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Abstract: Integration of accelerometer and magnetometer (AM) provides continuous, stable and1

accurate attitude information for land-vehicle navigation campaigns. However, magnetic disturbance2

strongly degrades the overall system performance. As an important complementary, global navigation3

satellite system (GNSS) indirectly produces the orientation information thus can potentially benefit4

the AM system. Such GNSS/AM system for attitude estimation is mathematically converted to5

multi-observation vector pairs matching problem in this paper. The optimal, sub-optimal attitude6

determination and its time-varying recursive variants are all comprehensively investigated and7

discussed. The developed methods are named as the Optimal Linear Estimator of Quaternion (OLEQ),8

Suboptimal-OLEQ (SOLEQ) and Recursive-OLEQ (ROLEQ) for different application scenarios. The9

theory is established based on our previous contributions and the multi-vector matrix multiplications10

are decomposed with the eigenvalue factorization. Some analytical results are proved and given11

which provides the audience with a brand new viewpoint of the attitude determination and its12

evolution inside. With the derivations of two-vector case, the n-vector cased is then naturally13

formed. Simulations are carried out showing the advantages of accuracy, robustness and time14

consumption of the proposed OLEQs, compared with representative methods. The algorithms are15

then implemented using C++ programming language on the designed hardware with GNSS module,16

3-axis accelerometer, 3-axis magnetometer, giving the effectiveness validation of them in real-world17

applications.18

Keywords: Attitude Determination, GNSS Receiver, Wahba’s Problem, Vector Observations,19

Autonomous Navigation20

0. Introduction21

Attitude determination (or estimation) from vector observation pairs is a significant technology in22

aerospace engineering and related geodetic applications [1–3]. For instance, the inertial navigation, as23
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an important role in modern military applications, has a high demand on attitude determination24

accuracy for initial alignment [4–7]. A typical attitude measuring system integrating 3-axis25

accelerometer with 3-axis magnetometer (AM) is extensively applied for real-time, continuous, stable26

and accurate attitude estimation for various navigation campaigns [8,9]. For most of applications, AM27

sensors are very efficient for low-cost attitude determination. However, the magnetometer is easily to28

be tolerated by unknown and unexpected magnetic fields disturbances from electromagnetic signals29

contaminated environments. On the other hand, for the large-scale region application, the reference30

magnetic vector is no longer a constant vector and needs to be timely corrected by other additional31

heading information. Otherwise, the overall system performance will be heavily degraded. Moreover,32

the accelerometers inevitably suffer from their biases thus leading to inaccurate attitude estimation.33

Therefore, auxiliary sensors are necessary to overcome such problem.34

Alternatively, the global navigation satellite system (GNSS) provides precise position and velocity35

information. It has been successfully used for land, marine and aircraft attitude determination36

applications [10]. Traditional methods integrate GNSS with inertial sensors and simultaneously37

estimate the orientation with a synchronized position, velocity and attitude loops [11–13]. However,38

this leads to a risk to contaminate the attitude solution associated with position and velocity estimation39

loops. Thus Gebre-Egziabher and Elkaim [14] proposes an independent attitude estimation loop40

by means of vector matching. Compared with GNSS antenna arrays which compute highly precise41

solutions of baselines by using carrier-phase measurement, single GNSS antenna is more preferred in42

many low-cost and low-power consumption platforms. It mainly uses the simultaneous velocity vector43

information generated by GNSS Doppler [15,16]. Indirectly, this produces an important complementary44

orientation information thus potentially benefits the AM sensors system, especially for land vehicles.45

In addition, integrating high-rate sensors also contributes to seismogeodetic systems [17,18].46

Efficient attitude estimation strategy is very crucial for GNSS/AM integrated multi-sensor system.47

In essence, it can be mathematically converted to multi-observation vector pairs matching problem.48

Representative methods are mainly about the solutions to the famous Wahba’s problem [19], which49

aims to obtain the optimal attitude determination results using weighted least squares. Among50

these algorithms, the Shuster’s QUaternion ESTimator (QUEST, [20]), Markley’s Singular Value51

Decomposition (SVD, [21]) and Mortari’s (ESOQ, [22]) are the most frequently used ones, which52

are mostly inspired by Davenport’s q-method [23,24]. Our newly developed Fast Linear Attitude53

Estimator (FLAE, [25]) obtains a fastest Wahba’s solution to our existing knowledge. Some other54

interesting approaches are proposed as well, investigating the other internals of this problem e.g.55

Yang’s analytical method, Riemannian-manifold algorithm and Forbes’ Linear-Matrix-Inequality (LMI)56

solution. [26–28].57

There are still some weight-less algorithms for multi-sensor attitude determination. They are58

usually used on applications like vision attitude determination where the a priori information of59

weights can hardly be accurately determined. For example, using the nonlinear special orthogonal60

group on SO3 [29], it is able to obtain the attitude quaternion from arbitrary pairs of vectors. Via61

optimization approaches like gradient-decent algorithm (GDA, [30]), Gauss-Newton algorithm (GNA,62

[9]), we may also compute stable solutions. Apart from these, a famous analytical method was63

proposed by Arun et al. where the Singular Value Decomposition (SVD) is employed to calculate64

the attitude matrix [31]. Invoking similar commitment, it is then introduced in computing both the65

attitude and translation vector in machine vision systems [32].66

For Wahba’s problem, it has been shown that most existing algorithms are based on the67

Davenport’s q-method. For a long period, the attitude solving process is fixed on this framework68

which aims to find the largest eigenvalue of the Davenport matrix K. Is it possible to seek another69

quite different attitude determination approach? The answer is positive and in this paper, three novel70

quaternion attitude determination algorithms from pairs of vector measurements are proposed in71

the sense of optimal, time-recursive and sub-optimal formulations. The main contributions are listed72

below:73
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1. The main theory is based on our previous research contributions and is extended to arbitrary74

pairs vector measurements linearly for GNSS/AM attitude application.75

2. Three estimators i.e. the Optimal Linear Estimator of Quaternion (OLEQ), Recursive OLEQ76

(ROLEQ) and Sub-optimal OLEQ (SOLEQ) are derived. We also proposed accelerating techniques77

to make the algorithms faster.78

3. Simulations and real experiments are carried out, which verify the accuracy, flexibility, robustness79

and time consumption of various algorithms for GNSS/AM attitude determination. Detailed80

comparisons with representative methods are shown to draw the superiority of the proposed81

OLEQs.82

This paper is structured as follows: Section I briefs the GNSS-AM sensor system along with83

its functional and stochastic models formulated in the way of vector pair matching. Section II84

contains the problem formulation and starts with the quaternion estimation from a single sensor85

observation. Section III The two-vector attitude determination theory along with the n-vector one are86

given accordingly. Section IV involves the numerical examples and real field test where comparisons87

between the proposed SOLEQ and other representative methods are given. Finally, Section V consists88

of concluding remarks and future work.89

1. Fundamentals of GNSS/AM system90

For attitude determination, we require GNSS receivers and AM sensors arrays for low-cost and
accurate solutions. First, considering the motion behaviours of land vehicles, a vector pair for GNSS
velocity can be established as

vb
G = Cb

r vr
G + εb

G (1)

where v denotes velocity vector; the subscript G denotes the observation source ‘GNSS’; the symbol
r and b represent the navigation frame (r-frame, North-East-Down, NED) and body frame (b-frame,
Forward-Right-Down) respectively; transforms the vector from r-frame to b-frame; εb

G is the Gaussian
white noise with variance of RG. For land-vehicle application, it should be pointed out that the velocity
in r-frame and b-frame are respectively

vr = Cr
eve, ve

G =


√
(ve

x)
2 +

(
ve

y

)2
+ (ve

z)
2

0
0

 (2)

where e denotes an Earth-Centred-Earth-Fixed (ECEF) coordinate frame (e-frame), i.e. WGS-84; denotes
the transformation (from e-frame to n-frame) and can be computed according to the GNSS position
and Earth ellipsoid metrics in advance.

AM sensors consist of 3-axis MEMS accelerometer and 3-axis magnetometer. The accelerometer
gives the specific force measurement of a rigid body and magnetometer provides the users with sensed
local Earth geomagnetic field according to IGRF model.

zA = Cb
r (µ

r −Gr) + bA + εA, εA ∼ (0, RA)

zM = Cb
r Mr + εM, εM ∼ (0, RM)

(3)

where the subscripts A and M denote the accelerometer and magnetometer sources respectively; z
denotes observed vector; b denotes the accelerometer bias; Gr = [0, 0,−g]T where g the gravity, is a
function of geo-location; The normalized Earth’s magnetic field reference vector Mr = [cosα, 0,−sinα]T

where α is the local dip angle; µ is the linear acceleration vector which is usually treated as an external
disturbance; ε is the Gaussian white noise with the variance of R. For simplicity, two points need to be
clarified that: (1) the bias term has been obtained and compensated for the accelerometer readings. (2)
The linear acceleration µ is estimated by using GNSS velocity information with differentiation between
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two adjacent epochs. Then the the vectors and matrices for system model in b-frame and r-frame can
be merged into following multi-vector pair equations:

Db
i = Cb

r Dr
i + εi, i = 1, 2, 3 (4)

where 
Db

1

Db
2

Db
3

 =



vb
G∥∥vb
G

∥∥
zA

‖zA‖
zM

‖zM‖


,


Dr

1

Dr
2

Dr
3

 =



Cr
eve

‖Cr
eve‖

µr −Gr

‖µr −Gr‖
Mr

‖Mr‖


,

 ε1

ε2

ε3

 =

 εG
εA
εM

 (5)

Neglecting the cross-correlations between sensors, the stochastic model of system is εG
εA
εM

 ∼ (0, R), R =

 RG
RA

RM

 (6)

2. Problem Formulation91

The conventional Wahba’s problem aims to find the optimal attitude matrix from vector
observation pairs in the sense of least squares, such that

L(C) =
n

∑
i=1

ai

∥∥∥Db
i − CDr

i

∥∥∥2
, n = 2, 3, · · · (7)

in which C denotes the optimal direction cosine matrix (DCM); Db
i =

(
Db

x,i, Db
y,i, Db

z,i

)>
and Dr

i =(
Dr

x,i, Dr
y,i, Dr

z,i

)>
are the i-th pair of normalized vector observations from the body frame b and the

reference frame r respectively; ai is the weight of the i-th sensor output, which is given by the standard
deviations of the input vectors from σ1 to σn:

ai =
σ2

tot
σ2

i
, σ2

tot =
1

n
∑

i=1

1
σ2

i

(8)

provided that the variance information such as shown in (6) is predetermined. Wahba’s problem92

is solved via many representative methods [33]. Many of these algorithms solve the problem via93

eigenvalue decompositions analytically or numerically [26,27]. When there are only one pair of vector94

observations, the Wahba’s solutions fail to obtain the optimal quaternion since there will be ambiguous95

quaternions corresponding to the maximum eigenvalue 1 [34,35]. In our previous contribution [36],96

the continuous stable quaternion solution to an accelerometer-based attitude determination system is97

derived.98

2.1. Quaternion from A Single Sensor Observation99

Considering an attitude determination model from a pair of vector observations

Db = CDr (9)

, this section deals with the attitude determination from a single pair of sensor observations. Note that
the DCM is decomposed with quaternions q = (q0, q1, q2, q3)

> [36] via:

C = (P1q, P2q, P3q) (10)



Version December 11, 2017 submitted to Remote Sens. 5 of 26

in which

P1 =

 q0 q1 −q2 −q3

−q3 q2 q1 −q0

q2 q3 q0 q1

 , P2 =

 q3 q2 q1 q0

q0 −q1 q2 −q3

−q1 −q0 q3 q2

 , P3 =

 −q2 q3 −q0 q1

q1 q0 q3 q2

q0 −q1 −q2 q3


(11)

In this section, the theory is extended to arbitrary sensor with exactly the similar approach in [36].
Inserting (10) into (9) gives

Db = (Dr
xP1 + Dr

yP2 + Dr
zP3)q (12)

It has been proved in [36] that
P>1 = P†

1, P>2 = P†
2, P>3 = P†

3 (13)

where † stands for the Moore-Penrose pseudo-inverse. In fact, another property can be shown in the100

following theorem101

Theorem 1. P1P>2 + P2P>1 = P1P>3 + P3P>1 = P2P>3 + P3P>2 = 03×3.102

Proof. This can be proved via brute-force calculation:

P1P>2 =

 0 −q1
0 + q2

1 + q2
2 − q2

3 2q0q1 + 2q2q3

q1
0 − q2

1 − q2
2 + q2

3 0 2q0q2 − 2q1q3

−2q0q1 − 2q2q3 −2q0q2 + 2q1q3 0


P2P>1 =

 0 q1
0 − q2

1 − q2
2 + q2

3 −2q0q1 − 2q2q3

−q1
0 + q2

1 + q2
2 − q2

3 0 −2q0q2 + 2q1q3

2q0q1 + 2q2q3 2q0q2 − 2q1q3 0


(14a)

P1P>3 =

 0 2q0q1 − 2q2q3 q1
0 − q2

1 + q2
2 − q2

3
−2q0q1 + 2q2q3 0 −2q1q2 − 2q0q3

−q1
0 + q2

1 − q2
2 + q2

3 2q1q2 + 2q0q3 0


P3P>1 =

 0 −2q0q1 + 2q2q3 −q1
0 + q2

1 − q2
2 + q2

3
2q0q1 − 2q2q3 0 2q1q2 + 2q0q3

q1
0 − q2

1 + q2
2 − q2

3 −2q1q2 − 2q0q3 0


(14b)

P2P>3 =

 0 2q0q2 + 2q1q3 −2q1q2 + 2q0q3

−2q0q2 − 2q1q3 0 q1
0 + q2

1 − q2
2 − q2

3
2q1q2 − 2q0q3 −q1

0 − q2
1 + q2

2 + q2
3 0


P3P>2 =

 0 −2q0q2 − 2q1q3 2q1q2 − 2q0q3

2q0q2 + 2q1q3 0 −q1
0 − q2

1 + q2
2 + q2

3
−2q1q2 + 2q0q3 q1

0 + q2
1 − q2

2 − q2
3 0


(14c)

103

Lemma 1. Let K(q) = (Dr
xP1 + Dr

yP2 + Dr
zP3), K>(q) = K†(q).104
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Proof. We have

K(q)K>(q)

= (Dr
xP1 + Dr

yP2 + Dr
zP3)(Dr

xP1 + Dr
yP2 + Dr

zP3)
>

= (Dr
x)

2P1P>1 +
(

Dr
y

)2
P2P>2 + (Dr

z)
2P3P>3

+Dr
xDr

y(P1P>2 + P2P>1 ) + Dr
xDr

z(P1P>3 + P3P>1 ) + Dr
yDr

z(P2P>3 + P3P>2 )

=

[
(Dr

x)
2 +

(
Dr

y

)2
+ (Dr

z)
2
]

I3×3

= I3×3

(15)

which gives Lemma 1.105

Hence (12) can be transformed into

Db = K(q)q⇒ K†(q)Db = q⇒ K>(q)Db = q (16)

Since K(q) is in the form of quaternion, K>(q)Db can be expanded by

K>(q)Db = Dr
xP>1 Db + Dr

yP>2 Db + Dr
zP>3 Db (17)

Also it can be obtained that

P>1 Db =


Db

xq0 + Db
z q2 − Db

yq3

Db
xq1 + Db

yq2 + Db
z q3

Db
z q0 + Db

yq1 − Db
xq2

−Db
yq0 + Db

z q1 − Db
xq3

 =


Db

x 0 Db
z −Db

y
0 Db

x Db
y Db

z
Db

z Db
y −Db

x 0
−Db

y Db
z 0 −Db

x

 q = M1q (18a)

P>2 Db =


Db

yq0 − Db
z q1 + Db

xq3

−Db
z q0 − Db

yq1 + Db
xq2

Db
xq1 + Db

yq2 + Db
z q3

Db
xq0 + Db

z q2 − Db
yq3

 =


Db

y −Db
z 0 Db

x
−Db

z −Db
y Db

x 0
0 Db

x Db
y Db

z
Db

x 0 Db
z −Db

y

 q = M2q (18b)

P>3 Db =


Db

z q0 + Db
yq1 − Db

xq2

Db
yq0 − Db

z q1 + Db
xq3

−Db
xq0 − Db

z q2 + Db
yq3

Db
xq1 + Db

yq2 + Db
z q3

 =


Db

z Db
y −Db

x 0
Db

y −Db
z 0 Db

x
−Db

x 0 −Db
z Db

y
0 Db

x Db
y Db

z

 q = M3q (18c)

Then we have
K>(q)Db = Dr

xM1q + Dr
yM2q + Dr

zM3q = Wq (19)

where W is given by
W = Dr

xM1 + Dr
yM2 + Dr

zM3 (20)

Therefore the attitude determination problem is shifted to

Wq = q (21)

Theorem 2. For any normalized vector observation pair
{

Dr, Db
}

, W2 = I, where I is the four-order identity106

matrix.107

Proof. The characteristic polynomial of W is given by

p(λ) = (λ− 1)2(λ + 1)2 (22)
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Then with Cayley-Hamilton Theorem, we substitute W for its eigenvalues and obtain(
W2 − I

)2
= 0 (23)

as W2 − I is real symmetric, it should be 0, which finishes the proof.108

In [36], we showed that (21) can be seen as an iterative dynamical system

q(n) = Wq(n− 1) (24)

where q(n) denotes the quaternion for the nth iteration. Also, as has been proved, the discrete system
can be converted to a corresponding continuous system. The stable solution to the continuous system
is calculated as

q =
W + I

2
qrand (25)

if W2 = I. Where qrand denotes an randomly-chosen unit quaternion. This provides us with a new109

approach to obtaining the measurement quaternion from a single strapdown sensor.110

3. Optimal Linear Estimator of Quaternion111

With (9), it is able to list all the single rotation equations together as follows:

Db
1 = CDr

1

Db
2 = CDr

2

...

Db
n = CDr

n

⇒



√
a1Db

1 =
√

a1CDr
1

√
a2Db

2 =
√

a2CDr
2

...
√

anDb
n =
√

anCDr
n

(26)

which can in turn be converted to 

√
a1q =

√
a1W1q

√
a2q =

√
a2W2q

...
√

anq =
√

anWnq

(27)

This system is rewritten as 

√
a1I
√

a2I
...
√

anI

 q =



√
a1W1
√

a2W2

...
√

anWn

 q (28)

Notice that

(
√

a1I,
√

a2I, · · · ,
√

anI)



√
a1I
√

a2I
...
√

anI

 =

(
n

∑
i=1

ai

)
I = I (29)

Hence the pre-multipication leads to

q =

(
n

∑
i=1

aiWi

)
q (30)
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It should be then noted that (28) is free of the existence of noises. In fact, the optimal attitude
determination i.e. the Wahba’s problem, has been proved as a total least-square problem in which
both the reference and observation models are corrupted by the stochastic items. In this case, the

maximum eigenvalue of
n
∑

i=1
aiWi in engineering practice is very close to the noise-free theoretical result

of 1. Corresponding with (24), based on the Brouwer’s fixed-point theorem, it is able to iteratively
obtain the normalized optimal quaternion by rotating a randomly given initial quaternion over and
over again till infinity. This is something similar with the power method of the numerical eigenvalue
factorization but can be accelerated with geometric-series-like iterations as follows

R =

(
n

∑
i=1

aiWi

)
R2 = R ·R
...

R2j
= R2j−1 · R2j−1

(31)

where R denotes the rotation operator over the Hamilton space H. In fact, the above iterations can
hardly be achieved when the maximum eigenvalue approaches 1. The reason is that at this time the
powerR2 approaches I as well. A more robust way is shown to solve this problem. Considering the
both sides of (28), we may find out that the right side is in fact the mixture of solutions to single vector
observation pairs. As mentioned in (25), a stable, continuous solution to each single equation can be
done by pre-multiplying 1

2 (Wi + I). Substituting 1
2 (Wi + I) for Wi, i.e.



√
a1I
√

a2I
...
√

anI

 q =



1
2
√

a1(W1 + I)

1
2
√

a2(W2 + I)

...
1
2
√

an(Wn + I)


q (32)

, the quaternion evolutes from the mixture of single optimal solution. Here, the rotation operator is
revised as

R =
n

∑
i=1

1
2

ai(Wi + I) =
1
2

(
I +

n

∑
i=1

aiWi

)
(33)

This equals to the least-square of the set of pre-computed single rotated quaternion, which is definitely
faster and more robust than rotation from a randomly given initial quaternion.

The covariance of the calculated optimal quaternion is equal to that of QUEST under the condition
of least-square optimality:

ΣQ,OLEQ =
1
4

σ2
tot

(
I−

n

∑
i=1

Db
{

Db
}>)

Σq,OLEQ = [qopt]

(
0 01×3

03×1 ΣQ,OLEQ

)
[qopt]

>
(34)
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where Q = (q1, q2, q3)
> is the vector part of the quaternion. [q] defines the following matrix

[q] =


q3 −q2 q1 q0

q2 q3 −q0 q1

−q1 q0 q3 q2

−q0 −q1 −q2 q3

 (35)

3.1. Variant One: Recursive-OLEQ112

We have seen from the above formulations that for each epoch, the vector observations are
batchedly processed thoroughly. When used in aerospace electronic systems, the measured vector
observation pairs in neighboring time epochs are usually continuous since they are always been
smoothed by the sum filters and low-pass filters (LPF). Therefore, with this consideration, the attitude
quaternion can be propagated from the last estimated one using the rotation operator described
before. In this way the quaternions are recursively computed with much less computations and the
accuracy is maintained. A more convenient clue is that for high reliable attitude determination systems,
high-precision rate gyroscopes are employed usually. This provides us with a second-stage accelerating
scheme, inspired by the conventional recursive algorithms like filter QUEST, REQUEST and etc. [37],
that we may first rotate the estimated quaternion in last time epoch with zero-order angular transition
matrix by

qk = Φk,k−1qk−1 (36)

where
Φk,k−1 = I +

∆t
2

[Ω×] (37)

in which ∆t is the sampling time and [Ω×] composed by the angular rate from the gyroscope, which
is detailed in many classical literatures. After this, even a single rotation byR would be very accurate
then. The one-step covariance matrix of the obtained quaternion is calculated by

Σqk ,ROLEQ = RΦk,k−1Σqk−1,ROLEQΦ>k,k−1R
> (38)

3.2. Variant Two: SOLEQ113

3.2.1. Two-Vector Case114

When there are two pairs of vector observations, regardless of the weights of respective sensors, it
is natural that the attitude quaternion may be computed via

q =
1
4
(W1 + I) (W2 + I) qrand (39)

where W1 and W2 are for the 1st and 2nd sensors. (25) is reasonable since we have[
1
2
(W + I)

]2
=

1
4

(
W2 + 2W + I

)
=

1
4
(2W + 2I) =

1
2
(W + I) (40)

However, for the two-vector case, one can write[
1
4
(W1 + I) (W2 + I)

]2
=

[
1
4
(W1W2 + W1 + W2 + I)

]2
6= 1

4
(W1 + I) (W2 + I) (41)
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This reflects that the accurate quaternion may be recursively computed with
qk =

1
4
(W1 + I) (W2 + I) qk−1

qk =
qk
‖qk‖

(42)

which exits when the Euler distance ‖qk − qk−1‖ is less than one predetermined threshold η. Note
that the above initialization procedure is equivalent to the following process

qj =

[
1
4
(W1 + I) (W2 + I)

]j
qrand

qj =
qj∥∥qj
∥∥

(43)

where j is chosen to make sure
∥∥qj − qj−1

∥∥ < η. Let us define some notations i.e. transformation
operators

A =
1
4
(W1 + I) (W2 + I) (44a)

B = A> =
1
4
(W2 + I) (W1 + I) (44b)

Theorem 3. For the two-vector attitude determination case, the steady-state evolution in (43) is not affected by
transformation operators’ order, such that

qj = Ajqrand

qj =
qj∥∥qj
∥∥ ⇔


qj = B jqrand

qj =
qj∥∥qj
∥∥ , j→ +∞ (45)

Proof. The integrated transformation can be computed by

AB =
1

16
(W1 + I) (W2 + I)2 (W1 + I) =

1
8
(W1 + I) (W2 + I) (W1 + I)

=
1
2
A (W1 + I) =

1
2
(W1 + I)B

(46)

and accordingly

BA =
1
2
B (W2 + I) =

1
2
(W2 + I)A (47)

These generate

ABA =
1
2
(W1 + I)BA =

1
4
(W1 + I) (W2 + I)A = A2 (48)

and
ABAB = A2B = A (AB) = 1

2
A2 (W1 + I) (49)

Finally, we have

(AB)j =
1
2
Aj (W1 + I) =

1
2
(W1 + I)B j (50)

This proves that the mixed steady-state transformation (AB)j can be achieved by independent115

transformations from A or B, which finishes the proof.116
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Following this theorem, the confronted problem is to compute the power Aj. In fact, A is formed
by 1

2 (W1 + I) and 1
2 (W2 + I). Their respective eigenvalue decomposition can be given by

1
2
(W1 + I) = V1S1V−1

1 = V1S1V>1
1
2
(W2 + I) = V2S2V−1

2 = V2S2V>2

(51)

where V and D are constituted by eigenvectors and eigenvalues respectively as (Wi + I) is real
symmetric [38]. Since W1 and W2 are in the same form, the eigenvalue matrices are equal to each other,
i.e.

S1 = S2 = S (52)

Then A can be rewritten as
A = V1SV>1 V2SV>2 (53)

Identically, we have
B = V2SV>2 V1SV>1 (54)

Combining (53) and (54), it is obtained that

AB = V1SV>1 V2SV>2 V2SV>2 V1SV>1 (55)

Note that
V1V>1 = V>1 V1 = V2V>2 = V>2 V2 = I (56)

(55) is simplified as
AB = V1SV>1 V2SSV>2 V1SV>1 (57)

Here we define
U = SV>1 V2S2V>2 V1S (58)

Actually it is decomposed by
U = HH>

H = SV>1 V2S
(59)

An interesting fact is that the eigenvalue matrix S can be analytically calculated and is given by

S = diag(0, 0, 1, 1) (60)

where diag(·) represents the diagonal matrix. This further yields H to be a matrix with the form of

H =


0 0 0 0
0 0 0 0
0 0 h1 h2

0 0 h3 h4

 (61)

Then U is computed by

U = HH> =


0 0 0 0
0 0 0 0
0 0 u1 u2

0 0 u3 u4

 =


0 0 0 0
0 0 0 0
0 0 h2

1 + h2
2 h1h3 + h2h4

0 0 h1h3 + h2h4 h2
3 + h2

4

 (62)
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where u2 = u3. Using this, we have

(AB)j = V1UV>1 V1UV>1 · · ·V1UV>1 = V1UjV>1 (63)

U can be decomposed with eigenvalue decomposition as well, such that

U = VUSUVT
U (64)

which can be analytically given by

SU = diag
(

0, 0,−1
2

√
∆ +

u1 + u4
2

,+
1
2

√
∆ +

u1 + u4
2

)

VU =


1 0 0 0
0 1 0 0

0 0 −u1+u4+
√

∆
2u2

u1−u4+
√

∆
2u2

0 0 1 1


(65)

with
∆ = u2

1 − 2u1u4 + 4u2
2 + u2

4 (66)

Letting

λU,1 = −1
2

√
∆ +

u1 + u4
2

λU,2 = +
1
2

√
∆ +

u1 + u4
2

(67)

, Uj is finally computed by

Uj = VUSjVT
U = VUdiag(0, 0, λ

j
U,1, λ

j
U,2)V

T
U (68)

Therefore
(AB)j = V1UjV>1 = V1VUdiag(0, 0, λ

j
U,1, λ

j
U,2)V

>
UV>1 (69)

Required computation of Vi is given by

1
2
(Wi + I) = ṼiSṼ−1

i (70)

where Ṽi(x, y) stands for the element of Ṽi in x-th row and y-th column, whose details are given by
(71)

Ṽi(1, 1) = +
1
Vi
(Db

x,i − Dr
x,i)(Db

z,i − Dr
z,i)

Ṽi(1, 2) = − 1
Vi
(Db

x,i − Dr
x,i)(Db

y,i − Dr
y,i)

Ṽi(1, 3) = +
1
Vi
(Db

x,i + Dr
x,i)(Db

z,i + Dr
z,i)

Ṽi(1, 4) = − 1
Vi
(Db

x,i + Dr
x,i)(Db

y,i + Dr
y,i)

(71a)
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Ṽi(2, 1) = +
1
Vi
(Db

x,i − Dr
x,i)(Db

y,i + Dr
y,i)

Ṽi(2, 2) = +
1
Vi
(Db

x,i − Dr
x,i)(Db

z,i + Dr
z,i)

Ṽi(2, 3) = +
1
Vi
(Db

x,i + Dr
x,i)(Db

y,i − Dr
y,i)

Ṽi(2, 4) = +
1
Vi
(Db

x,i + Dr
x,i)(Db

z,i − Dr
z,i)

(71b)

Ṽi(3, 1) = 1 Ṽi(3, 2) = 0 Ṽi(3, 3) = 1 Ṽi(3, 4) = 0

Ṽi(4, 1) = 0 Ṽi(4, 2) = 1 Ṽi(4, 3) = 0 Ṽi(4, 4) = 1
(71c)

in which the factor is computed by

Vi =
(

Db
y,i

)2
+
(

Db
z,i

)2
−
(

Dr
y,i

)2
−
(

Dr
z,i
)2 (72)

Related information can also be acquired from [25]. It should be noted that

ṼiṼ>i 6= Ṽ>i Ṽi 6= I (73)

Thus the Gram-Schmidt orthogonalization should be applied to Ṽi, enabling ViVi
> = Vi

>Vi = I [38].
A typical commitment to achieve this is to compute the QR decomposition [39], such that

ViR = Ṽi (74)

where R denotes an invertible upper triangular matrix. If qrand = (1, 0, 0, 0), the suboptimal quaternion117

is equal to the normalized first column of (AB)j.118

3.2.2. n-Vector Case119

Corresponding to the above notations and derivations, the n-vector case’s transformation
operators are defined by

A = V1SV>1 · · ·ViSV>i · · ·VnSV>n
B = VnSV>n · · ·ViSV>i · · ·V1SV>1

(75)

Defining

H = SV>1

(
n−1

∏
i=2

ViSV>i

)
VnS =

1
2n−2 SV>1

[
n−1

∏
i=2

(Wi + I)

]
VnS (76)

, we have
U = SV>1 · · ·ViSV>i · · ·VnS2V>n · · ·ViSV>i · · ·V1S = HH> (77)

Then
AB = V1UV>1 ⇒ (AB)j = V1UjV>1 = V1VUdiag(0, 0, λ

j
U,1, λ

j
U,2)V

>
UV>1 (78)

Accordingly, the normalized first column of (AB)j constitutes the attitude quaternion.120

121
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3.2.3. The Effect of Power Order122

In this sub-section we show that the selection of j is in fact not influential to the final result at all.
Letting

g1 =
−u1 + u4 +

√
∆

2u2

g2 =
u1 − u4 +

√
∆

2u2

(79)

we have

(AB)j(x, y) = V1VUdiag(0, 0, λ
j
U,1, λ

j
U,2)V

>
UV>1

= [V1(y, 4) + V1(y, 3)g1] [V1(x, 4) + V1(x, 3)g1] λ
j
U,1 + [V1(y, 4) + V1(y, 3)g2] [V1(x, 4) + V1(x, 3)g2] λ

j
U,2

(80)
Here we also have

λU,2 > λU,1 > 0 (81)

since
u1 + u4 = h2

1 + h2
2 + h2

3 + h2
4 > 0 (82)

and
∆− (u1 + u4)

2 = −4u1u4 + 4u2
2

= 4
[
(h1h3 + h2h4)

2 −
(

h2
1 + h2

2

) (
h2

3 + h2
4

)]
= 4

[
h2

1h2
3 + h2

2h2
4 + 2h1h2h3h4 − h2

1h2
3 − h2

2h2
3 − h2

1h2
4 − h2

2h2
4

]
= −4(h2h3 − h1h4)

2 < 0

(83)

Therefore with increasing iteration numbers, the item multiplied by λ
j
U,1 gradually vanishes in the

results. The limiting result of AB j turns out to be

lim
j→+∞

(AB)j(x, y) = [V1(y, 4) + V1(y, 3)g2] [V1(x, 4) + V1(x, 3)g2] λ
j
U,2 (84)

And the quaternion solution is none about which column of AB j, and the result is the normalization
of the following vector

_q =


V1(1, 4) + V1(1, 3)g2

V1(2, 4) + V1(2, 3)g2

V1(3, 4) + V1(3, 3)g2

V1(4, 4) + V1(4, 3)g2

 (85)

3.3. Discussion of OLEQs123

The three derived OLEQs can be used in different occasions. The OLEQ incorporates the weights124

so that the determination results are optimal in the sense of lease square. When there is aid of gyroscope,125

the ROLEQ can achieve faster and more smooth estimates. The meaning of the proposed SOLEQ is126

that it owns very simple linear expression that may generate short and tidy analytic results for certain127

sensor combinations. Also, when required in application where the weights can hardly be accurately128

determined e.g. vision attitude determination, the SOLEQ could be an alternative choice, as well. The129

attitude determination results of the three OLEQs are evaluated in the following experimental section.130
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4. Simulations and Experiments131

4.1. Simulation: Common Cases132

In this sub-section, the sensor observations are simulated with random reference vectors and true
DCM in

Db = CtrueDr + ε (86)

where ε is the noise item which is supposed to be independent and subject to Gaussian distribution.
The reference vectors and the standard deviations of noise items are selected according to the classical
test samples by Markley (see Table 1), where the reference DCM Ctrue is

Ctrue =

 0.352 0.864 0.360
−0.864 0.152 0.480
0.360 −0.480 0.800

 (87)

Table 1. Test Cases

Case Reference Vectors Noise Standard Deviations

1 Dr
1 = [1, 0, 0]>, Dr

2 = [0, 1, 0]>, Dr
3 = [0, 0, 1]> σ1 = 10−6, σ2 = 10−6, σ3 = 10−6

2 Dr
1 = [1, 0, 0]>, Dr

2 = [0, 1, 0]> σ1 = 10−6, σ2 = 10−6

3 Dr
1 = [1, 0, 0]>, Dr

2 = [0, 1, 0]>, Dr
3 = [0, 0, 1]> σ1 = 0.01, σ2 = 0.01, σ3 = 0.01

4 Dr
1 = [1, 0, 0]>, Dr

2 = [0, 1, 0]> σ1 = 0.01, σ2 = 0.01
5 Dr

1 = [0.6, 0.8, 0]>, Dr
2 = [0.8,−0.6, 0]> σ1 = 10−6, σ2 = 0.01

6 Dr
1 = [1, 0, 0]>, Dr

2 = [1, 0.01, 0]>, Dr
3 = [1, 0, 0.01]> σ1 = 10−6, σ2 = 10−6, σ3 = 10−6

7 Dr
1 = [1, 0, 0]>, Dr

2 = [1, 0.01, 0]> σ1 = 10−6, σ2 = 10−6

8 Dr
1 = [1, 0, 0]>, Dr

2 = [1, 0.01, 0]>, Dr
3 = [1, 0, 0.01]> σ1 = 0.01, σ2 = 0.01, σ3 = 0.01

9 Dr
1 = [1, 0, 0]>, Dr

2 = [1, 0.01, 0]> σ1 = 0.01, σ2 = 0.01
10 Dr

1 = [1, 0, 0]>, Dr
2 = [0.96, 0.28, 0]>, Dr

3 = [0.96, 0, 0.28]> σ1 = 10−6, σ2 = 0.01, σ3 = 0.01
11 Dr

1 = [1, 0, 0]>, Dr
2 = [0.96, 0.28, 0]> σ1 = 10−6, σ2 = 0.01

12 Dr
1 = [1, 0, 0]>, Dr

2 = [0.96, 0.28, 0]> σ1 = 0.01, σ2 = 10−6

Using the simulated samples, the mean attitude root mean-squared errors (RMSEs) in Euler angles133

are evaluated with our proposed algorithms OLEQ, SOLEQ and representative algorithms including134

QUEST and FLAE, which are shown in Table 2, 3, 4. Table 5 contains the computed average Wahba’s135

loss function values by different cases and algorithms. These algorithms are executed on the MATLAB136

r2016 software on a PC for 10000 times with each data sample.137

Table 2. Roll RMSE (deg)

Case OLEQ SOLEQ QUEST FLAE

1 4.3516× 10−05 6.1268× 10−05 4.3516× 10−05 4.3516× 10−05

2 5.9303× 10−05 6.0734× 10−05 5.9303× 10−05 5.9303× 10−05

3 4.3482× 10−01 6.0730× 10−01 4.3482× 10−01 4.3482× 10−01

4 6.0292× 10−01 6.1798× 10−01 6.0292× 10−01 6.0292× 10−01

5 4.3313× 10−01 4.3313× 10−01 4.9065× 10−01 2.4281× 10+01

6 4.9590× 10−03 3.0793× 10−01 4.9590× 10−03 4.9590× 10−03

7 8.1132× 10−03 1.3400× 10+00 8.1132× 10−03 8.1132× 10−03

8 5.9553× 10+01 6.2840× 10+01 5.9553× 10+01 5.9553× 10+01

9 7.6662× 10+01 7.6696× 10+01 7.6662× 10+01 7.6662× 10+01

10 1.4313× 10+00 1.7781× 10+00 4.7663× 10+01 1.5265× 10+00

11 2.0254× 10+00 2.0254× 10+00 4.6392× 10+01 2.8441× 10+00

12 2.0818× 10+00 2.0888× 10+00 3.7218× 10+01 1.7415× 10+01
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Table 3. Pitch RMSE (deg)

Case OLEQ SOLEQ QUEST FLAE

1 4.0108× 10−05 5.7335× 10−05 4.0108× 10−05 4.0108× 10−05

2 5.2860× 10−05 5.6736× 10−05 5.2860× 10−05 5.2860× 10−05

3 4.0104× 10−01 5.6744× 10−01 4.0104× 10−01 4.0104× 10−01

4 5.3887× 10−01 5.7656× 10−01 5.3887× 10−01 5.3887× 10−01

5 3.9149× 10−01 3.9149× 10−01 4.4335× 10−01 1.2561× 10+01

6 4.0121× 10−05 5.7809× 10−05 4.0121× 10−05 4.0121× 10−05

7 5.3398× 10−05 5.7657× 10−05 5.3398× 10−05 5.3398× 10−05

8 3.6755× 10−01 5.7326× 10−01 3.6755× 10−01 3.6755× 10−01

9 4.5938× 10−01 5.7880× 10−01 4.5938× 10−01 4.5938× 10−01

10 5.7186× 10−05 5.7186× 10−05 5.7184× 10−05 5.7186× 10−05

11 5.7845× 10−05 5.7845× 10−05 5.7846× 10−05 5.7844× 10−05

12 4.9161× 10−01 5.7554× 10−01 7.9376× 10+00 3.9359× 10+00

Table 4. Yaw RMSE (deg)

Case OLEQ SOLEQ QUEST FLAE

1 4.3587× 10−05 6.1084× 10−05 4.3587× 10−05 4.3587× 10−05

2 4.8694× 10−05 6.1015× 10−05 4.8694× 10−05 4.8694× 10−05

3 4.4127× 10−01 6.0868× 10−01 4.4127× 10−01 4.4127× 10−01

4 4.8593× 10−01 6.1289× 10−01 4.8593× 10−01 4.8593× 10−01

5 2.5186× 10−01 2.5186× 10−01 2.8536× 10−01 1.7459× 10+01

6 3.6421× 10−05 6.1651× 10−05 3.6421× 10−05 3.6421× 10−05

7 4.8748× 10−05 6.0826× 10−05 4.8748× 10−05 4.8748× 10−05

8 3.9812× 10−01 6.1557× 10−01 3.9812× 10−01 3.9812× 10−01

9 4.9366× 10−01 6.1163× 10−01 4.9366× 10−01 4.9366× 10−01

10 6.1834× 10−05 6.1834× 10−05 6.1836× 10−05 6.1844× 10−05

11 6.2069× 10−05 6.2069× 10−05 6.2069× 10−05 6.2077× 10−05

12 3.1726× 10−01 6.1275× 10−01 5.1968× 10+00 2.8814× 10+00

Table 5. Loss Function Values

Case OLEQ SOLEQ QUEST FLAE

1 5.0651× 10−13 1.0130× 10−12 5.0651× 10−13 5.0651× 10−13

2 2.4901× 10−13 4.9802× 10−13 2.4901× 10−13 2.4901× 10−13

3 4.9338× 10−05 9.8666× 10−05 4.9338× 10−05 4.9338× 10−05

4 2.5369× 10−05 5.0736× 10−05 2.5369× 10−05 2.5369× 10−05

5 5.0582× 10−13 5.0582× 10−13 6.5095× 10−13 8.5878× 10−10

6 5.0422× 10−13 9.4333× 10−10 5.0422× 10−13 5.0422× 10−13

7 2.4728× 10−13 8.8239× 10−09 2.4728× 10−13 2.4728× 10−13

8 4.8216× 10−05 1.1593× 10−04 4.8216× 10−05 4.8216× 10−05

9 2.5327× 10−05 5.0651× 10−05 2.5327× 10−05 2.5327× 10−05

10 1.4827× 10−12 1.7575× 10−12 4.8431× 10−10 1.7195× 10−12

11 4.8573× 10−13 4.8573× 10−13 2.4106× 10−10 9.2333× 10−13

12 5.0105× 10−13 5.0105× 10−05 1.3143× 10−10 3.4336× 10−11

We first observe the attitude RMSEs. From the results of OLEQ, QUEST and FLAE, it is noticeable138

to determine that they have the similar attitude determination accuracy. Combining the same statistics139

in Table 5, the proposed OLEQ is well verified for its optimality. From the presented results, we see140

that SOLEQ has larger attitude errors and loss function values other optimal methods. The proposed141

SOLEQ is sub-optimal as it actually approximates the attitude estimator where the weights are ignored.142
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Therefore, this simulation scenario has validated the correctness and optimality of the proposed OLEQ143

and SOLEQ.144

4.2. Simulation: Extreme Cases145

Dr
1 =


1

0

0

 , Dr
2 =


−0.99712

0.07584

0

 , Dr
3 =


−0.99712

−0.07584

0


σ1 = 1 arcsec, σ2 = σ3 = 1 deg

(88)

Conventional Wahba’s solutions face dilemma when exposed to some critical pairs of vector146

observations. For instance, Markley and Mortari give an example where the sensors are configured147

by (88) [40]. In such scenario, the root of the characteristic polynomial of the Davenport matrix can148

not be easily obtained by Newton iterations. The internal reason is given by Cheng [41] showing149

that it is resulted in by numerical loss according to the specific CPU word storage length. A flexible150

transformation of the characteristic polynomial is proposed then to significantly boost the convergence.151

As such configurations indeed happen in engineering practice, there is necessity to evaluate the152

proposed schemes by comparisons with representative solvers. With similar simulation techniques153

aforementioned, the vectors are simulated with given reference vectors and standard deviations by154

rotation of Ctrue. Here the QUEST algorithm is revised to the Cheng’s form. First, we mainly compare155

the two iterative methods QUEST and OLEQ because in our existing paper [25] the QUEST and156

FLAE have been proved to have very similar behaviour facing this extreme case. Here the iteration157

stops when the Euclidean norm of neighboring attitude quaternion difference is less than 1× 10−8.158

For QUEST, the maximum iteration number is set to 50. The obtained results are depicted in Fig.159

1. We can see that the supervised QUEST can obtain accurate quaternion solutions within several160

iterations. Actually, before the Cheng’s improvement, the QUEST may exceed the maximum iteration161

number from time to time. The proposed OLEQ, however, shows better performance dealing with162

this extreme case. Also, the final mean loss function values of the two algorithms are computed as163

4.9890× 10−11 and 2.8391× 10−10, which reveals that the proposed OLEQ can not only obtain faster164

solutions, but leads to smaller loss function values, compared with supervised QUEST. As is known to165

everyone, QUEST is the most representative Wahba’s solution using Davenport’s q-method. Many166

other algorithms like ESOQ, FOAM actually have the same performance with QUEST. Therefore, in167

this way, the OLEQ is proved to be faster and more robust than the whole class of the algorithms based168

on Davenport’s q-method. This also shows that the presented novel attitude evolution method shows169

brand new abilities.170

Figure 1. Iteration numbers of QUEST and OLEQ in face of an extreme case.
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Figure 2. Designed hardware for algorithm implementation.

4.3. Experiment: Accelerometer-Magnetometer Case171

In this sub-section, we conduct an experiment where the accelerometer-magnetometer172

combination is adopted. Such sensor combination is extensively applied in nowadays low-cost173

attitude estimation schemes. The accelerometer is pre-calibrated using the 6-face bias cancelling while174

the magnetometer is calibrated using the method proposed by Y. Wu et al. [42].175

The hardware is constituted by a battery, a high-end attitude and heading reference system176

(AHRS) with high precision internal accelerometer, magnetometer and gyroscope, a transmitter for177

remote data transmission and a micro controller for implementation of the algorithm using C++178

language on the FreeRTOS. With the designed hardware platform shown in Fig. 2, we collect a data set179

with 10000 samplings.180

The main purpose of this sub-section is to validate the performances of the proposed OLEQ,181

SOLEQ and ROLEQ since the AHRS has angular rate readouts. The compared results with the reference182

angles from representative methods are obtained (see Fig. 3, 4, 5). Note that here the weights between183

the accelerometer and magnetometer for Wahba’s solution are chosen as 0.63 and 0.37 according to184

their respective noise characteristics. Yet, the local magnetometer’s reference vector is calculated as185

Mr = (0.60311, 0,−0.79766)> in Wuxi, Jiangsu Province, China.186

In Fig. 3, the reference angles, QUEST solutions and SOLEQ solutions have been presented. The187

results indicate that the proposed sub-optimal estimator can estimate the attitude angles with similar188

macroscopic accuracy. Detailed attitude errors are plotted in Fig. 4 and 5. We may notice that in189

general, these algorithms have the same errors with respect to reference. The second picture shows190

that the overall attitude accuracy of the ROLEQ is slightly smaller than the others. This is because it is191

first processed by the angular rate data, which can be equivalent to a smoothing procedure.192
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Figure 3. Experiment results using QUEST and SOLEQ.

Figure 4. Experiment results of OLEQ, SOLEQ and representative algorithms using sampled data and
different algorithms.
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Figure 5. Experiment results of ROLEQ and representative algorithms using sampled data and different
algorithms.

4.4. Experiment: GNSS Attitude Determination for Land Vehicles193

The GNSS receiver is widely employed in the attitude determination tasks for land and unmanned194

aerial vehicles. In this experiment, we use a designed rover (see Fig. 6) to validate the feasibility of the195

proposed algorithm for GNSS attitude determination.196

Figure 6. The designed multi-functional rover for validation of proposed algorithms.
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The rover is armed with the aforementioned navigation computer and employs an external197

ublox M8N GPS module with serial comm connection to the board at the sampling frequency of198

5Hz. This rover is controlled by a handheld 2.4GHz transmitter and the onboard Pixhawk autopilot199

generates PID controlling commands to the servos and motors according to internal measurements.200

In this experiment, the rover is ran on a playground of UESTC and we pick up one period of data201

in which the GPS velocity is valid. In the data history, the magnetometer was distorted by outer202

unknown electromagnetic and ferromagnetic fields. Also, during the execution process, sensor raw203

measurements from gyroscope, accelerometer are also logged with the speed of 250Hz. The raw data204

is shown in Fig. 7.205

Figure 7. Raw sensor measurements from the logging memory.

According to the sensor noise characteristics, the weights of the accelerometer-magnetometer206

combination are given by 0.9 and 0.1 respectively. While for the accelerometer-magnetometer-GNSS207

one, the weights are chosen as 0.474, 0.05, 0.474 respectively. The reference vector of magnetometer is208

determined by the initial GPS position with the IGRF model. By making use of algorithms including209

QUEST, FLAE, OLEQ and SOLEQ, the computation results are summarized in Fig. 8 and 9.210
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Figure 8. Attitude determination from accelerometer, magnetometer and velocity output of GNSS
receiver, by means of QUEST and FLAE.

We especially add the GPS velocity norm under Euler angle results to illustrate the influence of the211

velocity scalar to the attitude determination results. In principle, when the vehicle is not moving with212

relative discriminative velocities, the GPS receiver can not give accurate speed estimates. Therefore, it213

is shown in the initial stage of the attitude determination results where GNSS takes part in that the214

determination accuracy of the yaw angle is seemingly very poor. As the velocity increases, the accuracy215

is improved very fast accordingly. The accelerometer-magnetometer combination is largely distorted216

by the magnetic disaturbances. The integrated results of roll, pitch and more over, the yaw angles are217

influenced generating very obvious differences with reference angles. With the aid of GNSS velocity,218

the corresponding attitude determination accuracy is not damaged because the Wahba’s solution219

balances the sensor inputs by the weights. It is observed that the OLEQ is validated to have almost220

the same accuracy for normal sensors in aforementioned section and in this section such behaviour221

holds as well. The SOLEQ, however, does not employs the weights and therefore produces relative222

bad estimates but for GNSS case, it is still better than accelerometer-magnetometer ones. The results223

provided us with the information of the validity of the proposed algorithms especially the OLEQ.224
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Figure 9. Attitude determination from accelerometer, magnetometer and velocity output of GNSS
receiver, by means of OLEQ and SOLEQ.

4.5. Computation Time225

From another point of view, the time consumption of various algorithms should be investigated.226

The time consumption is calculated on the embedded platform by C++ programming language that227

ensures the fairness. A rough evaluation is done with two pairs of vector observations in few samples228

which shows direct time consumption results (see Fig. 10). As shown in the figure, for two pairs of229

vector observations, the three proposed algorithms’ computation times are between QUEST and FLAE.230

However, from the expressions of the algorithms presented before, the number of vector observations231

is influential to the final time consumption. Hence with the simulation samples, each algorithm is232

again tested for 20000 times with different vector observation numbers. The time consumption is233

averaged, which is plotted in Fig. 11. The results show that the algorithms are all linear owning234

the time complexities of O(n). QUEST, OLEQ and ROLEQ join at the vector observation number of235

20. For common tasks, such number covers most sensor amounts. Although FLAE owns the least236

time consumption, it can not overcome drawbacks of extreme cases so well as OLEQ. That is to237

say, the proposed algorithms can replace the original algorithms for faster and more robust attitude238

determination.239
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Figure 10. Time consumption of various algorithms.

Figure 11. Time consumption of algorithms with respect to numbers of vector observations.
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5. Conclusion240

This paper revisits the attitude determination from vector observation for a GNSS/AM case241

study. Novel linear algorithms are designed to obtain accurate attitude estimates in the sense of242

least-square. Handling in this manner, the computed quaternion is identical or suboptimal with243

respect to conventional Wahba’s solutions including QUEST and FLAE. Numerical simulations exhibit244

that the proposed OLEQs own the similar accuracy with representative solvers. It is also evaluated245

that facing extreme cases, the OLEQs show much more robustness less computation iterations. The246

computation speeds of OLEQs are tested revealing that they belong to computationally efficient247

algorithms. Moreover, a real vehicular experiment of GNSS/AM system is designed and conducted248

showing the effectiveness of the proposed OLEQs in real-world embedded applications. The presented249

approach provides the audience with a brand new viewpoint of attitude evolution and hopefully250

would benefit related multi-sensor attitude determination applications.251
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