent is prohibited by a Prohibition policy, PD will search this state both in D and in 
I component. In the algorithm Prohibition_State_for_Goal, the state will be treated as 
a goal. PD will suppress this goal and add DeliberateNewOption which is used for 
selecting of another goal to pursue if the goal is “Active” state (line 1-4).  

Table 1. Behavior decision Algorithm for Different Policies Type 

Policy 
Type 

Object Algorithm for Intention Algorithm for Desire 

State Null Obligation_State_for_Goal 
Obligation 

Action Obligation_Action_for_Plan Null 
State Prohibition_State_for_Plan Prohibition_State_for_Goal 

Prohibition 
Action Prohibition_Action_for_Plan Null 

When the prohibited goal is being “Suspended” or “Option” state, PD will suppress 
it and executes UpdateGoal by updating the D component. Algorithm Prohibi-
tion_State_for_Planl is designed to search the prohibited state in I component. When 
the prohibited action belonging to the executing plan, PD will suppress this plan and 
add ScheduleCondidates on the agenda to select another plan. If the state can be 
achieved by the “Suspended” or “Options” plans, PD will suppress the plan and up-
date I component. If the user prohibits a certain action to be executed in terms of 
Prohibition policy, PD will search this action on agenda and in I component. When 
the action is on the agenda, PD will suppress it and call another plan on the agenda 
(line 1-4). If the action is not executing currently but is contained in some plans in I 
component, PD will suppresses these plans and update the I component (line 5-7).  

Table 2. Behavior Decision Algorithms 

Name: Obligation_State_for_Goal  
Input: Obligated action; goal of Desire  
Output: goal 
01  if (goal(state) is active) { 
02  Rise goal(state) Priority in Agenda; 
03  } else 
04  if(goal(state) is Option){ 
05  Add action SuppressContents in Agenda;
06  Acheve goal(state); 
07  } else 

08  if(goal(state) is Suspended) { 
09  waitfor (satisfyCondition); 
10  Achieve goal(state); 
11  }else { 
12  Add action CreatGoal in Agenda; 
13  Achieve goal(state); 
14  Add action DropGoal in Agenda;} 

Name: Prohibition_State_for_Goal Name: Prohibition_State_for_Plan 
Input: Prohibited state; goal of Desire  
Output: goal 
01  if (goal(state)is one of achieving goals) {

Input: Obligated state; plan of Intention  
Output: plan 
01  if (goal(state) is executing Plan) { 



02  Add action SuppressContents in Agenda;
03  Add action DeliberationNewOption in 

Agenda; 
04  }else 
05  if(goal(state) is Suspended or Option) 
06  Add action SuppressContents in Agenda;
07  Add action UpdateGoal in Agenda; 

02  Add action SuppressContents in Agenda; 
03  Add action ScheduleCandidates in 

Agenda; 
04  }else 
05  if( state is the state of the plan in Inten-

tion component) 
06  Add action SuppressContents in Agenda; 
07  Add action UpdateGoal in Agenda; 

Name: Prohibition_Action_for_Plan Name: Obligation_Action_for_Plan 
Input: Prohibited action; plan of Intention  
Output: plan 
01  if (Action is executing Plan) { 
02  Add action SuppressContents in Agenda;
03  Add action ScheduleCandidates in 

Agenda; 
04  }else 
05  if(Action in Plan component) 
06  Add action SuppressContents in Agenda;
07  Add action UpdateGoal in Agenda; 

Input: Obligated action; plan of Intention 
Output: plan 
01  Add action CreatPlan into Agenda; 
02  Add action ExecutePlanStep in Agenda; 
03  Add action TerminatePlan in Agenda; 

5 Case Study 

In this section, we will analyze the case that we introduced in section 2. In this case, 
the actions of robots should be designed in the design phases. These actions include: 
random searching, taking ore, sending message, responding message etc. On the other 
hand, we assume that there are two scenarios need to be considered. The first scenario 
is that there is only one ore source in the environment. To find resource and carry ore 
more quickly, it is appropriate to make each robot performs behaviors as follows: 1) 
randomly works in the environment to find ore resource; 2) carries ore back to base if 
finds the ore resource; 3) broadcasts position of ore resource if finds it; 4) goes to the 
position and carries ore to base if having received position information from other 
robot. To realize these behaviors, the user can deploy the policies as follows: 

 
Obligation( IF Searching WHEN Others_Send_Message DO TakeOreFromReceived-

Position) 
Obligation( IF Find_Ore_at_Some_Position WHEN $ DO Broadcast(Position)) 

In the second scenario, robots will be deployed in an environment which has more 
than one ore resource. Moreover, the user needs all robots to carry the found ore from 
near to far. According to this requirement, robots should firstly collect some ore re-
source positions whatever the position is found by itself or received from others. Then 
select the nearest one from the base to carry ore. To realize this requirement, user 
should add some new policies: 

 
 Obligation (IF Searching WHEN Others_Send_Message DO storage_message) 



Obligation (IF Message_number=MAX WHEN $ DO TakeOre_Nearest) 
Prohibition (IF Message_number <MAX]WHEN $ DO RespondMessage) 

We have implemented the BDIP robots in a simulation way by using the Jadex 
platform [10]. The basic actions of agents are implemented as Plan of the agent. 
Some important information such as ore resource positions are implemented as Belief, 
the interaction among agents this case is implemented as the message events of the 
agent. The Intention of the robots are to find the ore resource and carry ore back to 
base. On the other hand, the policy conditions are implanted as either a part of belief 
(e.g. ore resource) or implemented as the message events. When the system is run-
ning, if the policy conditions are satisfied, the agent will perform its behaviors comply 
with these policies, the trigger condition of the plans are implemented same as the 
policy conditions. 

   
(a) Scenario 1                        (b) Scenario 2 

Fig. 3. Running snapshot of the Case 

Fig. 3 shows the running snap shot of the case. The gray transparent pane is the 
base. The number below the base is the amount of ore in the base which has been 
carried by robots. The yellow transparent cycle of a robot presents the scope that the 
robot can explore for ore. The red points in environment mean the ore resources 
which have not been found by robots. The gray points mean the ore resource which 
has been found by robots and the number below the gray points mean the remained 
reserves of the ore resource. Fig. 3(a) shows the first scenario in which only one ore 
resource in the environment. From the figure we can see all robots are carrying ore 
from this resource when one of them has found it. Fig. 3 (b) shows the second sce-
nario which has many ore resources in the environment. In Fig. 3(b), the robots have 
collected enough positions of the ore resources and carry the ore from the resource 
which is the nearest to the base among the collected positions. 

6 Related Works 

Recently, many research efforts have been made on the agent modeling based on 
norms and policies. However majority of them are engaged in the design of norm-
based MAS organization, which propose norms to have an effective influence on 
agent and agent role, for example organization regimentation [11] and enforcement 
mechanisms [13][14]. In the agent architecture aspect, the main contributions of norm 



acceptance of agents are focus on the theory of BDI agent, e.g. [3][9]. These works 
focus on the theory frameworks e.g. logical expressions to explain how to represent 
the norms or policies in the agent and how to influence the reasoning process of the 
agent. The implement of architecture and running mechanisms of BDI or norm-based 
BDI agent are relatively few. [12] proposes a multi-level agent architecture, in which 
norms can communicated, adopted and used as meta-goals. [8] proposes a BDI Inter-
preter architecture for the running mechanisms of BDI agent, which our work can be 
seen as an extension of it.  

7 Conclusion and Future works 

In the development of self-organizing MAS, the great challenge is how to bridge the 
huge gap between the agent local interaction behaviors and the system macro emer-
gence characteristics. Against this open issue, this paper proposes a BDIP architecture 
of software agent. In the BDIP architecture, agent can perceive the policies of the 
system and adjusts its behaviors according to policies. A flexible running mechanism 
is also proposed based on the architecture, which executing meta-operations from a 
dynamic agenda structure. The architecture and its running mechanism are flexible 
enough to support the adjustments of system policies so that the users could control 
the self-organizing process and result by changed policies in the system. Moreover, 
the details of policy-based decision algorithms of agents are designed, and a case 
study of policy-based self-organizing robot system is implemented in a simulation 
way with the Jadex platform. Through the case study we can see that the changes of 
policies of the system can alter the self-organizing emergence result, and users can 
satisfy different system requirements by adjusting the policies.  

In future works we still focus on the development of the policy-based self-
organizing multi-agent systems. A PSOMAS developing environment named 
PSOMASDE is in our current works. The developing environment include agent de-
sign platform and running environment, as well as the policies can be represented by 
the XML files that can be loaded by the system. Besides the implementation of such 
systems, the development methodology is also in consideration, which is based our 
previous work named ODAM [15]. 
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