
HAL Id: hal-01524963
https://inria.hal.science/hal-01524963

Submitted on 19 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The BDIP Software Architecture and Running
Mechanism for Self-Organizing MAS

Yi Guo, Xinjun Mao, Fu Hou, Cuiyun Hu, Jianming Zhao

To cite this version:
Yi Guo, Xinjun Mao, Fu Hou, Cuiyun Hu, Jianming Zhao. The BDIP Software Architecture and
Running Mechanism for Self-Organizing MAS. 7th International Conference on Intelligent Information
Processing (IIP), Oct 2012, Guilin, China. pp.77-86, �10.1007/978-3-642-32891-6_12�. �hal-01524963�

https://inria.hal.science/hal-01524963
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The BDIP Software Architecture and Running
Mechanism for Self-Organizing MAS

Yi Guo1 , Xinjun Mao1, Fu Hou1, Cuiyun Hu1, Jianming Zhao2,

1 Department of Computer Science and Technology,
School of Computer, Nation University of Defence Tehnology

2Department of Computer Science and Technology, Zhejiang Normal University
Berniegy@gmail.com

Abstract. As there are huge gaps between the local micro interactions among
agents and the global macro emergence of self-organizing system, it is a great
challenge to design self-organizing mechanism and develop self-organizing
multi-agent system to obtain expected emergence. Policy-based self-
organization approach is helpful to deal with the issue, in which policy is the
abstraction of self-organizing mechanism and acts as the bridge between the lo-
cal micro interactions and global macro emergence. This paper focuses on how
to develop software agents in policy-based self-organizing multi-agent system
and proposes a BDIP architecture of software agent. In our approach, policy is
an internal component that encapsulates the self-organizing information and in-
tegrates with BDI components. BDIP agent decides its behaviors by complying
with the policies and respecting BDI specifications. An implementation model
and the running mechanism as well as corresponding decision algorithms for
BDIP agents are studied. A case of self-organizing system is studied to illustrate
our proposed approach and show its effectiveness.

Keywords. multi-agent system, self-organization, agent architecture

1 Introduction

Self-organization refers to a process where a system changes its internal structure
without explicit external and central control. It often results in emergent behavior in
the global system [1].With the pervasiveness of distributed information systems, self-
organizing systems become more and more attractive to researchers from different
application areas [2]. Agent technology is considered as an appropriate and powerful
paradigm to develop large-scale complex systems applications. As a kind of such
complex systems, self-organizing systems are usually engineered with agent meta-
phor, which views the whole system as MAS (Multi-Agent Systems) and using soft-
ware agents as basic components to construct the systems [4].

mailto:Berniegy@gmail.com

However, developing self-organizing MAS in an iterative and effective way is still
a great challenge in the literature of software engineering [5]. The obstacle is how to
obtain desirable global system characteristic through the local interactions among
agents. In self-organizing MAS, there is an absence of centralized control node in the
system and the agents only interact with their local environment. This leaves a sig-
nificant gap between the local interaction and global system characteristic, and brings
obstacles which are put in evidence during the development of the systems. To obtain
the desirable global characteristic, the developer therefore must adjust the behaviors
of agents iteratively. However, self-organizing MAS often consist of large numbers of
agents and are deployed in complex environment. Designing and deploying such sys-
tems in an iterative way is difficult. How to effectively support the development of
such systems is still an open issue [5].

Against the background, we have proposed a policy-based self-organization ap-
proach in our previous work [6] which affects the emergences of multi-agent systems
by restricting or guiding agents’ behaviors in terms of policy. In order to support the
development of the PSOMAS (Policy-based Self-Organizing Multi-Agent Systems),
this paper proposes a BDIP software architecture in which policies are viewed as
component of the agent. Based on the architecture, an implementation model and
running mechanisms as well as agent behavior decision algorithms are also provided.
The rest of this paper is organized as follows: Section 2 gives a brief introduction of
policy-based self-organizing MAS. Section 3 proposes the agent architecture, policy
representation, and running mechanism of the software agents. Section 4 discusses the
policy-based agent decision algorithms and a case study is illustrated in section 5.
Section 6 discusses the related works as well as conclusions and future works are
discussed in section 7.

2 Policy based Approach to Self-Organizing Multi-agent
Systems

To intuitively understand the challenges in self-organizing MAS, we firstly introduce
an example of a group of self-organizing robots whose aims are to explore and carry
ore in a strange environment. Each robot provides functions to randomly walk in the
environment to find ore resource, and carry ore back to the base. Furthermore, each
robot can broadcast its position to other robots. The system searches and takes ore by
using the self-organization of these robots. When the users search for ore depending
on these robots in strange environments, they perhaps need to cope with different
circumstances, such as various landforms and ore distributing and etc. However, it is
impossible that the fixed behaviors of robots can satisfy all scenarios. On the other
hand, it is not always feasible that the users redesign and redeploy the robots after
they have acquired the new requirements, for example the robots are exploring on the
mars. Then we need a new approach to effectively change the behaviors of agent dur-
ing runtime to meet the variety environment and requirements.

In human society, policies are often used to restrict and guide the behaviors of
people. With these policies, human society often presents a self-organizing process

and results in different emergent phenomena. For example, the economic policies
often result in the changes of macro economic index, which is owing to the people’s
economic behaviors like stock transaction are affected by such policies. In the litera-
ture of self-organizing MAS, in order to facilitate the solving of the issues discussed
above, the policies in human society can be used for self-organizing MAS. By this
approach, policies give a presentation of the behaviors of agents and the agents must
to comply with them at runtime. On one hand, developers need to design the policies
as well as the agents in the design phase of such systems. On the other hand, the be-
haviors of agents are affected by these policies at runtime, and developers can evalu-
ate the system’s macro characteristics whether satisfies the requirements or not. If it
does not satisfy the requirements, developers can change the policies, which can
cause changes of the agents’ behaviors and result in the changes of the self-organizing
process of the whole system.

3 BDIP Architecture and Running Mechanism

3.1 BDIP Architecture of Software Agent

The BDI architecture of software agents had been accepted for a long time both in
academe and industry. The architecture has three components: Belief, Desire, and
Intention. Belief means the cognitions of an agent about its environment and internal
state. Desire means the goals that an agent wants to pursue, and Intention means the
commitment plans of the agent which is useful for the accomplishment of the goals in
Desire [7]. We consider that the BDI architecture is useful for analyzing the autono-
mous behaviors of rational agents and easier to accept the policy as a new decision
component than other architectures (e.g. reactive architecture). This paper proposes a
BDIP (Belief, Desire, Intention and Policy) agent architecture by extending the BDI
architecture (see Fig.1).

Fig. 1. BDIP architecture of Agent

In PSOMAS, the environment of a BDIP agent consists of policies and other
agents [6], and the BDIP agent can perceive the policies from its local environment.
The perceived policies are deposited in the Policy component, and are triggered by

the policy conditions (introduced in section 3.2) which are specified in the Belief
component. Policies can affect both Desire component and Intention component. For
the Desire component, a new goal will be created by the policy or some of goals are
prohibited. For the Intention component, the execution of committed plan will be
guided by the policy, for example some actions are forbidden to be executed and
some actions are preferential (corresponding algorithms will be introduced in section
4). The relationship among Belief, Desire and Intention is same as [7].

3.2 Representation and Realization of Policy

Policies can be viewed as a set of rules which restrict the behaviors or states of the
agents in the system. This paper distinguishes two kinds of policies: Obligation and
Prohibition. The Obligation represents the action that an agent need to perform or the
state the agent need to keep as well as the Prohibition represents the action that an
agent must not to perform or the state not to appear. On the other hand, a policy con-
sists of the conditions to be satisfied and the action (state) to be performed (kept) by
agents. Formally, it can be described by EBNF as follows:

Policy:= Obligation (IF Self-condition WHEN Env-event DO (Action∣State))
 ∣ Prohibition(IF Self-condition WHEN Env-event DO (Action∣State))

Self-condition specifies the internal state of an agent to be satisfied and Env-event
represents the happened event of the environment of the agent. “Obligation(IF Self-
condition WHEN Env-event DO (Action∣State)” means that when the Self-condition
of the agent is satisfied and Env-event is happening in the environment, the agent need
to perform the Action or keep the State, Prohibition means the opposite semantics.
The Self-condition and Env-event can be viewed as policy-condition.

A policy at the run-time can be in four states: Deployed, Deactived, Executed, or
Deleted. The initial state of a newly deployed policy is Deployed, what means that the
policy exists in the system but is not yet perceived by any agents. More interesting is
the policy inside an agent can has three states. Deactive means either the policy condi-
tions are not satisfied or the behaviors of the agent are complying with the policy i.e.
the agent does not need to adjust its Desire or Intention component. When the policy
conditions are satisfied, the policy is transited to Executed. During this state, agent
will adjust the Desire and (or) Intention component according to the policy. If there
are some goals or plans prohibited by the policies, the goals and plans will be sup-
pressed and saved. If a user deletes a policy from the system, the agents will be in-
formed by the system. Before the policy is deleted from Policy component, the policy
needs to be transited to the Deleted state in which the agent will check the Desire and
Intention components whether there are goals or plans are suppressed by this policy
and resume them respectively if existing.

3.3 Implementation Model and Running Mechanism of BDIP Software Agent

Fig. 2 depicts the running mechanism of BDIP agents. B, D, I and P represent Belief
set, Goal set, Plan set and the Policy set of the agent respectively. Agenda can be seen
as a queue of actions. All executions of plans and other actions must on the agenda.

DE (Deliberation and Execution) is responsible for executing actions on the agenda
and adjusting B, D, I, and P. In the DE component, AE (Action Execution) always
executes the first action of the agenda. After the execution of an action, there may be
a new action need to be added on the agenda. For example, an agent needs to execute
action CreateGoal to create a sub-goal in the execution of a plan, and AE can directly
add these new actions on agenda (direct effects). On the other hand, the execution of
actions maybe change the state of belief set, DE will inform the CE (Condition
Evaluation) about these belief changes. CE then checks whether to trigger a goal, a
plan, or a policy as well as add corresponding actions on the agenda (side effects).
Moreover, the event in the environment of an agent may also add actions to the
agenda, e.g. messages that have been received from other agents and messages need
to be processed (External effects).

Fig. 2. Implementation Model and Running Mechanism of BDIP Agent

PD (Policy Deliberation) is the component which is used to adjust the D and I
component. When the policy conditions of a policy are satisfied, CE will add the Tig-
gerPolicy on the agenda, the policy will be transited from Deactived” to Executed
state. Moreover AE will add ExecutePolicy on the agenda after TiggerPolicy exe-
cuted, and the D and I components will be adjusted by PD after ExecutePolicy exe-
cuted. In the adjusting process, perhaps the actions on the agenda also be regulated by
PD (agenda regulation), for example add new actions, delete action, and adjust the
sequence of the actions. On the other hand, when a user changes the policies in the
system, CE will acquire this message and add PerceivePolicy or DropPolicy on the
agenda.

4 Behavior Decision Algorithms of BDIP Agent

In the agent behaviors adjusting process, PD use different algorithms to cope with the
different policy type. Table 1 shows the different algorithms for different policy type,
the italic are the names of algorithms and “Null” means the regulation of this compo-
nent is needless. The details of these algorithms are listed in Table 2. Moreover we
consider the goal in D component as discussed in [8] is consists of different states at
runtime: “Active” state means the goal is currently pursued by agent. “Suspended”
state and “Options” state represent the goal is inactive. Therefore regulation of D
component is the transition between goal states.

In the algorithm Obligation_State_for_Goal, the goal(state) means to make the ob-
ligation state as a goal. PD searches this goal in D component, and upgrades the prior-

ity of this goal as soon as the goal is found. If the goal dose not exist in D component,
PD will create this goal in D. Achieve goal(state) means to pursuer this goal right
now. In the Algorithm Obligation_Actiion_for_Plan PD creates a plan which obtains
the execution of the obligated action and adds corresponding actions on the agenda.
The plan will be deleted as soon as its execution finished. When a certain state of an
agent is prohibited by a Prohibition policy, PD will search this state both in D and in
I component. In the algorithm Prohibition_State_for_Goal, the state will be treated as
a goal. PD will suppress this goal and add DeliberateNewOption which is used for
selecting of another goal to pursue if the goal is “Active” state (line 1-4).

Table 1. Behavior decision Algorithm for Different Policies Type

Policy
Type

Object Algorithm for Intention Algorithm for Desire

State Null Obligation_State_for_Goal
Obligation

Action Obligation_Action_for_Plan Null
State Prohibition_State_for_Plan Prohibition_State_for_Goal

Prohibition
Action Prohibition_Action_for_Plan Null

When the prohibited goal is being “Suspended” or “Option” state, PD will suppress
it and executes UpdateGoal by updating the D component. Algorithm Prohibi-
tion_State_for_Planl is designed to search the prohibited state in I component. When
the prohibited action belonging to the executing plan, PD will suppress this plan and
add ScheduleCondidates on the agenda to select another plan. If the state can be
achieved by the “Suspended” or “Options” plans, PD will suppress the plan and up-
date I component. If the user prohibits a certain action to be executed in terms of
Prohibition policy, PD will search this action on agenda and in I component. When
the action is on the agenda, PD will suppress it and call another plan on the agenda
(line 1-4). If the action is not executing currently but is contained in some plans in I
component, PD will suppresses these plans and update the I component (line 5-7).

Table 2. Behavior Decision Algorithms

Name: Obligation_State_for_Goal
Input: Obligated action; goal of Desire
Output: goal
01 if (goal(state) is active) {
02 Rise goal(state) Priority in Agenda;
03 } else
04 if(goal(state) is Option){
05 Add action SuppressContents in Agenda;
06 Acheve goal(state);
07 } else

08 if(goal(state) is Suspended) {
09 waitfor (satisfyCondition);
10 Achieve goal(state);
11 }else {
12 Add action CreatGoal in Agenda;
13 Achieve goal(state);
14 Add action DropGoal in Agenda;}

Name: Prohibition_State_for_Goal Name: Prohibition_State_for_Plan
Input: Prohibited state; goal of Desire
Output: goal
01 if (goal(state)is one of achieving goals) {

Input: Obligated state; plan of Intention
Output: plan
01 if (goal(state) is executing Plan) {

02 Add action SuppressContents in Agenda;
03 Add action DeliberationNewOption in

Agenda;
04 }else
05 if(goal(state) is Suspended or Option)
06 Add action SuppressContents in Agenda;
07 Add action UpdateGoal in Agenda;

02 Add action SuppressContents in Agenda;
03 Add action ScheduleCandidates in

Agenda;
04 }else
05 if(state is the state of the plan in Inten-

tion component)
06 Add action SuppressContents in Agenda;
07 Add action UpdateGoal in Agenda;

Name: Prohibition_Action_for_Plan Name: Obligation_Action_for_Plan
Input: Prohibited action; plan of Intention
Output: plan
01 if (Action is executing Plan) {
02 Add action SuppressContents in Agenda;
03 Add action ScheduleCandidates in

Agenda;
04 }else
05 if(Action in Plan component)
06 Add action SuppressContents in Agenda;
07 Add action UpdateGoal in Agenda;

Input: Obligated action; plan of Intention
Output: plan
01 Add action CreatPlan into Agenda;
02 Add action ExecutePlanStep in Agenda;
03 Add action TerminatePlan in Agenda;

5 Case Study

In this section, we will analyze the case that we introduced in section 2. In this case,
the actions of robots should be designed in the design phases. These actions include:
random searching, taking ore, sending message, responding message etc. On the other
hand, we assume that there are two scenarios need to be considered. The first scenario
is that there is only one ore source in the environment. To find resource and carry ore
more quickly, it is appropriate to make each robot performs behaviors as follows: 1)
randomly works in the environment to find ore resource; 2) carries ore back to base if
finds the ore resource; 3) broadcasts position of ore resource if finds it; 4) goes to the
position and carries ore to base if having received position information from other
robot. To realize these behaviors, the user can deploy the policies as follows:

Obligation(IF Searching WHEN Others_Send_Message DO TakeOreFromReceived-

Position)
Obligation(IF Find_Ore_at_Some_Position WHEN $ DO Broadcast(Position))

In the second scenario, robots will be deployed in an environment which has more
than one ore resource. Moreover, the user needs all robots to carry the found ore from
near to far. According to this requirement, robots should firstly collect some ore re-
source positions whatever the position is found by itself or received from others. Then
select the nearest one from the base to carry ore. To realize this requirement, user
should add some new policies:

 Obligation (IF Searching WHEN Others_Send_Message DO storage_message)

Obligation (IF Message_number=MAX WHEN $ DO TakeOre_Nearest)
Prohibition (IF Message_number <MAX]WHEN $ DO RespondMessage)

We have implemented the BDIP robots in a simulation way by using the Jadex
platform [10]. The basic actions of agents are implemented as Plan of the agent.
Some important information such as ore resource positions are implemented as Belief,
the interaction among agents this case is implemented as the message events of the
agent. The Intention of the robots are to find the ore resource and carry ore back to
base. On the other hand, the policy conditions are implanted as either a part of belief
(e.g. ore resource) or implemented as the message events. When the system is run-
ning, if the policy conditions are satisfied, the agent will perform its behaviors comply
with these policies, the trigger condition of the plans are implemented same as the
policy conditions.

(a) Scenario 1 (b) Scenario 2

Fig. 3. Running snapshot of the Case

Fig. 3 shows the running snap shot of the case. The gray transparent pane is the
base. The number below the base is the amount of ore in the base which has been
carried by robots. The yellow transparent cycle of a robot presents the scope that the
robot can explore for ore. The red points in environment mean the ore resources
which have not been found by robots. The gray points mean the ore resource which
has been found by robots and the number below the gray points mean the remained
reserves of the ore resource. Fig. 3(a) shows the first scenario in which only one ore
resource in the environment. From the figure we can see all robots are carrying ore
from this resource when one of them has found it. Fig. 3 (b) shows the second sce-
nario which has many ore resources in the environment. In Fig. 3(b), the robots have
collected enough positions of the ore resources and carry the ore from the resource
which is the nearest to the base among the collected positions.

6 Related Works

Recently, many research efforts have been made on the agent modeling based on
norms and policies. However majority of them are engaged in the design of norm-
based MAS organization, which propose norms to have an effective influence on
agent and agent role, for example organization regimentation [11] and enforcement
mechanisms [13][14]. In the agent architecture aspect, the main contributions of norm

acceptance of agents are focus on the theory of BDI agent, e.g. [3][9]. These works
focus on the theory frameworks e.g. logical expressions to explain how to represent
the norms or policies in the agent and how to influence the reasoning process of the
agent. The implement of architecture and running mechanisms of BDI or norm-based
BDI agent are relatively few. [12] proposes a multi-level agent architecture, in which
norms can communicated, adopted and used as meta-goals. [8] proposes a BDI Inter-
preter architecture for the running mechanisms of BDI agent, which our work can be
seen as an extension of it.

7 Conclusion and Future works

In the development of self-organizing MAS, the great challenge is how to bridge the
huge gap between the agent local interaction behaviors and the system macro emer-
gence characteristics. Against this open issue, this paper proposes a BDIP architecture
of software agent. In the BDIP architecture, agent can perceive the policies of the
system and adjusts its behaviors according to policies. A flexible running mechanism
is also proposed based on the architecture, which executing meta-operations from a
dynamic agenda structure. The architecture and its running mechanism are flexible
enough to support the adjustments of system policies so that the users could control
the self-organizing process and result by changed policies in the system. Moreover,
the details of policy-based decision algorithms of agents are designed, and a case
study of policy-based self-organizing robot system is implemented in a simulation
way with the Jadex platform. Through the case study we can see that the changes of
policies of the system can alter the self-organizing emergence result, and users can
satisfy different system requirements by adjusting the policies.

In future works we still focus on the development of the policy-based self-
organizing multi-agent systems. A PSOMAS developing environment named
PSOMASDE is in our current works. The developing environment include agent de-
sign platform and running environment, as well as the policies can be represented by
the XML files that can be loaded by the system. Besides the implementation of such
systems, the development methodology is also in consideration, which is based our
previous work named ODAM [15].

Acknowledgement

The research acknowledges financial support from Natural Science Foundation of
China under granted No 61070034, Program for New Century Excellent Talents in
University, and Opening Fund of Top Key Discipline of Computer Software and The-
ory in Zhejiang Provincial Colleges at Zhejiang Normal University.

References:

1. Giovanna D.M.S., Marie P. G. and Anthony K.: Self-Organizsation in MAS. Technology

report, AgentLink III Technical Forum Group (2005).
2. Mamei M., Ronaldo M. and Zambonelli,F.: Case Studies for Self-Organization in Com-

puter Science. Journal of Systems Architecture. 52(8), 443-460, (2006)
3. D. Frank, K. David, and S. Liz. :Motivational Attitudes of Agents: On Desires, Obliga-

tions and Norms.: In: Barbara D. K. and Edward N.(edt.) LNCS, vol. 2296, pp, 61-70.
Springer, Heidelberg (2001)

4. Yi Guo, Xinjun Mao, Cuiyun Hu.: A Survey of Engineering for Self-Organization Sys-
tems. In: 23th Software Engineering & Knowledge Engineering, pp. 527-531. Knowledge
Systems Institute Press. USA. (2011)

5. Parunak, H. V. and Sevn A. B.: Software Engineering for Self-Organizing Systems. In:
12th International Workshop on Agent-Oriented Software engineering. AAMAS2011
(2011).

6. Yi Guo, Xinjun Mao, Cuiyun Hu.: Design Pattern for Self-Organization Multi-agent
Systems based on Policy. In: 6th International conference on Frontier of Computer Sci-
ence and Technology. pp. 1572-1577. IEEE Press USA(2011)

7. A. S. Rao, M. P. Georgeff.: Modeling Rational Agents within a BDI-Architecture. In: 2nd
International Conference on Principles of Knowledge Representation and Reasoning. pp.
473-484. Kaufmann Press, USA(1991)

8. A. Pokahr, L. Braubach, and W. Lamersdorf.: A Flexible BDI Architecture Supporting
Extensibility. In: 2005 IEEE/ WIC/ ACM International Conference on Intelligent Agent
Technology. pp. 379-385.IEEE Press. USA(2005)

9. N. Crida, E. Argente, P. Noriega, and V. Botti.: Towards a Normative BDI Architecture
for Norm Compliance. In: 2010 Multi-agent Logics, Languages, and Organisations Feder-
ated Worshops pp, 65-81. (2010)

10. L. Braubach, A.Pokahr, and W. Lamersdorf.: Jadex: A BDI Agent System Combining
Middleware and Reasoning. In: Rainer U., Matthias K., Monique C.,(eds.) Software
Agent-Based Applications, Platforms and Development Kits. pp.143-168. Birkhauser
Press(2005)

11. N. Criado, E. Argente, and V. Botti.: Thomas: An Agent Platform for Supporting Norma-
tive Multi-agent Systems. Journal of Logic and Computation. doi:
10.1093/logcom/exr025, (2011).

12. C. Castelfranchi, D. Frank, M.J. Catholijin, and T. Jan. Deliberative Normative Agents:
Principles and Architecture. In: Jennings and Y. Lesperance, (eds.) Intelligent Agents VI,
pp. 364-378. Springer Heidelberg,(2000)

13. S. Modgil, N. Faci, F. Meneguzzi, N. Oren. S. Miles, and M. Luck.: A Framework for
Monitoring Agent-based Normative Systems.In: 8th International Conference on Autono-
mous Agents and Multi-agent System. pp. 153-160. ACM Press USA(2009)

14. D. Grossi, H. Aldewereld, F. Dignum.: Designing Norm Enforcement in E-Institutions.
In:Pablo N., Javier V. S. Guido B. etl.(eds.) Coordination, organizations, institutions, and
norms in agent systems II. LNCS, vol. 4386, pp, 107-120. Springer, Heidelberg (2006)

15. Xinjun Mao, Cuiyun Hu, and Ji Wang: An Organization-based Approach to Developing
Self-Adaptive Multi-Agent Systems. International Transactions on Systems, Science and
Applications. 5(4), 297-317.(2009)

