Support Vector Machine with Mixture of Kernels for Image Classification

Abstract : Image classification is a challenging problem in computer vision. Its performance heavily depends on image features extracted and classifiers to be constructed. In this paper, we present a new support vector machine with mixture of kernels (SVM-MK) for image classification. On the one hand, the combined global and local block-based image features are extracted in order to reflect the intrinsic content of images as complete as possible. SVM-MK, on the other hand, is constructed to shoot for better classification performance. Experimental results on the Berg dataset show that the proposed image feature representation method together with the constructed image classifier, SVMMK, can achieve higher classification accuracy than conventional SVM with any single kernels as well as compare favorably with several state-of-the-art approaches.
Type de document :
Communication dans un congrès
Zhongzhi Shi; David Leake; Sunil Vadera. 7th International Conference on Intelligent Information Processing (IIP), Oct 2012, Guilin, China. Springer, IFIP Advances in Information and Communication Technology, AICT-385, pp.68-76, 2012, Intelligent Information Processing VI. 〈10.1007/978-3-642-32891-6_11〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01524965
Contributeur : Hal Ifip <>
Soumis le : vendredi 19 mai 2017 - 10:43:23
Dernière modification le : vendredi 3 novembre 2017 - 22:24:07

Fichier

978-3-642-32891-6_11_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Dongping Tian, Xiaofei Zhao, Zhongzhi Shi. Support Vector Machine with Mixture of Kernels for Image Classification. Zhongzhi Shi; David Leake; Sunil Vadera. 7th International Conference on Intelligent Information Processing (IIP), Oct 2012, Guilin, China. Springer, IFIP Advances in Information and Communication Technology, AICT-385, pp.68-76, 2012, Intelligent Information Processing VI. 〈10.1007/978-3-642-32891-6_11〉. 〈hal-01524965〉

Partager

Métriques

Consultations de la notice

75

Téléchargements de fichiers

131