B. , L. H. Friedman-j, . A. Olsen-r, and . J. Stone-c, Classification and Regression Trees, 1984.

T. and M. J. And, Cost-Sensitive Concept Learning Of Sensor Use in Approach and Recognition, Proceedings of the 6th International Workshop on Machine Learning. ML-89, pp.392-395, 1989.

D. , J. V. Jungwoo, H. Rossbach, and C. J. , Cost-sensitive decision tree learning for forensic classification, Proceedings of 17th European Conference on Machine Learning (ECML), pp.622-629, 2006.

F. , A. Costa-pereira, A. Brazdil, and P. , Cost-Sensitive Decision Trees applied to medical data. DaWak, LNCS, vol.4654, pp.303-312, 2007.

M. , S. Langford, W. Margineantu, and D. , Learning to predict channel stability using biogeomorphic features, Ecological Modelling, vol.191, issue.1, pp.47-57, 2006.

F. , W. Stolfo, S. J. Zhang, J. Chan, and P. K. , AdaCost: misclassification cost-sensitive boosting, 16th International Conference on Machine Learning, pp.97-105, 1999.

A. C. Lozano and N. And-abe, Multi-class cost-sensitive boosting with p-norm loss functions, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, p.506, 2008.
DOI : 10.1145/1401890.1401953

L. , S. Vadera, and S. , A Survey of Cost-Sensitive Decision Tree Induction Algorithms, To appear in ACM Computing Surveys, vol.45, issue.2, 2013.

L. , S. Vadera, and S. , An Empirical Comparison of Cost-Sensitive Decision Tree Induction Algorithms, Expert Systems The Journal of Knowledge Engineering, vol.28, issue.3, pp.227-268, 2011.

B. , C. And, M. , and C. , UCI Repository of Machine Learning Databases, 1998.