F. W. Huang, Highly Recurrent TERT Promoter Mutations in Human Melanoma, Science, vol.38, issue.5, pp.957-959, 2013.
DOI : 10.1038/ng1777

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423787

J. Vinagre, Frequency of TERT promoter mutations in human cancers, Nature Communications, vol.30, p.2185, 2013.
DOI : 10.1038/onc.2010.512

X. S. Puente, Non-coding recurrent mutations in chronic lymphocytic leukaemia, Nature, vol.29, issue.7574, pp.519-524, 2015.
DOI : 10.2307/2529177

URL : https://digital.csic.es/bitstream/10261/135722/1/accesoRestringido.pdf

S. Nik-zainal, Landscape of somatic mutations in 560 breast cancer whole-genome sequences, Nature, vol.14, issue.7605, pp.47-54, 2016.
DOI : 10.1093/bioinformatics/btq170

URL : https://hal.archives-ouvertes.fr/hal-01388447

L. B. Alexandrov, Signatures of mutational processes in human cancer, Nature, vol.27, issue.7463, pp.415-421, 2013.
DOI : 10.1093/bioinformatics/btr354

A. Mehta and J. Haber, Sources of DNA Double-Strand Breaks and Models of Recombinational DNA Repair, Cold Spring Harbor Perspectives in Biology, vol.6, issue.9, p.16428, 2014.
DOI : 10.1101/cshperspect.a016428

R. Ceccaldi, B. Rondinelli, and A. D. Andrea, Repair Pathway Choices and Consequences at the Double-Strand Break, Trends in Cell Biology, vol.26, issue.1, pp.52-64, 2016.
DOI : 10.1016/j.tcb.2015.07.009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862604

S. Morganella, The topography of mutational processes in breast cancer genomes, Nature Communications, vol.8, p.11383, 2016.
DOI : 10.1371/journal.pgen.1003036

T. Helleday, S. Eshtad, and S. Nik-zainal, Mechanisms underlying mutational signatures in human cancers, Nature Reviews Genetics, vol.96, issue.9, pp.585-598, 2014.
DOI : 10.1038/nrc2998

N. Waddell, Whole genomes redefine the mutational landscape of pancreatic cancer, Nature, vol.16, issue.7540, pp.495-501, 2015.
DOI : 10.1158/1078-0432.CCR-10-1027

A. M. Patch, Whole???genome characterization of chemoresistant ovarian cancer, Nature, vol.123, issue.7553, pp.489-494, 2015.
DOI : 10.1101/gr.129684.111

F. Menghi, The tandem duplicator phenotype as a distinct genomic configuration in cancer, Proc. Natl. Acad. Sci. USA, pp.2373-2382, 2016.
DOI : 10.1126/scisignal.2004088

D. J. Mcbride, Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes, The Journal of Pathology, vol.11, issue.4, pp.446-455, 2012.
DOI : 10.1093/biostatistics/kxp045

P. J. Stephens, Complex landscapes of somatic rearrangement in human breast cancer genomes, Nature, vol.82, issue.7276, pp.1005-1010, 2009.
DOI : 10.1016/j.dnarep.2004.12.005

S. Nik-zainal, Mutational Processes Molding the Genomes of 21 Breast Cancers, Cell, vol.149, issue.5, pp.979-993, 2012.
DOI : 10.1016/j.cell.2012.04.024

B. Nilsson, M. Johansson, A. Heyden, S. Nelander, and T. Fioretos, An improved method for detecting and delineating genomic regions with altered gene expression in cancer, Genome Biology, vol.9, issue.1, p.13, 2008.
DOI : 10.1186/gb-2008-9-1-r13

G. Nilsen, Copynumber: Efficient algorithms for single- and multi-track copy number segmentation, BMC Genomics, vol.13, issue.1, p.591, 2012.
DOI : 10.1093/bioinformatics/btn067

URL : http://doi.org/10.1186/1471-2164-13-591

M. Garcia-closas, Genome-wide association studies identify four ER negative?specific breast cancer risk loci, Nature Genetics, vol.9, issue.4, pp.392-398, 2013.
DOI : 10.1093/nar/gks542

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771695

D. F. Easton, Genome-wide association study identifies novel breast cancer susceptibility loci, Nature, vol.70, issue.7148, pp.1087-1093, 2007.
DOI : 10.1038/nature05887

S. Li, Endocrine-Therapy-Resistant ESR1 Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts, Cell Reports, vol.4, issue.6, pp.1116-1130, 2013.
DOI : 10.1016/j.celrep.2013.08.022

D. R. Robinson, Activating ESR1 mutations in hormone-resistant metastatic breast cancer, Nature Genetics, vol.13, issue.12, pp.1446-1451, 2013.
DOI : 10.1593/neo.111252

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009946

L. Soucek, Modelling Myc inhibition as a cancer therapy, Nature, vol.10, issue.7213, pp.679-683, 2008.
DOI : 10.1038/nature07260

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4485609

J. Shi, Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation, Genes & Development, vol.27, issue.24, pp.2648-2662, 2013.
DOI : 10.1101/gad.232710.113

X. Zhang, Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers, Nature Genetics, vol.511, issue.2, pp.176-182, 2016.
DOI : 10.1038/nmeth.3047

L. Costantino, Break-Induced Replication Repair of Damaged Forks Induces Genomic Duplications in Human Cells, Science, vol.12, issue.6166, pp.88-91, 2014.
DOI : 10.1371/journal.pgen.1003192

N. A. Willis, E. Rass, and R. Scully, Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement, Trends in Cancer, vol.1, issue.4, pp.217-230, 2015.
DOI : 10.1016/j.trecan.2015.10.007

N. Saini, Migrating bubble during break-induced replication drives conservative DNA synthesis, Nature, vol.18, issue.7471, pp.389-392, 2013.
DOI : 10.1214/aoms/1177730491

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804423

C. A. Sloan, ENCODE data at the ENCODE portal, Nucleic Acids Research, vol.44, issue.D1, pp.726-732, 2016.
DOI : 10.1093/nar/gkv1160

URL : http://doi.org/10.1093/nar/gkv1160

F. Castro-giner, P. Ratcliffe, and I. Tomlinson, The mini-driver model of polygenic cancer evolution, Nature Reviews Cancer, vol.1805, issue.11, pp.680-685, 2015.
DOI : 10.1093/jnci/dju402

A. Roy, Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney, Nature Communications, vol.7, p.8891, 2015.
DOI : 10.1371/journal.pcbi.1001138

D. R. Zerbino and E. Birney, Velvet: Algorithms for de novo short read assembly using de Bruijn graphs, Genome Research, vol.18, issue.5, pp.821-829, 2008.
DOI : 10.1101/gr.074492.107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2336801

A. Cox, A common coding variant in CASP8 is associated with breast cancer risk, Nature Genetics, vol.358, issue.3, pp.352-358, 2007.
DOI : 10.1002/ijc.11358

D. F. Easton, A Systematic Genetic Assessment of 1,433 Sequence Variants of Unknown Clinical Significance in the BRCA1 and BRCA2 Breast Cancer?Predisposition Genes, The American Journal of Human Genetics, vol.81, issue.5, pp.873-883, 2007.
DOI : 10.1086/521032

S. Ahmed, Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2, Nature Genetics, vol.41, issue.5, pp.585-590, 2009.
DOI : 10.1038/ng2142

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748125

K. Michailidou, Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer, Nature Genetics, vol.490, issue.4, pp.373-380, 2015.
DOI : 10.1038/nature11412

A. Siddiq, A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11, Human Molecular Genetics, vol.21, issue.24
DOI : 10.1093/hmg/dds381

S. N. Stacey, Common variants on chromosome 5p12 confer susceptibility to estrogen receptor?positive breast cancer, Nature Genetics, vol.40, issue.6, pp.703-706, 2008.
DOI : 10.1158/1078-0432.CCR-05-1530

G. Thomas, A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24, Nat. Genet, vol.1, issue.41, pp.579-584, 2009.

C. Turnbull, Genome-wide association study identifies five new breast cancer susceptibility loci, Nature Genetics, vol.447, issue.6, pp.504-507, 2010.
DOI : 10.1093/bioinformatics/btm108

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3632836

Y. Wei, SEA: a super-enhancer archive, Nucleic Acids Research, vol.44, issue.D1, pp.172-179, 2016.
DOI : 10.1093/nar/gkv1243

URL : http://doi.org/10.1093/nar/gkv1243

D. R. Zerbino, S. P. Wilder, N. Johnson, T. Juettemann, and P. Flicek, The Ensembl Regulatory Build, Genome Biology, vol.30, issue.1, p.56, 2015.
DOI : 10.1093/bioinformatics/btt737

URL : http://doi.org/10.1186/s13059-015-0621-5