
HAL Id: hal-01525745
https://hal.inria.fr/hal-01525745

Submitted on 24 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Output-Sensitive Pattern Discovery in Massive
Sequences using the Motif Trie

Roberto Grossi, Giulia Menconi, Nadia Pisanti, Roberto Trani, Søren Vind

To cite this version:
Roberto Grossi, Giulia Menconi, Nadia Pisanti, Roberto Trani, Søren Vind. Fast Output-Sensitive
Pattern Discovery in Massive Sequences using the Motif Trie. Theoretical Computer Science, Elsevier,
2017, pp.25. <10.1016/j.tcs.2017.04.012>. <hal-01525745>

https://hal.inria.fr/hal-01525745
https://hal.archives-ouvertes.fr

Fast Output-Sensitive Pattern Discovery in
Massive Sequences using the Motif Trie∗

Roberto Grossi
Dipartimento di Informatica

Università di Pisa
grossi@di.unipi.it

Giulia Menconi
Dipartimento di Informatica

Università di Pisa
menconigiulia@gmail.com

Nadia Pisanti
Dipartimento di Informatica

Università di Pisa
pisanti@di.unipi.it

Roberto Trani
Dipartimento di Informatica

Università di Pisa
tranir@cli.di.unipi.it

Søren Vind
DTU Compute

Technical University of Denmark
sovi@dtu.dk

June 4, 2016

Abstract

Genomic analysis, plagiarism detection, data mining, intrusion detection, spam
fighting and time series analysis are just some examples of applications where extraction
of recurring patterns in sequences of objects is one of the main computational challenges.
Several notions of patterns exist, and many share the common idea of strictly specifying
some parts of the pattern and to don’t care about the remaining parts. We address the
problem of extracting maximal patterns with at most k don’t care symbols and at least
q occurrences. Our contribution is to give the first algorithm that attains a stronger
notion of output-sensitivity, borrowed from the analysis of data structures: the cost is
proportional to the actual number of occurrences of each pattern, which is at most n
and practically much smaller than n in real applications, thus avoiding the best-known
cost of O(nc) per pattern, for constant c > 1, which is impractical for massive sequences
of very large length n. To this end we introduce the motif trie data structure, which
might find other applications in pattern matching and discovery.

∗A preliminary version of the results has been presented at FSTTCS 2014. The first and thrid authors are
partially supported by the Italian MIUR under PRIN 2012C4E3KT national research project AMANDA.
The last author is supported by a grant from the Danish National Advanced Technology Foundation.

1

1 Introduction
In pattern discovery, the task is to extract the “most important” and frequently occurring
patterns from sequences of “objects” such as log files, time series, text documents, datasets
or DNA sequences. Each individual object can be as simple as a character from {A, C, G, T}
or as complex as a json record from a log file. What is of interest to us is the potentially
very large set of all possible different objects, which we call the alphabet Σ, and sequence S
built with n objects drawn from Σ.

We define the occurrence of a pattern in S as in pattern matching but its importance
depends on its statistical relevance, namely, if the number of occurrences is above a certain
threshold. However, pattern discovery is not to be confused with pattern matching. The
problems may be considered inverse of each other: the former gets an input sequence S from
the user, and extracts patterns P and their occurrences from S, where both are unknown
to the user; the latter gets S and a given pattern P from the user, and searches for P ’s
occurrences in S, and thus only the pattern occurrences are unknown to the user.

Many notions of patterns exist, reflecting the diverse applications of the problem [4, 11,
19,21]. We study a natural variation allowing the special don’t care character ? in a pattern
to mean that the position inside the pattern occurrences in S can be ignored (so ? matches
any single character in S). For example, TA ? C ? ACA ? GTG is a pattern for DNA sequences.

A motif is a pattern of any length with at most k don’t cares occurring at least q times
in S. In this paper, we consider the problem of determining the maximal motifs, where any
attempt to extend them or replace their ?’s with symbols from Σ causes a loss of significant
information (where the number of occurrences in S changes). We denote the family of all
motifs by Mqk, the set of maximal motifsM⊆Mqk (dropping the subscripts inM) and let
occ(m) denote the number of occurrences of a motif m inside S. It is well known that Mqk

can be exponentially larger thanM [15].

1.1 Our results

We show how to efficiently build an index that we call a motif trie which is a trie that
contains all prefixes, suffixes and occurrences of M, and we show how to extract M from
it. The motif trie is built level-wise, using an oracle Generate(u) that reveals the children
of a node u efficiently using properties of the motif alphabet and a bijection between new
children of u and intervals in the ordered sequence of occurrences of u. We are able to bound
the resulting running time with a strong notion of output-sensitive cost, borrowed from the
analysis of data structures, where the cost is proportional to the actual number occ(m) of
occurrences of each maximal motif m.

Theorem 1 Given a sequence S of n objects over an alphabet Σ, and two integers q > 1
and k ≥ 0, there is an algorithm for extracting the maximal motifs M ⊆ Mqk and their
occurrences from S in O

(
n(k + log Σ) + (k + 1)3 ×

∑
m∈M occ(m)

)
time.

Our result may be interesting for several reasons. First, observe that this is an optimal
listing bound when the maximal number of don’t cares is k = O(1), which is true in many
practical applications. The resulting bound is O(n log Σ +

∑
m∈M occ(m)) time, where the

first additive term accounts for building the motif trie and the second term for discovering
and reporting all the occurrences of each maximal motif.

2

Second, our bound provides a strong notion of output-sensitivity since it depends on
how many times each maximal motif occurs in S. In the literature for enumeration, an
output-sensitive cost traditionally means that there is polynomial cost of O(nc) per pattern,
for a constant c > 1. This is infeasible in the context of big data, as n can be very large,
whereas our cost of occ(m) ≤ n compares favorably with O(nc) per motif m, and occ(m)
can be actually much smaller than n in practice. This has also implications in what we
call “the CTRL-C argument,” which ensures that we can safely stop the computation for a
specific sequence S if it is taking too much time1. Indeed, if much time is spent with our
solution, too many results to be really useful may have been produced. Thus, one may stop
the computation and refine the query (change q and k) to get better results. On the contrary,
a non-output-sensitive algorithm may use long time without producing any output: It does
not indicate if it may be beneficial to interrupt and modify the query.

Third, our analysis improves significantly over the brute-force bound: Mqk contains pat-
tern candidates of lengths p from 1 to n with up to min{k, p} don’t cares, and so has size∑

p |Σ|p × (
∑min{k,p}

i=1

(
p
i

)
) = O(|Σ|nnk). Each candidate can be checked in O(nk) time (e.g.

string matching with k mismatches), or O(k) time if using a data structure such as the suffix
tree [19]. In our analysis we are able to remove both of the nasty exponential dependencies
on |Σ| and n in O(|Σ|nnk). In the current scenario where implementations are fast in prac-
tice but skip worst-case analysis, or state the latter in pessimistic fashion equivalent to the
brute-force bound, our analysis could explain why several previous algorithms are fast in
practice. (We have implemented a variation of our algorithm that is very fast in practice.)

1.2 Related work

Although the literature on pattern discovery is vast and spans many different fields of ap-
plications with various notation, terminology and variations, we could not find time bounds
explicitly stated obeying our stronger notion of output-sensitivity, even for pattern classes
different from ours. Output-sensitive solutions with a polynomial cost per pattern have been
previously devised for slightly different notions of patterns. For example, Parida et al. [16]
describe an enumeration algorithm with O(n2) time per maximal motif plus a bootstrap
cost of O(n5 log n) time. 2 Arimura and Uno obtain a solution with O(n3) delay per maximal
motif where there is no limitations on the number of don’t cares [4]. Similarly, the MadMX
algorithm [11] reports dense motifs, where the ratio of don’t cares and normal characters
must exceed some threshold, in time O(n3) per maximal dense motif. Our stronger notion
of output-sensitivity is borrowed from the design and analysis of data structures, where it
is widely employed. For example, searching a pattern P in S using the suffix tree [14] has
cost proportional to P ’s length and its number of occurrences. A one-dimensional query in
a sorted array reports all the wanted keys belonging to a range in time proportional to their
number plus a logarithmic cost. Therefore it seemed natural to us to extend this notion to
enumeration algorithms also.

1Such an algorithm is also called an anytime algorithm in the literature.
2The set intersection problem (SIP) in appendix A of [16] requires polynomial time O(n2): The recursion

tree of depth ≤ n can have unary nodes, and each recursive call requires O(n) to check if the current subset
has been already generated.

3

1.3 Applications

Although the pattern discovery problem has found immediate applications in stringology and
biological sequences, it is highly multidisciplinary and spans a vast number of applications
in different areas. This situation is similar to the one for the edit distance problem and
dynamic programming. We here give a short survey of some significant applications, but
others are no doubt left out due to the difference in terminology used (see [1] for further
references). In computational biology, motif discovery in biological sequences identifies areas
of interest [1, 11, 19, 21]. Computer security researches use patterns in log files to perform
intrusion detection and find attack signatures based on their frequencies [9], while commercial
anti-spam filtering systems use pattern discovery to detect and block SPAM [18]. In the
data mining community pattern discovery is used extensively [13] as a core method in web
page content extraction [7]. A core building block of time series analysis is to use pattern
discovery on events that occur over time [17, 20]. In plagiarism detection finding recurring
patterns across a (large) number of documents is a core primitive to detect if significant
parts of documents are plagiarized [6] or duplicated [5, 8]. And finally, in data compression
extraction of the common patterns enables a compression scheme that competes in efficiency
with well-established compression schemes [3].

As the motif trie is an index, we believe that it may be of independent interest for storing
similar patterns across similar strings. Our result easily extends to real-life applications
requiring a solution with two thresholds for motifs, namely, on the number of occurrences in
a sequence and across a minimum number of sequences.

1.4 Reading guide

Our solution has two natural parts, after the preliminaries in Section 2. In Section 3 we
define the motif trie, which is an index storing all maximal motifs and their prefixes, suffixes
and occurrences. We show how to report only the maximal motifs in time linear in the size of
the trie. That is, it is easy to extract the maximal motifs from the motif trie—the difficulty
is to build the motif trie without knowing the motifs in advance. In Section 4 we begin to
describe an efficient algorithm for constructing the motif trie and bound its construction time
by the number of occurrences of the maximal motifs, thereby obtaining an output-sensitive
algorithm. We build the motif trie topdown, starting from the root and expanding each level
of nodes u using a suitable procedure Generate(u), described in Sections 5–6, which is at
the heart of the computation. Its correctness, along with the total complexity, is discussed
in Section 7.

2 Preliminaries

2.1 Strings

We let Σ be the alphabet of the input string S ∈ Σ∗ and n = |S| be its length. For
1 ≤ i ≤ j ≤ n, S[i, j] is the substring of S between index i and j, both included. S[i, j] is the
empty string ε if i > j, and S[i] = S[i, i] is a single character. Letting 1 ≤ i ≤ n, a prefix or
suffix of S is S[1, i] or S[i, n], respectively. The longest common prefix lcp(x, y) is the longest
string such that x[1, | lcp(x, y)|] = y[1, | lcp(x, y)|] for any two strings x, y ∈ Σ∗.

4

String TACTGACACTGCCGA

Quorum q = 2
Don’t cares k = 1

(a) Input and parameters for example.

Maximal Motif Occurrence List
A 2, 6, 8, 15
AC 2, 6, 8

ACTG?C 2, 8
C 3, 7, 9, 12, 13
G 5, 11, 14
GA 5, 14
G?C 5, 11
T 1, 4, 10
T?C 1, 10

(b) Output: Maximal motifs found (and their occur-
rence list) for the given input.

Figure 1: Example 1: Maximal Motifs found in string

2.2 Tries

A trie T over an alphabet Π is a rooted, labeled tree, where each edge (u, v) is labeled with
a symbol from Π. All edges to children of node u ∈ T must be labeled with distinct symbols
from Π. We may consider node u ∈ T as a string generated over Π by spelling out characters
from the root on the path towards u. We will use u to refer to both the node and the string
it encodes, and |u| to denote its string length. A property of the trie T is that for any string
u ∈ T , it also stores all prefixes of u. A compacted trie is obtained by compacting chains of
unary nodes in a trie, so the edges are labeled with substrings: the suffix tree for a string is
special compacted trie that is built on all suffixes of the string [14].

2.3 Motifs

A motif m ∈ Σ (Σ ∪ {?})∗Σ consist of symbols from Σ and don’t care characters ? 6∈ Σ. We
let the length |m| denote the number of symbols from Σ ∪ {?} in m, and let dc(m) denote
the number of ? characters in m. Motif m occurs at position p in S iff m[i] = S[p+ i− 1] or
m[i] = ? for all 1 ≤ i ≤ |m|. The number of occurrences of m in S is denoted occ(m). Note
that appending ? to either end of a motif m does not change occ(m), so we assume that
motifs starts and ends with symbols from Σ. A solid block is a maximal (possibly empty ε)
substring from Σ∗ inside m.

We say that a motif m can be extended by adding don’t cares and characters from Σ to
either end of m. Similarly, a motif m can be specialized by replacing a don’t care ? in m with
a symbol c ∈ Σ. An example is shown in Figure 1.

2.4 Maximal motifs

Given an integer quorum q > 1 and a maximum number of don’t cares k ≥ 0, we define
a family of motifs Mqk containing motifs m that have a limited number of don’t cares
dc(m) ≤ k, and occurs frequently occ(m) ≥ q. A maximal motif m ∈ Mqk cannot be
extended or specialized into another motif m′ ∈Mqk such that occ(m′) = occ(m). Note that

5

extending a maximal motif m into motif m′′ 6∈Mqk may maintain the occurrences (but have
more than k don’t cares). We letM⊆Mqk denote the set of maximal motifs.

Motifsm ∈Mqk that are left-maximal or right-maximal cannot be specialized or extended
on the left or right without decreasing the number of occurrences, respectively. They may,
however, be prefix or suffix of another (possibly maximal) m′ ∈Mqk, respectively.

Fact 1 If motif m ∈Mqk is right-maximal then it is a suffix of a maximal motif.

3 Motif Tries and Pattern Discovery
This section introduces the motif trie. This trie is not used for searching but its properties
are exploited to orchestrate the search for maximal motifs inM to obtain a strong output-
sensitive cost.

3.1 Efficient representation of motifs

We first give a few simple observations that are key to our algorithms. Consider a suffix tree
built on S over the alphabet Σ, which can be done in O(n log |Σ|) time. It is shown in [10,21]
that when a motif m is maximal, its solid blocks correspond to nodes in the suffix tree for S,
matching their substrings from the root3. For this reason, we introduce a new alphabet, the
solid block alphabet Π of size at most 2n, consisting of the strings stored in all the suffix tree
nodes.

We can write a maximal motif m ∈Mqk as an alternating sequence of ≤ k+1 solid blocks
and ≤ k don’t cares, where the first and last solid block must be different from ε. Thus we
represent m as a sequence of ≤ k + 1 strings from Π since the don’t cares are implicit. By
traversing the suffix tree nodes in preorder we assign integers to the strings in Π, allowing
us to assume that Π ⊆ [1, . . . , 2n], and so each motif m ∈ Mqk is actually represented as a
sequence of ≤ k + 1 integers from 1 to |Π| = O(n). Note that the order on the integers in Π
shares the following grouping property with the strings over Σ.

Lemma 1 Let A be an array storing the sorted alphabet Π. For any string x ∈ Σ∗, the solid
blocks represented in Π and sharing x as a common prefix, if any, are grouped together in A
in a contiguous segment A[i, j] for some 1 ≤ i ≤ j ≤ |Π|.

When it is clear from its context, we will use the shorthand x ∈ Π to mean equivalently a
string x represented in Π or the integer x in Π that represents a string stored in a suffix tree
node. We observe that the set of strings represented in Π is closed under the longest common
prefix operation: for any x, y ∈ Π, lcp(x, y) ∈ Π and it may be computed in constant time
after augmenting the suffix tree for S with a lowest common ancestor data structure [12].

Summing up, the above relabeling from Σ to Π only requires the string S ∈ Σ∗ and its
suffix tree augmented with lowest common ancestor information.

3The proofs in [10,21] can be easily extended to our notion of maximality.

6

A AC AC
TG

C G GA T

C C C

Figure 2: Motif trie for Example 1. The black nodes are maximal motifs (with their occurrence
lists shown in Figure 1(b))

3.2 Motif tries

We now exploit the machinery on alphabets described in Section 3.1. For the input se-
quence S, consider the family Mqk defined in Section 2, where each m is seen as a string
m = m[1, `] of ` ≤ k + 1 integers from 1 to |Π|. Although each m can contain O(n) symbols
from Σ, we get a benefit from treating m as a short string over Π: unless specified other-
wise, the prefixes and suffixes of m are respectively m[1, i] and m[i, `] for 1 ≤ i ≤ `, where
` = dc(m) + 1 ≤ k + 1. This helps with the following definition as it does not depend on
the O(n) symbols from Σ in a maximal motif m but it solely depends on its ≤ k + 1 length
over Π.

Definition 1 (Motif Trie) A motif trie T is a trie over alphabet Π which stores all maximal
motifsM⊆Mqk and their suffixes.

As a consequence of being a trie, T implicitly stores all prefixes of all the maximal motifs
and edges in T are labeled using characters from Π. Hence, all sub-motifs of the maximal
motifs are stored in T , and the motif trie can be essentially seen as a generalized suffix trie4

storingM over the alphabet Π. From the definition, T has O((k + 1) · |M|) leaves, the total
number of nodes is O(|T |) = O((k + 1)2 · |M|), and the height is at most k + 1.

We may consider a node u in T as a string generated over Π by spelling out the ≤ k + 1
integers from the root on the path towards u. To decode the motif stored in u, we retrieve
these integers in Π and, using the suffix tree of S, we obtain the corresponding solid blocks
over Σ and insert a don’t care symbol between every pair of consecutive solid blocks. When
it is clear from the context, we will use u to refer to (1) the node u or (2) the string of
integers from Π stored in u, or (3) the corresponding motif from (Σ ∪ {?})∗. We reserve the
notation |u| to denote the length of motif u as the number of characters from Σ∪ {?}. Each
node u ∈ T stores a list Lu of occurrences of motif u in S, i.e. u occurs at p in S for p ∈ Lu.

Since child edges for u ∈ T are labeled with solid blocks, the child edge labels may be
prefixes of each other, and one of the labels may be the empty string ε (which corresponds
to having two neighboring don’t cares in the decoded motif).

3.3 Reporting maximal motifs using motif tries

Suppose we are given a motif trie T but we do not know which nodes of T store the maximal
motifs in S. We can identify and report the maximal motifs in T in O(|T |) = O((k + 1)2 ·

4As it will be clear later, a compacted motif trie does not give any advantage in terms of the output-
sensitive bound compared to the motif trie.

7

|M|) = O((k + 1)2 ·
∑

m∈M occ(m)) time as follows.
We first identify the set R of nodes u ∈ T that are right-maximal motifs. A characteriza-

tion of right-maximal motifs in T is relatively simple: we choose a node u ∈ T if (i) its parent
edge label is not ε, and (ii) u has no descendant v with a non-empty parent edge label such
that |Lu| = |Lv|. By performing a bottom-up traversal of nodes in T , computing for each
node the length of the longest list of occurrences for a node in its subtree with a non-empty
edge label, it is easy to find R in time O(|T |) and by Fact 1, |R| = O((k + 1) · |M|).

Next we perform a radix sort on the set of pairs 〈|Lu|, reverse(u)〉, where u ∈ R and
reverse(u) denotes the reverse of the string u, to select the motifs that are also left-maximal
(and thus are maximal). In this way, the suffixes of the maximal motifs become prefixes
of the reversed maximal motifs. By Lemma 1, those motifs sharing common prefixes are
grouped together consecutively. However, there is a caveat, as one maximal motif m′ could
be a suffix of another maximal motif m and we do not want to drop m′: in that case, we
have that |Lm| 6= |Lm′ | by the definition of maximality. Hence, after sorting, we consider
consecutive pairs 〈|Lu1|, reverse(u1)〉 and 〈|Lu2|, reverse(u2)〉 in the order, and eliminate u1

iff |Lu1| = |Lu2 | and u1 is a suffix of u2 in time O(k + 1) per pair (i.e. prefix under reverse).
The remaining motifs are maximal.

4 Building Motif Tries
The goal of this section is to show how to efficiently build the motif trie T discussed in
Section 3.2. Suppose without loss of generality that enough new symbols are prepended and
appended to the sequence S to avoid border cases. We want to store the maximal motifs of S
in T as strings of length ≤ k+1 over Π. Some difficulties arise as we do not know in advance
which are the maximal motifs. Actually, we plan to find them during the output-sensitive
construction of T , which means that we would like to obtain a construction bound close to
the term

∑
m∈Mocc(m) stated in Theorem 1.

We proceed in top-down and level-wise fashion by employing an oracle that is invoked
on each node u on the last level of the partially built trie, and which reveals the future
children of u. The oracle is executed many times to generate T level-wise starting from its
root u with Lu = {1, . . . , n}, and stopping at level k+1 or earlier for each root-to-node path.
Interestingly, this sounds like the wrong way to do anything efficiently, e.g. it is a slow way
to build a suffix tree, however the oracle allows us to amortize the total cost to construct
the trie. In particular, we can bound the total cost by the total number of occurrences of the
maximal motifs stored in the motif trie.

The oracle is implemented by the Generate(u) procedure that generates the children
u1, . . . , ud of u. We ensure that (i) Generate(u) operates on the ≤ k+1 length motifs from
Π, and (ii) Generate(u) avoids generating the motifs in Mqk \M that are not suffixes or
prefixes of maximal motifs. This is crucial, as otherwise we cannot guarantee output-sensitive
bounds because Mqk can be exponentially larger thanM.

In Section 5 we will show how to implement Generate(u) and prove:

Lemma 2 Algorithm Generate(u) produces the children of u and can be implemented in
time O(sort(Lu) + (k + 1) · |Lu|+

∑d
i=1 |Lui

|).

By summing the cost to execute procedure Generate(u) for all nodes u ∈ T , we now
bound the construction time of T . Observe that when summing over T the formula stated

8

in Lemma 2, each node exists once in the first two terms and once in the third term, so the
latter can be ignored when summing over T (as it is dominated by the other terms)

∑
u∈T

(sort(Lu) + (k + 1) · |Lu|+
d∑

i=1

|Lui
|) = O

(∑
u∈T

(sort(Lu) + (k + 1) · |Lu|)

)
. (1)

We bound ∑
u∈T

sort(Lu) = O

(
n(k + 1) +

∑
u∈T

|Lu|

)
(2)

by running a single cumulative radix sort for all the instances over the several nodes u at
the same level, allowing us to amortize the additive cost O(n) of the radix sorting among
nodes at the same level (and there are at most k + 1 such levels).

To bound
∑

u∈T |Lu|, we observe
∑

i |Lui
| ≥ |Lu| (as trivially the ε extension always

maintains the number of occurrences of its parent). Consequently we can charge each leaf u
the cost of its ≤ k ancestors, so

∑
u∈T

|Lu| = O

(
(k + 1)×

∑
leaf u∈T

|Lu|

)
. (3)

Finally, from Section 3.2 there cannot be more leaves than maximal motifs inM and their
suffixes, and the occurrence lists of maximal motifs dominate the size of the non-maximal
ones in T , which allows us to bound:

∑
leaf u∈T

|Lu| = O

(
(k + 1)×

∑
m∈M

occ(m)

)
. (4)

By replacing the terms in the total cost of (1) with the upper bounds in (2)–(4), and adding
the O(n log Σ) cost for the suffix tree and the LCA ancestor data structure of Section 3.1,
we obtain our claimed bound.

Theorem 2 Given a sequence S of n objects over an alphabet Σ and two integers q > 1 and
k ≥ 0, a motif trie containing the maximal motifs M ⊆ Mqk and their occurrences occ(m)

in S for m ∈M can be built in time and space O
(
n(k+ log Σ) + (k+ 1)3×

∑
m∈M occ(m)

)
.

5 Generate(u): Motif Trie Nodes as Maximal Intervals
We now show how to implement Generate(u) in the time bounds stated by Lemma 2. The
idea is as follows. We first obtain Eu, which is an array storing the occurrences in Lu, sorted
lexicographically according to the suffix associated with each occurrence. We can then show
that there is a bijection between the children of u and a set of maximal intervals in Eu. By
exploiting the properties of these intervals, we are able to find them efficiently through a
number of scans of Eu. The bijection implies that we thus efficiently obtain the new children
of u.

The key point in the efficient implementation of the oracle Generate(u) is to relate
each node u and its future children u1, . . . , ud labeled by solid blocks b1, . . . , bd, respectively,

9

to some suitable intervals that represent their occurrence lists Lu, Lu1 , . . . , Lud
. Though the

idea of using intervals for representing trie nodes is not new (e.g. in [2]), we use intervals to
expand the trie rather than merely representing its nodes. Not all intervals generate children
as not all solid blocks that extend u necessarily generate a child. Also, some of the solid
blocks b1, . . . , bd can be prefixes of each other and one of the intervals can be the empty
string ε. To select them carefully, we need some definitions and properties.

5.1 Extensions and intervals

For a position p ∈ Lu, we define its extension as the suffix ext(p, u) = S[p + |u| + 1, n]
that starts at the position after p with an offset equivalent to skipping the prefix matching
u plus one symbol (for the don’t care). We may write ext(p), omitting the motif u if it is
clear from the context. We also say that the skipped characters skip(p) at position p ∈ Lu

are the d = dc(u) + 2 characters in S that specialize u into its occurrence p: formally,
skip(p) = 〈c0, c1, . . . , cd−1〉 where c0 = S[p− 1], cd−1 = S[p + |u|], and ci = S[p + ji − 1], for
1 ≤ i ≤ d− 2, where u[ji] = ? is the ith don’t care in u.

We denote by Eu the list Lu sorted using as keys the integers for ext(p) where p ∈ Lu. (We
recall from Section 3.1 that the suffixes are represented in the alphabet Π, and thus ext(p)
can be seen as an integer in Π.) By Lemma 1 consecutive positions in Eu share common
prefixes of their extensions. Lemma 3 below states that these prefixes are the candidates for
being correct edge labels for expanding u in the trie.

Lemma 3 Let ui be a child of node u, bi be the label of edge (u, ui), and p ∈ Lu be an
occurrence position. If position p ∈ Lui

then bi is a prefix of ext(p, u).

Proof Assume otherwise, so p ∈ Lu ∩ Lui
but bi is not a prefix of ext(p, u). Then there

is a mismatch of solid block bi in ext(p, u), since at least one of the characters in bi is not
in ext(p, u). But this means that ui cannot occur at position p, and consequently p 6∈ Lui

,
which is a contradiction.

Lemma 3 states a necessary condition, so we have to filter the candidate prefixes of the
extensions. We use the following notion of intervals to facilitate this task. We call I ⊆ Eu

an interval of Eu if I contains consecutive entries of Eu. We write I = [i, j] if I covers the
range of indices from i to j in Eu. The longest common prefix of an interval is defined as
LCP(I) = minp1,p2∈I lcp(ext(p1), ext(p2)), which is a solid block in Π as discussed at the end
of Section 3.1. By Lemma 1, LCP(I) = lcp(ext(Eu[i]), ext(Eu[j])) can be computed in O(1)
time, where Eu[i] is the first and Eu[j] the last element in I = [i, j].

5.2 Maximal and quasi-maximal intervals

Central to our algorithms is the following notion of maximality. An interval I ⊆ Eu is
maximal if

(1) there are at least q positions in I (i.e. |I| ≥ q),

(2) motif u cannot be specialized with the skipped characters in skip(p) for p ∈ I,

(3) any interval I ′ ⊆ Eu such that I ′ ⊃ I has a shorter common prefix (i.e. |LCP(I ′)| <
|LCP(I)|).

10

We denote by Iu the set of all maximal intervals of Eu. While conditions (1) and (3)
are intuitive, as we want the largest intervals with ≥ q positions that cannot be extended,
condition (2) is less intuitive but has a dramatic effect on the complexity: it is needed to
avoid the enumeration of either motifs fromMqk\M or duplicates fromM, recalling that the
size of Mqk can be exponentially larger than that ofM. Condition (2) can be equivalently
stated by defining CI as the minimum number of different characters covered by any skipped
character in skip(p) for p ∈ I, and observing that CI ≥ 2 (as otherwise a skipped character
in u could be specialized to as single symbol).

The next lemma establishes a useful bijection between maximal intervals Iu and children
of u, motivating why we use intervals to expand the motif trie.

Lemma 4 Let ui be a child of a node u. Then the occurrence list Lui
is a permutation

of a maximal interval I ∈ Iu, and vice versa. The label on edge (u, ui) is the solid block
bi = LCP(I). No other children or maximal intervals have this property with ui or I.

Proof We prove the statement by assuming that T has been built, and that the maximal
intervals have been computed for a node u ∈ T .

We first show that given a maximal interval I ∈ Iu, there is a single corresponding child
ui ∈ T of u. Let bi = LCP(I) denote the longest common prefix of occurrences in I, and note
that bi is distinct among the maximal intervals in Iu. Also, since bi is a common prefix for
all occurrence extensions in I, the motif u ? bi occurs at all locations in I (as we know that u
occurs at those locations). Since |I| ≥ q and u ? bi is an occurrence at all p ∈ I, there must
be a child ui of u, where the edge (u, ui) is labeled bi and where I ⊆ Lui

. From the definition
of tries, there is at most one such node. There can be no p′ ∈ Lui

− I, since that would mean
that an occurrence of u ? bi was not stored in I, contradicting the maximality assumption of
I. Finally, because CI ≥ 2 and bi is the longest common prefix of all occurrences in I, not all
occurrences of ui can be extended to the left using one symbol from Σ. Thus, ui is a prefix
or suffix of a maximal motif.

We now prove the other direction, that given a child ui ∈ T of u, we can find a single
maximal interval I ∈ Iu. First, denote by bi the label on the (u, ui) edge. From Lemma 3, bi
is a common prefix of all extensions of the occurrences in Eui

. Since not all occurrences of
ui can be extended to the left using a single symbol from Σ, bi is the longest common prefix
satisfying this, and there are at least two different skipped characters of the occurrences in
Lui

. Now, we know that ui = u ? bi occurs at all locations p ∈ Lui
. Observe that Lui

is a
(jumbled) interval of Eu (since otherwise, there would be an element p′ ∈ Eu which did not
match ui but had occurrences from Lui

on either sides in Eu, contradicting the grouping of
Eu). All occurrences of ui are in Lui

so Lui
is a (jumbled) maximal interval of Eu. We just

described a maximal interval with a distinct set of occurrences, at least two different skipped
characters and a common prefix, so there must surely be a corresponding interval I ∈ Iu
such that LCP(I) = bi, CI ≥ 2 and Lui

⊆ I. There can be no p′ ∈ I − Lui
, as p′ ∈ Lu and bi

is a prefix of ext(p′, u) means that p′ ∈ Lui
.

An interval that satisfies only conditions (2) and (3) is called a quasi-maximal interval.
We do not requires that |I| ≥ q for any such interval I, as we need it when building larger
maximal intervals (see Section 6.3). Since a maximal interval is quasi-maximal, we will refer
most of the properties to the latter unless explicitly mentioned. In particular, we show that
the set of quasi-maximal intervals, and thus its subset Iu, form a tree covering of Eu. A
similar lemma for intervals over the LCP array of a suffix tree was given in [2].

11

Lemma 5 Let I1, I2 be two quasi-maximal intervals, where I1 6= I2 and |I1| ≤ |I2|. Then
either I1 is contained in I2 with a longer common prefix (i.e. I1 ⊂ I2 and |LCP(I1)| >
|LCP(I2)|) or the intervals are disjoint (i.e. I1 ∩ I2 = ∅).

Proof Let I1 = [i, j] and I2 = [i′, j′]. Assume partial overlaps are possible, i′ ≤ i ≤ j′ < j,
to obtain a contradiction. Since |LCP(I1)| ≥ |LCP(I2)|, the interval I3 = [j′, j] has a longest
common prefix |LCP(I3)| ≥ |LCP(I2)|, and so I2 could have been extended and was not
quasi-maximal, giving a contradiction. The remaining cases are symmetric.

6 Generate(u): Exploiting the Properties of Intervals
We now use the properties shown above to implement the oracle Generate(u), resulting
in Lemma 2. Observe that the task of Generate(u) can be equivalently seen by Lemma 4
as the task of finding all maximal intervals Iu in Eu, where each interval I ∈ Iu corresponds
exactly to a distinct child ui of u. The interval I = Eu corresponding to the solid block ε is
trivial to find, so we focus on the rest. We assume dc(u) < k, as otherwise we are already
done with u. We describe three main steps to achieve our goal.

6.1 Step 1: Sort occurrences and find runs of skipped characters

We perform a radix-sort of Lu using the extensions as keys, seen as integers from Π, thus
obtaining array Eu. To facilitate the task of checking condition (2) for the quasi-maximality
of intervals, we compute for each index i ∈ Eu the smallest index R(i) > i in Eu such that
C[i,R(i)] ≥ 2. That is, there are at least two different characters from Σ hidden by each of the
skipped characters in the interval. (If R(i) does not exist, we do not create [i, R(i)].)

To do so we first find, for each skipped character position, all indices where a maximal
run of equal characters end: R(i) is the maximum indices for the given i. This helps us
because for any index i inside such a block of equal characters, R(i) must be on the right
of where the block ends (otherwise [i, R(i)] would cover only one character in that block).
Using this to calculate R(i) for all indices i ∈ Eu from left to right, we find each answer in
time O(k + 1), and O((k + 1) · |Eu|) total time. We denote by R = {[i, R(i)] : i ∈ Eu} the
set of intervals thus found.

Lemma 6 For each quasi-maximal interval I ≡ [i, j], there exists R(i) ≤ j, and thus [i, R(i)]
is an initial portion of I.

Lemma 7 Step 1 takes O(sort(Lu) + (k + 1) · |Lu|) time.

6.2 Step 2: Find quasi-maximal intervals with handles

We want to find all quasi-maximal intervals covering each position of Eu. To this end, we
introduce handles. For each p ∈ Eu, its interval domain D(p) is the set of intervals I ′ ⊂ Eu

such that p ∈ I ′ and CI′ ≥ 2. We let `p be the length of the longest shared solid block
prefix bi over D(p), namely, `p = maxI′∈D(p) |LCP(I ′)|. For a quasi-maximal interval I, if
|LCP(I)| = `p for some p ∈ I we call p a handle on I.

Lemma 8 A position p ∈ Eu can be handle for at most one quasi-maximal interval.

12

Proof If p is not a handle, the claim is true. If it is so, let I and I ′ be two distinct quasi-
maximal intervals for which p is handle. Observe that p ∈ I ∩ I ′. This implies by transitivity
that |LCP(I)| = |LCP(I ′)| = |LCP(I ∪ I ′)|, and thus I and I ′ cannot be quasi-maximal as
the interval obtained as I ∪ I ′ cause them to violate condition (3).

Handles are relevant for the following reason, which motivates the definition of quasi-
maximal intervals.

Lemma 9 For each maximal interval I ∈ Iu, either there is a handle p ∈ Eu on I, or I is
fully covered by ≥ 2 adjacent quasi-maximal intervals with handles.

Proof From Lemma 5, any maximal interval I ∈ Iu is either fully contained in some other
maximal interval, or completely disjoint from other maximal intervals. Partial overlaps of
maximal intervals are impossible.

Now, assume there is no handle p ∈ Lu on I. If so, all p′ ∈ I have `p′ 6= |LCP(I)| (since
otherwise p′ ∈ I and `p′ = |LCP(I)| and thus p′ was a handle on I). Clearly for all p′ ∈ I,
|LCP(I)| is a lower bound for `p′ . Thus, it must be the case that `p′ > |LCP(I)| for all
p′ ∈ I. This can only happen if I is completely covered by ≥ 2 quasi-maximal intervals with
a larger longest common prefix. From Lemma 5, a single quasi-maximal interval I ′ is not
enough because I ′ is properly contained (or completely disjoint) in I.

Let Hu denote the set of quasi-maximal intervals with handles. We now show how to find
the set Hu among the intervals of Eu. Observe that for each occurrence p ∈ Eu, we must
find the interval I ′ with the largest LCP(I ′) value among all intervals containing p. This is
unique by Lemma 8 and, moreover, |Hu| ≤ |Eu|.

From the definition, a handle on a quasi-maximal interval I ′ requires CI′ ≥ 2, which is
exactly what the intervals in R satisfy. As the LCP value can only drop when extending an
interval, these are the only candidates for quasi-maximal intervals with handles. Note that
from Lemma 6, R contains a prefix for all of the quasi-maximal intervals because it has all
intervals from left to right obeying the conditions on length and skipped character conditions.
Furthermore, |R| = O(|Eu|), since only one R(i) is calculated for each starting position.
Among the intervals [i, R(i)] ∈ R, we will now show how to find those with maximum LCP
for all p (i.e. where the LCP value equals `p) that can be expanded.

We use an idea similar to that used in Section 3.3 to filter maximal motifs from the right-
maximal motifs. We sort the intervals I ′ = [i, R(i)] ∈ R in decreasing lexicographic order
according to the pairs 〈|LCP(I ′)|,−i〉 (i.e. decreasing LCP values but increasing indices i),
to obtain the sequence D. Thus, if considering the intervals left to right in D, we consider
intervals with larger LCP values, from left to right in S for the same value, before moving
to smaller LCP values.

Consider an interval Ip = [i, R(i)] ∈ D. The idea is that we determine if Ip has already
been added to Hu by some previously processed handled quasi-maximal interval. If not, we
expand the interval (making it quasi-maximal) and add it to Hu, otherwise Ip is discarded.
When D is fully processed, all occurrences in Eu are covered by quasi-maximal intervals with
handles.

First, since quasi-maximal intervals must be fully contained in each other (from Lemma
5), we determine if Ip = [i, R(i)] ∈ D is already fully covered by previously expanded intervals
(with larger LCP values)—if not, we must expand Ip. Clearly, if either i or R(i) is not included

13

7 4 6 6 1 1 3 4 2 1

Figure 3: Example for step 3.

in any previous expansions, we must expand Ip. Otherwise, if both i and R(i) are part of a
single previous expansion Iq ∈ D, Ip should not be expanded. If i and R(i) are part of two
different expansions Iq and Ir we compare their extent values: Ip must be expanded if some
p ∈ Ip is not covered by either Iq or Ir. To enable these checks we mark each j ∈ Eu with
the longest processed interval that contains it (during the expansion procedure below): if the
check succeeds, Ip expands leftward to the first position of Iq at least, and rightward to the
last position of Ir at least (but it could go further).

Second, to expand Ip maximally to the left and right, we use pairwise lcp queries on
the border of the interval. Let a ∈ Ip be a border occurrence and b 6∈ Ip be its neighboring
occurrence in Eu (if any, otherwise it is trivial). When | lcp(a, b)| < |LCP(Ip)|, the interval
cannot be expanded to span b. When the expansion is completed, Ip is a quasi-maximal
interval and added to Hu. As previously stated, all elements in Ip are marked as being part
of their longest covering quasi-maximal interval by writing Ip on each of its occurrences.

Lemma 10 Step 2 takes O(sort(Lu) +
∑d

i=1 |Lui
|) time.

6.3 Step 3: Find composite maximal intervals

The only remaining type of maximal intervals are composed of quasi-maximal intervals with
handles from the set Hu by Lemma 9, since they have no associated handles. A composite
maximal interval must be the union of a sequence of two or more adjacent quasi-maximal
intervals with handles. We find these as follows.

For the sake of discussion, suppose first that the intervals in Hu are disjoint and their
union gives Eu, thus Hu is an ordered partition of Eu where the interval order is the natural
one given by their endpoints. Since the intervals induce a tree by Lemma 5 and 8, we can
pictorially visualize this situation as shown in the example of Figure 3.

The leaves in the first row are the intervals of Hu: for any two adjacent intervals I and
I ′ we store |LCP(I ∪ I ′)|, which can be computed in constant time by Lemma 1.

The generated quasi-maximal intervals are the internal nodes in the next rows, observing
that each node has at least two children. The generation is by a simple greedy method:

14

initialize X = Hu and, while X contains two or more adjacent intervals, take adjacent
I1, I2, . . . , Ir from X for the largest r such their value |LCP(Ii ∪ Ii+1)| is maximum and
equal for 1 ≤ i < r: replace I1, I2, . . . , Ir in X by their union I1 ∪ I2 ∪ · · · ∪ Ir.

In the example of Figure 3, we can represent each interval in X by a dash (-) and see X as
sequence of dashes intermixed with the corresponding values |LCP(I∪ I ′)|. The entries of X
change as follows, -7- 4-6-6-1-1-3-4-2-1-, -4 -6-6- 1-1-3-4-2-1-, -4- 1-1-3-4-2-1-,
-1-1-3 -4- 2-1-, -1-1 -3- 2-1-, -1-1 -2- 1-, -1-1-1- , -, where each box represents the
union of two or more intervals.

In the general case for the intervals in Hu, we have a nested situation in place of the first
row in Figure 3. But the mechanism is the same: each time we choose adjacent intervals with
the maximum LCP value, and replace them by their union. In this way we are exploiting
the implicit tree structure of the quasi-maximal intervals.

We implement efficiently our mechanism by an idea similar to that used in Section 6.2.
For each interval I ∈ Hu that is not the rightmost, check if its adjacent interval I ′ exists on its
right: I and I ′ must be consecutive in Eu, and if more candidate intervals exist starting at the
same position for I ′, choose the longest one by Lemma 5. Associate the value |LCP(I ∪ I ′)|
with I. We sort these intervals I in decreasing lexicographic order according to the pairs
〈|LCP(I ∪ I ′)|,−i〉: the intervals with the largest LCP value come first and it is easy to
find those consecutive with the same LCP value. Consequently, scanning this order gives the
order for which we make the union of intervals as in Figure 3, namely, starting from the
leaves of the implicit tree of the quasi-maximal intervals towards the root. We maintain X
as an ordered list of the above intervals.

Lemma 11 After sorting X in decreasing lexicographic order, the cost of identifying inter-
vals I1, I2, . . . , Ir in X and updating X with their union is O(r) time.

Proof First we identify adjacent intervals I1, I2, . . . , Ir with the maximum LCP value as
the first r − 1 ones, I1, I2, . . . , Ir−1, occuring at the beginning of X. We remove these r − 1
intervals from the beginning of X. Also, it easy to locate Ir in X as it was associated with
Ir−1 during the sorting: in general we can have some bookkeping, so that given Ir−1 we find
its associated Ir and vice versa. Let I denote the union I1 ∪ I2 ∪ · · · ∪ Ir.

Consider an interval I∗ that precedes and is adjacent to I1 in Eu. Let `∗ = |LCP(I∗∪I1)|
be its LCP value. We prove that `∗ = |LCP(I∗ ∪ I)|. Let ` = |LCP(I1, I2)| = |LCP(I)| and
observe that the extensions of any two positions in I have at least the first ` characters equal.
Also, ` ≥ `∗ as I1, I2, . . . , Ir are at the beginning of X. By definition of `∗, the extensions of
positions in I∗ share the first ` characters equal with the extensions of positions in I1. Since
` ≥ `∗, by transitivity the extensions of positions in I∗ share the first ` characters equal with
the extensions of positions in I, thus proving our claim. We can safely replace I1 with I in
the bookkeeping, as the interval associated with I∗ in the decreasing lexicographic order,
because its LCP value does not change.

We also replace Ir by I in X, observing that I inherits the LCP value from Ir. Moreover,
this replacement preserves the order in X. Letting i be the starting position of I, and ir > i
that of Ir, the intervals after Ir in X and with the same LCP value also follow I in the
decreasing lexicographic order. Consider now an interval I0 before Ir in X and with the same
LCP value, and let i0 < ir be its starting position (with I0 different from I1, I2, . . . , Ir). We
prove that i0 < i, and thus I0 precedes also I in the decreasing lexicographic order. Suppose
by contradiction that i0 ≥ i. Then I0 ⊂ Ij for a value of j ∈ [1, r]; its companion interval I′0

15

must be I′0 ⊂ I as I′0 cannot occur after Ir in Eu by Lemma 5. But then |LCP(I0 ∪ I′0)| ≤
|LCP(I)| with I0 ∪ I′0 ⊂ I (properly contained by the hypothesis), which is a contradiction
to Lemma 5. In summary, replacing Ir with I in X is correct.

The total cost of step 3 is dominated by the initial sorting cost O(sort(Lu)) plus the cost
of making the union of intervals by Lemma 11. When taken over all the unions, the latter
cost is proportional to the number of nodes and leaves in the implicit tree induced by all the
quasi-maximal intervals. Since the number of leaves is upper bounded by |Hu| ≤ |Eu|, and
the number of internal nodes cannot be larger than the number of leaves, as each node has
at least two children, we obtain a total of O(|Eu|) nodes and leaves, thus bounding the cost,
recalling that |Eu| = |Lu| = O(sort(Lu)).

Lemma 12 Step 3 takes O(sort(Lu)) time.

As a final remark, we can get all the maximal intervals by filtering the O(|Eu|) quasi-
maximal ones using condition (1) of Section 5.2. This takes additional O(|Eu|) time.

7 Correctness and Complexity
By analyzing the algorithm described, one can prove the following two lemmas showing that
the motif trie T is generated correctly. While Lemma 13 states that ε-extensions may be
generated (i.e. a sequence of ? symbols may be added to suffixes of maximal motifs), a simple
bottom-up cleanup traversal of T is enough to remove these.

Lemma 13 (Soundness) Each motif stored in T is a prefix or an ε-extension of some
suffix of a maximal motif (encoded using alphabet Π and stored in T).

Proof The property to be shown for motif m ∈ T is: (1) m is a prefix of some suffix of a
maximal motif m′ ∈M (encoded using alphabet Π), or (2) m is the suffix of some maximal
motif m′ ∈M extended by at most k ε solid blocks (and don’t cares).

Note that we only need to show that Generate(u) can only create children of u ∈ T with
the desired property. We prove this by induction. In the basis, u is the root and Generate(u)
produce all motifs such that adding a character from Σ to either end decreases the number of
occurrences: this is ensured by requiring that there must be more than two different skipped
characters in the occurrences considered, using the LCP of such intervals and only extending
intervals to span occurrences maintaining the same LCP length. Since there are no don’t
cares in these motifs they cannot be specialized and so each of them must be a prefix or
suffix of some maximal motif.

For the inductive step, we prove the property by construction, assuming dc(u) < k.
Consider a child ui generated by Generate(u) by extending with solid block bi: it must not
be the case that, without losing occurrences, (a) ui can be specialized by converting one of its
don’t cares into a solid character from Σ, or (b) ui can be extended in either direction using
only characters from Σ. If either of these conditions is violated, ui can clearly not satisfy the
property (in the first case, the generalization ui is not a suffix or prefix of the specialized
maximal motif). However, these conditions are sufficient, as they ensure that ui is encoded
using Π and cannot be specialized or extended without using don’t cares. Thus, if bi 6= ε, ui

16

is either a prefix of some suffix of a maximal motif (since ui ends with a solid block it may
be maximal), or if bi = ε, ui may be an ε-extension of u (or a prefix of some suffix if some
descendant of ui has the same number of occurrences and a non-ε parent edge).

By the induction hypothesis, u satisfies (1) or (2) and u is a prefix of ui. Furthermore,
the occurrences of u have more than one different character at all locations covered by the
don’t cares in u (otherwise one of those locations in u could be specialized to the common
character). When generating children, we ensure that (a) cannot occur by forcing the occur-
rence list of generated children to be large enough that at least two different characters is
covered by each don’t care. That is, ui may only be created if it cannot be specialized in any
location. Condition (b) is avoided by ensuring that there are at least two different skipped
characters for the occurrences of ui and forcing the extending block bi to be maximal under
that condition.

Lemma 14 (Completeness) If m ∈M, T stores m and its suffixes.

Proof We summarize the proof that Generate(u) is correct and the correct motif trie is
produced. From Lemma 9, we create all intervals in Generate(u) by expanding those with
handles, and expanding all composite intervals from these. By Lemma 4 the intervals found
correspond exactly to the children of u in the motif trie. Thus, as Generate(u) is executed
for all u ∈ T when dc(u) ≤ k − 1, all nodes in T is created correctly until depth k + 1.

Now clearly T containsM and all the suffixes: for a maximal motif m ∈ M, any suffix
m′ is generated and stored in T as (1) occ(m′) ≥ occ(m) and (2) dc(m′) ≤ dc(m).

As for the complexity, the whole process of pattern discovery goes as follows. First,
we build the motif trie using steps 1–3 of Generate(u): Lemma 7, 10 and 12 prove the
claimed bound of Lemma 2. Using Generate(u) to expand the nodes of the motif trie
from the root to the leaves, we obtain the cost of Theorem 2 proved in Section 4 by adding
the O(n log Σ) cost for the suffix tree and the LCA ancestor data structure of Section 3.1.
Finally, we report the maximal motifs as described in Section 3.3, yielding the final cost
of O(n(k + log Σ) + (k + 1)3 ×

∑
m∈M occ(m)) stated in Theorem 1. Note that the motif

trie is a data structure of independent interest that might find other applications in pattern
matching and discovery.

References
[1] M. I. Abouelhoda and M. Ghanem. String mining in bioinformatics. In Scientific Data

Mining and Knowledge Discovery, pages 207–247, 2010.

[2] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced
suffix arrays. JDA, 2(1):53–86, 2004.

[3] A. Apostolico, M. Comin, and L. Parida. Bridging lossy and lossless compression by
motif pattern discovery. In General Theory of Information Transfer and Combinatorics,
pages 793–813, 2006.

[4] H. Arimura and T. Uno. An efficient polynomial space and polynomial delay algorithm
for enumeration of maximal motifs in a sequence. JCO, 13(3):243–262, 2007.

17

[5] B. S. Baker. On finding duplication and near-duplication in large software systems. In
Proc. 2nd WCRE, pages 86–95, 1995.

[6] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection mechanisms for digital docu-
ments. In Proc. ACM SIGMOD, 24(2):398–409, 1995.

[7] C.-H. Chang, C.-N. Hsu, and S.-C. Lui. Automatic information extraction from semi-
structured web pages by pattern discovery. Decis Support Syst, 34(1):129–147, 2003.

[8] X. Chen, B. Francia, M. Li, B. Mckinnon, and A. Seker. Shared information and program
plagiarism detection. IEEE Trans Inf Theory, 50(7):1545–1551, 2004.

[9] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion-detection systems.
CN, 31(8):805–822, 1999.

[10] M. Federico and N. Pisanti. Suffix tree characterization of maximal motifs in biological
sequences. Theor. Comput. Sci., 410(43):4391–4401, 2009.

[11] R. Grossi, A. Pietracaprina, N. Pisanti, G. Pucci, E. Upfal, and F. Vandin. MADMX:
A strategy for maximal dense motif extraction. J. Comp. Biol., 18(4):535–545, 2011.

[12] D. Harel and R. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
J. Comput., 13(2):338–355, 1984.

[13] N. R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining algorithms.
ACM CSUR, 43(1):3, 2010.

[14] E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976.

[15] L. Parida, I. Rigoutsos, A. Floratos, D. E. Platt, and Y. Gao. Pattern discovery on
character sets and real-valued data: linear bound on irredundant motifs and an efficient
polynomial time algorithm. In Proc. 11th SODA, pages 297–308, 2000.

[16] L. Parida, I. Rigoutsos, and D. E. Platt. An Output-Sensitive Flexible Pattern Discovery
Algorithm. In Proc. 12th CPM, pages 131–142, 2001.

[17] L. Pichl, T. Yamano, and T. Kaizoji. On the symbolic analysis of market indicators
with the dynamic programming approach. In Proc. ISNN, pages 432–441, 2006.

[18] I. Rigoutsos and T. Huynh. Chung-Kwei: a Pattern-discovery-based System for the
Automatic Identification of Unsolicited E-mail Messages. In CEAS, 2004.

[19] M.-F. Sagot. Spelling approximate repeated or common motifs using a suffix tree. In
Proc. 3rd LATIN, pages 374–390. 1998.

[20] R. Sherkat and D. Rafiei. Efficiently evaluating order preserving similarity queries over
historical market-basket data. In Proc. 22nd ICDE, pages 19–19, 2006.

[21] E. Ukkonen. Maximal and minimal representations of gapped and non-gapped motifs
of a string. Theor. Comput. Sci., 410(43):4341–4349, 2009.

18

