D. J. Gross, The role of symmetry in fundamental physics Proceeding of the National Academy of Sciences of The United States of America, pp.14-256, 1996.

V. Zubov, On systems of ordinary differential equations with generalized homogenous right-hand sides, Izvestia vuzov. Mathematica, vol.1, pp.80-88, 1958.

H. Hermes, Nilpotent Approximations of Control Systems and Distributions, SIAM Journal on Control and Optimization, vol.24, issue.4, p.731, 1986.
DOI : 10.1137/0324045

M. Kawski, Geometric homogeneity and stabilization, Proc. IFAC Nonlinear Control Symposium, pp.164-169, 1995.
DOI : 10.1016/s1474-6670(17)46822-4

L. Rosier, Etude de quelques problemes de stabilization, 1993.

R. Sepulchre and D. Aeyels, Homogeneous Lyapunov functions and necessary conditions for stabilization, Mathematics of Control, Signals, and Systems, vol.3, issue.No. 3, pp.34-58, 1996.
DOI : 10.1007/978-1-4684-0374-9

URL : http://orbi.ulg.ac.be/bitstream/2268/78175/1/SA96.pdf

V. I. Zubov, Methods of A.M. Lyapunov and Their Applications, 1964.

A. Andreini, A. Bacciotti, and G. Stefani, Global stabilizability of homogeneous vector fields of odd degree, Systems & Control Letters, vol.10, issue.4, pp.251-256, 1988.
DOI : 10.1016/0167-6911(88)90014-X

J. Coron and L. Praly, Adding an integrator for the stabilization problem, Systems & Control Letters, vol.17, issue.2, pp.89-104, 1991.
DOI : 10.1016/0167-6911(91)90034-C

Y. Orlov, Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems, SIAM Journal on Control and Optimization, vol.43, issue.4, pp.1253-1271, 2005.
DOI : 10.1137/S0363012903425593

A. Levant, Homogeneity approach to high-order sliding mode design, Automatica, vol.41, issue.5, pp.823-830, 2005.
DOI : 10.1016/j.automatica.2004.11.029

L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, Systems & Control Letters, vol.19, issue.6, pp.467-473, 1992.
DOI : 10.1016/0167-6911(92)90078-7

V. Andrieu, L. Praly, and A. Astolfi, Homogeneous Approximation, Recursive Observer Design, and Output Feedback, SIAM Journal on Control and Optimization, vol.47, issue.4, pp.1814-1850, 2008.
DOI : 10.1137/060675861

URL : https://hal.archives-ouvertes.fr/hal-00362707

D. Efimov and W. Perruquetti, Oscillations Conditions in Homogenous Systems, Proc. IFAC NOLCOS Symp, pp.1379-1384, 2010.
DOI : 10.3182/20100901-3-IT-2016.00101

URL : https://hal.archives-ouvertes.fr/hal-00561003

A. Polyakov, D. Efimov, and W. Perruquetti, Robust stabilization of MIMO systems in finite/fixed time, International Journal of Robust and Nonlinear Control, vol.42, issue.10, pp.69-90, 2016.
DOI : 10.1201/9781420065619

URL : https://hal.archives-ouvertes.fr/hal-01160052

K. Zimenko, D. Efimov, A. Polyakov, and W. Perruquetti, A note on delay robustness for homogeneous systems with negative degree, Automatica, vol.79, issue.5, pp.178-184, 2017.
DOI : 10.1016/j.automatica.2017.01.036

URL : https://hal.archives-ouvertes.fr/hal-01419131

J. Pomet and C. Samson, Time-varying exponential stabilization of nonholonomic systems in power form, Inria, Tech. Rep, 1993.
URL : https://hal.archives-ouvertes.fr/inria-00074546

A. Polyakov, D. Efimov, E. Fridman, and W. Perruquetti, On Homogeneous Distributed Parameter Systems, IEEE Transactions on Automatic Control, vol.61, issue.11, pp.3657-3662, 2016.
DOI : 10.1109/TAC.2016.2525925

URL : https://hal.archives-ouvertes.fr/hal-01318134

V. V. Khomenuk, On systems of ordinary differential equations with generalized homogenous right-hand sides, Izvestia vuzov. Mathematica, vol.3, issue.22, pp.157-164, 1961.

I. Karafyllis and Z. Jiang, Stability and Stabilization of Nonlinear Systems, 2011.
DOI : 10.1007/978-0-85729-513-2

H. Hermes, Homogeneous feedback controls for homogeneous systems, Systems & Control Letters, vol.24, issue.1, pp.7-11, 1995.
DOI : 10.1016/0167-6911(94)00035-T

L. Praly, Generalized weighted homogeneity and state dependent time scale for linear controllable systems, Proceedings of the 36th IEEE Conference on Decision and Control, pp.4342-4347, 1997.
DOI : 10.1109/CDC.1997.649536

L. Grune, Homogeneous state feedback stabilization of homogeneous systems, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), pp.1288-1308, 2000.
DOI : 10.1109/CDC.2000.912230

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Nakamura, H. Nakamura, and Y. Yamashita, Homogeneous Stabilization for Input Affine Homogeneous Systems, Conference on Decision and Control, pp.80-85, 2007.
DOI : 10.1109/TAC.2009.2026865

W. Perruquetti, T. Floquet, and E. Moulay, Finite-Time Observers: Application to Secure Communication, IEEE Transactions on Automatic Control, vol.53, issue.1, pp.356-360, 2008.
DOI : 10.1109/TAC.2007.914264

URL : https://hal.archives-ouvertes.fr/inria-00176758

A. Polyakov, J. Coron, and L. Rosier, On finite-time stabilization of evolution equations: A homogeneous approach, 2016 IEEE 55th Conference on Decision and Control (CDC), pp.3143-3148, 2016.
DOI : 10.1109/CDC.2016.7798740

URL : https://hal.archives-ouvertes.fr/hal-01371089

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 1983.
DOI : 10.1007/978-1-4612-5561-1

R. Courant and F. John, Introduction to calculus and analysis (, 2000.

S. P. Bhat and D. S. Bernstein, Geometric homogeneity with applications to finite-time stability, Mathematics of Control, Signals, and Systems, vol.17, issue.2, pp.101-127, 2005.
DOI : 10.1007/s00498-005-0151-x

E. Moulay and W. Perruquetti, Finite time stability of differential inclusions, IMA Journal of Mathematical Control and Information, vol.22, issue.4, pp.465-475, 2005.
DOI : 10.1093/imamci/dni039

A. Bacciotti and L. Rosier, Lyapunov Functions and Stability in Control Theory, 2001.

E. Sontag, A ???universal??? construction of Artstein's theorem on nonlinear stabilization, Systems & Control Letters, vol.13, issue.2, pp.117-123, 1989.
DOI : 10.1016/0167-6911(89)90028-5