
HAL Id: hal-01524970
https://hal.inria.fr/hal-01524970

Submitted on 19 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Symbolic ZBDD Representations for Mechanical
Assembly Sequences

Fengying Li, Tianlong Gu, Guoyong Cai, Liang Chang

To cite this version:
Fengying Li, Tianlong Gu, Guoyong Cai, Liang Chang. Symbolic ZBDD Representations for Mechan-
ical Assembly Sequences. Zhongzhi Shi; David Leake; Sunil Vadera. 7th International Conference
on Intelligent Information Processing (IIP), Oct 2012, Guilin, China. Springer, IFIP Advances in
Information and Communication Technology, AICT-385, pp.208-215, 2012, Intelligent Information
Processing VI. <10.1007/978-3-642-32891-6_27>. <hal-01524970>

https://hal.inria.fr/hal-01524970
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Symbolic ZBDD Representations for Mechanical
Assembly Sequences

Fengying Li, Tianlong Gu, Guoyong Cai, Liang Chang

Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology,
Guilin 541004, China

{ lfy, cctlgu, ccgycai, changl }@guet.edu.cn

Abstract. The representations of assembly knowledge and assembly sequences
are crucial in assembly planning, where the size of parts involved is a signifi-
cant and often prohibitive difficulty. Zero-suppressed binary decision diagram
(ZBDD) is an efficient form to represent and manipulate the sets of combina-
tion, and appears to give improved results for large-scale combinatorial optimi-
zation problems. In this paper, liaison graphs, translation functions, assembly
states and assembly tasks are represented as sets of combinations, and the sym-
bolic ZBDD representation of assembly sequences is proposed. An example is
given to show the feasibility of the ZBDD-based representation scheme.

Keywords: assembly sequence; assembly knowledge; Zero-suppressed binary
decision diagram

1 Introduction

Related researches show that 40%~50% of manufacturing cost is spent on assembly,
and 20%~70% of all the manufacturing work is assembly[1, 2]. In order to shorten the
time and reduce the costs required for the development of the product and its manu-
facturing process, it is desirable to automate and computerize the assembly sequence
planning activity. Typically, a product can have a very large number of feasible as-
sembly sequences even at a small parts count, and this number rises exponentially
with increasing parts count, which renders it staggeringly difficult and even impossi-
ble for one to represent all the sequences individually. Thus, the choices of represen-
tation for assembly sequences can be crucial in assembly sequence planning, and
there has been a need to develop systematic and efficient methods to represent all the
available alternatives.

In the literature, several representation schemes have been proposed to represent
the assembly sequences. These representations can be classified into two groups:
ordered lists and graphical representations. The ordered list could be a list of tasks,
list of assembly states, or list of subsets of connections. In the ordered lists each as-
sembly sequence is represented by a set of lists. Although this set of lists might repre-
sent a complete and correct description of all feasible assembly sequences, it is not
necessarily the most compact or most useful representation of sequences. The graphi-

cal schemes map the assembly operations and assembly states into specified dia-
grammatic elements, and share common subsequences and common states graphically
in many assembly sequences, which create more compact and useful representations
that can encompass all feasible assembly sequences. The most common diagrammatic
representation schemes are: precedence diagrams[3], state transition diagrams[4], in-
verted trees[5], liaison sequence graphs[6], assembly sequence graphs[7] directed
graphs[2] and AND/OR graphs[8] etc.

In recent years, implicitly symbolic representation and manipulation technique,
called as symbolic graph algorithm or symbolic algorithm[9], has emerged in order to
combat or ease combinatorial state explosion. Typically, zero-suppressed binary deci-
sion diagram (ZBDD) is used to represent and manage the sets of combinations[10,
11]. Efficient symbolic algorithms have been devised for hardware verification, model
checking, testing and optimization of circuits. Symbolic representations appear to be a
promising way to improve the computation of large-scale combinatorial computing
problems through encoding and searching nodes and edges implicitly.

In this regard, we present the symbolic ZBDD formulation of all the assembly se-
quences. The subassemblies, assembly states, assembly tasks and assembly sequences
are represented by sets of combinations, and the ZBDD representation for them are
given. The example shows that the ZBDD formulation is feasible and compact.

2 Zero-suppressed binary decision diagram

Zero-suppressed binary decision diagram (ZBDD)[10, 11], a variant of ordered binary
decision diagram (OBDD), is introduced by Minato for representing and manipulating
sets of combinations efficiently. With ZBDDs, the space requirement of the represen-
tation of combination sets is reduced and combinatorial problems are solved effi-
ciently.

A combination on n objects can be represented by an n bit binary vector, (xnxn-1 …
x2x1), where each bit, xk {0, 1}, expresses whether the corresponding object is in-
cluded in the combination or not. A set of combinations can be represented by a set of
the n bit binary vectors. We call such sets combination sets. Combination sets can be
regarded as subsets of the power set on n objects.

A set of combination can be mapped into Boolean space by using n-input vari-
ables for each bit of the combination vector. If we choose any one combination vec-
tor, a Boolean function determines whether the combination is included in the set of
combinations. Such Boolean functions are called characteristic functions.

By using OBDDs for characteristic functions, we can manipulate sets of combina-
tions efficiently. Because of the effect of node sharing, OBDDs represent combination
sets with a huge number of elements compactly. However, there is one inconvenience
in that the form of OBDDs depends on the number of input variables. For example, S
(abc) and S (abcd), shown in Fig. 1(a), represent the same set of combinations {a, b},
if we ignore the irrelevant input variables c and d. In this case, the OBDDs for S (abc)
and S (abcd) are not identical. This inconvenience comes from the difference in the
model of default variables. In combination sets, default variables are regarded as zero

when the characteristic function is true, since the irrelevant object never can be sup-
pressed in the OBDD representation.

Fig. 1. (a) OBDDs for sets of combinations (b) ZBDDs for sets of combinations

For representing sets of combinations efficiently, ZBDD introduced the following
special deletion rules:

·Delete all nodes whose 1-edge points to the 0-terminal node, and then connect the
edges to the other sub-graph directly as shown in Fig. 2.

x

f f0

0 1

Fig. 2. New reduction rule for ZBDDs

This is also called the pD-deletion rule. ZBDD does not delete the nodes whose
two edges point to the same node, which used to be deleted by OBDD. The zero-
suppressed deletion rule is asymmetric for the two edges, as we do not delete the
nodes whose 0-edge points to a 0-terminal node.

Fig. 1(b) shows the ZBDD representation for the same sets of combinations
shown in Fig. 1(a). The form of ZBDDs is independent of the input domain. The
ZBDD node deletion rule automatically suppresses the variables which never appear
in any combination. This feature is important when we manipulate sparse combina-
tions.

Another advantage of ZBDDs is that the number of l-paths in the graph is exactly
equal to the number of elements in the combination set. In OBDDs, the node elimina-
tion rule breaks this property. Therefore, ZBDDs are more suitable than OBDDs to
represent combination sets.

3 Symbolic representation of assembly knowledge

A mechanical assembly is a composition of interconnected parts forming a stable unit.
Each part is a solid rigid object, that is, its shape remains unchanged. Parts are inter-

connected whenever they have one or more compatible surfaces in contact. Surface
contacts between parts reduce the degree of freedom for relative motion. These con-
tacts and relative motions are embedded in various logical and physical relations
among the parts of the assembly, called as assembly knowledge, and can be extracted
directly from the CAD model of assembly.

3.1 Symbolic representation of liaison graph

Liaison graph can explicitly describe various logical and physical contact relations
among the parts of the assembly. Liaison graph is a two-tuples G = (P, L), in which P
is a set of nodes that represent parts, and L a set of edges that represent any of certain
user-defined relations between parts called liaisons. User-accepted definitions of liai-
sons in a general sense follow the principal literal definition “a close bond or connec-
tion” and generally include physical contacts.

Given an assembly and its liaison graph G = (P, L), we can convert the liaison
graph to a ZBDD by encoding the parts of the assembly or the elements in P with n
binary variables X=(x0, x1, … , xn-1), where n = |P|. Essentially, the liaison set or edge
set is a relation on nodes, and each element or a liaison (a, b) ∈ L is a pair. A liaison
(a, b) ∈ L can be encoded as a combination of binary variables (xi, xj), where xi and xj
are the encoded binary variables corresponding to part a and b respectively. Thus, the
liaison graph can be uniquely determined by the following set of combinations:
C (X) ={ xixj⎪xi X, xj X, i ≠j}

(a) Assembly view (b) Liaison graph (c) ZBDDs for liaison graph

Fig. 3. An example of assembly

For example, an assembly shown in Fig. 3(a) includes 4 parts, and its liaison
graph is presented in Fig. 3(b), where L = {(a, b), (a, c), (a, d), (b, d), (c, d)}. We
formulate the parts with 4 binary variables by encoding part a, b, c and d as x0, x1, x2
and x3 respectively. The combination set of relation E is derived as following:

C(x0, x1, x2, x3) ={x0x1, x0x2, x0x3, x1x3, x2x3}

Therefore, the liaison graph of the assembly is formulated by a ZBDD corre-
sponding to the C(x0, x1, x2, x3) as shown in Fig. 3(c).

3.2 Symbolic representation of translation function

The liaison graph provides only the necessary conditions but not sufficient to assem-
bly two components. To be a feasible assembly operation, it is necessary that there is
a collision-free path to assembly parts. Gottipolu and Ghosh [6] represented the rela-
tive motion between parts of the assembly as a translation function, from which the
existence or absence of a collision-free path can be conveniently verified.

The freedom of translation motion between two parts a and b can be represented
by Tab = (T0, T1, T2, T3, T4, T5), which is a 1×6 binary function. Hence, it is called the
translation function or T-function. It can be defined as:

Tab = Ti →{0, 1}, i = 0, 1, 2, 3, 4, 5

Where Ti=1 if the part b has the freedom of translation motion with respect to the
part a in the direction i, Ti=0 if the part b has no freedom of translation motion with
respect to the part a in the direction i. Here, direction 1, 2 and 3 indicate the positive
sense of X, Y and Z axes (X+, Y+ and Z+) respectively, whereas direction 4, 5 and 6
correspond to the negative sense of X, Y and Z axes (X−, Y− and Z−) respectively. If
the part b has the freedom of translation motion with respect to the part a in the direc-
tion i, then the part a has the freedom of translation motion with respect to the part b
in the direction ((i+3) mod 6). Hence, it is enough to give the front half part of the
translation function.
Table 1. T-function for the assembly shown in Fig. 3(a)

T-function
Pair

T0 T1 T2 T3 T4 T5

(a, b) 1 0 1 0 0 1
(a, c) 1 1 1 1 0 1
(a, d) 0 1 0 0 0 0
(b, c) 1 1 1 1 0 1
(b, d) 0 1 0 0 0 0
(c, d) 0 1 0 0 0 0

Fig. 4. ZBDDs for translation function
For example, the translation function T of the assembly shown in Fig. 3(a) is

shown in table 1.
We can convert the translation function to a ZBDD by encoding the parts of the

assembly in P with n binary variables X=(x0, x1, … , xn-1) and the direction with 6
binary variables Z=(z0, z1, z2, z3, z4, z5), where n = |P|. We represent the translation
function as set of combinations:

T (XZ) ={ xixjzk⎪xi X, xj X, zk Z, i ≠j}

The combination set of translation function includes all the pairs (a, b), between
which there exists the freedom of translation motion of part b with respect to the part

a in the direction i. We can construct the combination set of these translation relations
as T (XZ), and thus implicitly formulate the translation functions using ZBDDs.

For example, the translation relations of the assembly in Fig. 3(a) are derived as
following:

T(x0, x1, x2, x3, z0, z1, z2, z3, z4, z5) ={x0x1z0, x0x1z2, x0x1z5, x0x2z0, x0x2z1, x0x2z2,
x0x2z3, x0x2z5, x0x3z1, x1x2z0, x1x2z1, x1x2z2, x1x2z3, x1x2z5, x1x3z1, x2x3z1}

Fig. 4 gives the ZBDDs corresponding to the translation relations.

4 Symbolic representation of assembly sequences

A mechanical assembly is a composition of interconnected parts forming a stable unit.
Each part is a solid rigid object, that is, its shape remains unchanged. Parts are inter-
connected whenever they have one or more compatible surfaces in contact. Surface
contacts between parts reduce the degree of freedom for relative motion. It is assumed
that whenever two parts are put together all contacts between them are established.

A subassembly consists of a unique part or some parts in which every part has at
least one surface contact with another part. Although there are cases in which it is
possible to join the parts in more than one way, an unique assembly geometry will be
assumed for each subassembly. This geometry corresponds to their relative location in
the whole assembly. A subassembly is said to be stable if its parts maintain their rela-
tive position and do not break contact spontaneously. All one-part subassemblies are
stable. To formulate an assembly consisting n parts, n binary variables (x1, x2,…, xn)
are demanded, if a part is characterized by a binary variable. Therefore, any subas-
sembly can be characterized by the subset of parts set, and the ith component is pres-
ence or absence, respectively, if the nth part is involved in the subassembly or not.
Hence, the assembly states can be represented by sets of combinations. For example,
the assembly shown in Fig. 3 has four parts, represented by four binary variables x1,
x2, x3 and x4, {abc} and {cd} are two subassemblies of the assembly, and can be rep-
resented by binary variable sets {x1x2x3} and {x3x4} respectively. The initial state and
final state are represented as sets of combinations {x1, x2, x3, x4} and {x1x2x3x4} re-
spectively.

The assembly process consists of a succession of tasks, through each of which the
subassemblies are joined into a larger subassembly. The process starts with all parts
separated, and ends with all parts properly joined together to obtain the whole assem-
bly. It is assumed that exactly two subassemblies are joined by each assembly task,
and that after parts have been put together, they remain together until the end of the
assembly process. An assembly task is said to be geometrically feasible if there is a
collision-free path to bring the two subassemblies into contact from a situation in
which they are far apart. And an assembly task is said to be mechanically feasible is it
is feasible to establish the attachments that act on the contacts between the two subas-
semblies. Given two subassemblies characterized by their sets of parts S1 and S2, we
say that joining S1 and S2 is an assembly task if the set S3 = S1 ∪ S2 characterizes a
subassembly. Alternatively, a task can be seen as a decomposition of the output sub-
assembly into the two input subassembly. Therefore, an assembly task τi can be char-

acterized by an ordered pair ({Si1, Si2}, Si3) of its output subassembly and input subas-
semblies. Since the equation Si3 = Si1 ∗ Si2 holds, an assembly task τi can be repre-
sented by a set of combinations on 2n binary variables (X, Y) in which X=(x0, x1,…, xn-

1) and Y=(y0, y1,…, yn-1) are the binary variables for subassembly Si1 and Si3 respec-
tively. For example, for the assembly shown in Fig. 3, if S1 = {ab} and S2 = {c}, then
joining S1 and S2 is an assembly task τ. The assembly task τ is characterized by an
ordered pair τ = ({ab, c}, {abc}).

Given an assembly with n parts, an assembly sequence is an ordered list of n-1 as-
sembly tasks σ=τ1τ2…τn-1, in which the input subassemblies of the first task τ1 is the
separated parts, the output subassembly of the last task τn-1 is the whole assembly, and
the input subassemblies to any task τi is either a one-part subassembly or the output
subassemblies of a task that precedes τi. An assembly sequence is said to be feasible if
all its assembly tasks are geometrically and mechanically feasible, and the input sub-
assemblies of all tasks are stable. The second input subassembly of task τi can be
deduced by Si2= Si3/Si1, where Si1 is the first input subassembly of task τi, and Si3 is the
output subassembly of task τi. In this regard, an assembly sequence can be represented
by the following set of combinations:

ϕσ (X, Y)= {Si1Si3| Si1 is the first input subassembly of task τi, and Si3 is the output
subassembly of task τi, i = 1, 2,…, n-1, σ=τ1τ2…τn-1}

For example, for the assembly shown in Fig. 3, if τ1=({a, b},{ab})，τ2=({ab,
c},{abc})，τ3=({abc,d},{abcd})，σ=τ1τ2τ3 is a feasible assembly sequence. The
assembly sequence can be represented by the set of combinations:
ϕσ (x1, x2,…, xn, y1, y2,…, yn)={ x0y0y1, x0x1y0y1y2, x0x1x2y0y1y2y3}

The ZBDD of the assembly sequence is shown in Fig. 5.

Fig. 5. ZBDD for assembly sequence

An assembly might have a number of different feasible assembly sequences, and
many assembly sequences share common subsequences. All the feasible assembly
sequences can be represented compactly by the following set of combinations:

(,) (,)X Y X
σ

ψ ϕ= U Y

5 Conclusion

The choice of representation for assembly sequences has been crucial in assembly
sequence planning. However, traditional representations, such as AND/OR graph and
Petri nets, face the same challenge that increasing parts count renders it staggeringly
difficult and even impossible to represent all the sequences individually. In order to
alleviate the state-space explosion problem, a symbolic ZBDD scheme for represent-
ing all the feasible assembly sequences is presented in this paper. Validity and effi-
ciency of this symbolic ZBDD-based assembly sequence representation are also dem-
onstrated by the experiment.

Acknowledgments

The authors are very grateful to the anonymous reviewers for their helpful comments.
This work has been supported by National Natural Science Foundation of China (No.
60903079, 60963010, 61063002), the Natural Science Foundation of Guangxi Prov-
ince (No. 2012GXNSFAA053220), and the Project of Guangxi Key Laboratory of
Trusted Software (No. PF11044X).

References

1. Gottipolu RB, Ghosh K.: A simplified and efficient representation for evaluation and selec-
tion of assembly sequences. Computers in Industry, 50(3): 251-264(2003)

2. Homem de Mello LS, Sanderson AC.: Representation of mechanical assembly sequences.
IEEE Transactions on Robotics and Automation, 7(2): 211-227(1991)

3. Prenting T, Battaglin R.: The precedence diagram: A tool for analysis in assembly line bal-
ancing. Journal of Industrial Engineering, 15(4): 208-213(1964)

4. Warrats JJ, Bonschancher N, Bronsvoort WF.: A semi-automatic sequence planner. In: Pro-
ceedings of IEEE international conference on robotics and automation, pp: 2431-2438.
IEEE, Piscataway(1992)

5. Bourjault A.: Contribution to a methodological approach of automated assembly: automatic
generation of assembly sequence. Ph. D. Thesis, University of Franch-Comte, Besancon,
France(1984)

6. De Fazio TL, Whitney DE.: Simplified generation of all mechanical assembly sequences.
IEEE Journal of Robotics and Automation, RA-3(6): 640-658(1987)

7. Gottipolu RB, Ghosh K.: An integrated approach to the generation of assembly sequence.
International Journal of Computer Applications in Technology, 8(3–4): 125-138(1995)

8. Homem de Mello LS, Sanderson AC.: AND/OR graph representation of assembly plans.
IEEE Transactions on Robotics and Automation, 6(2): 188-199(1990)

9. Bryant RE.: Symbolic Boolean manipulation with ordered binary decision diagrams. ACM
Computing Surveys, 24(3): 293-318(1992)

10. Minato S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Pro-
ceedings of the 30th DAC in Dallas, pp: 272-277. IEEE, Piscataway(1993)

11. Minato S.: Fast factorization for implicit cube set representation. IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems, 15(4): 377-384(1996)

