A. H. Awadallah, R. W. White, S. T. Dumais, and . Wang, Struggling or exploring?: Disambiguating long search sessions, pp.53-62, 2014.

A. Broder, A taxonomy of web search, ACM SIGIR Forum, vol.36, issue.2, 2002.
DOI : 10.1145/792550.792552

B. Bullnheimer, R. F. Hartl, and C. Strauß, A new rank based version of the ant system -A computational study, Central European Journal for Operations Research and Economics, vol.7, pp.25-38, 1997.

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds et al., Learning to rank using gradient descent, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.89-96, 2005.
DOI : 10.1145/1102351.1102363

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Chakrabarti, A. Frieze, and J. Vera, The influence of search engines on preferential attachment, Proceedings of the sixteenth annual ACM-SIAM symposium on discrete algorithms, pp.293-300, 2005.

Z. Chen, X. Meng, B. Zhu, and R. H. Fowler, WebSail: From On-line Learning to Web Search, WISE 20 0 0: 1st International conference on web information systems engineering, pp.206-213
DOI : 10.1007/s101150200005

URL : http://bahia.cs.panam.edu/TR/websail.pdf

K. Church, M. T. Keane, and B. Smyth, The first click is the deepest: Assessing information scent predictions for a personalized search engine, Proceedings of AH 2004 Workshop, 2004.

E. Diaz-aviles, W. Nejdl, and L. Schmidt-thieme, Swarming to rank for information retrieval, Proceedings of the 11th Annual conference on Genetic and evolutionary computation, GECCO '09, 2009.
DOI : 10.1145/1569901.1569904

M. Dorigo, V. Maniezzo, and A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.26, issue.1, pp.29-41, 1996.
DOI : 10.1109/3477.484436

P. S. Efraimidis and P. G. Spirakis, Weighted random sampling with a reservoir, Information Processing Letters, vol.97, issue.5, 2006.
DOI : 10.1016/j.ipl.2005.11.003

C. Eickhoff, K. Collins-thompson, P. N. Bennett, and S. Dumais, Personalizing atypical web search sessions, Proceedings of the sixth ACM international conference on Web search and data mining, WSDM '13, 2013.
DOI : 10.1145/2433396.2433434

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. L. Elsas, V. R. Carvalho, and J. G. Carbonell, Fast learning of document ranking functions with the committee perceptron, Proceedings of the international conference on Web search and web data mining , WSDM '08, pp.55-63, 2008.
DOI : 10.1145/1341531.1341542

A. Engelbrecht, X. Li, M. Middendorf, and L. M. Gambardella, Editorial Special Issue: Swarm Intelligence, IEEE Transactions on Evolutionary Computation, vol.13, issue.4, pp.677-680, 2009.
DOI : 10.1109/TEVC.2009.2022002

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White, Evaluating implicit measures to improve web search, ACM Transactions on Information Systems, vol.23, issue.2, pp.147-168, 2005.
DOI : 10.1145/1059981.1059982

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, An efficient boosting algorithm for combining preferences, Journal of Machine Learning Research, vol.4, issue.6, pp.933-969, 2004.

J. Gao, W. Yuan, X. Li, K. Deng, and J. Nie, Smoothing clickthrough data for web search ranking, Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, SIGIR '09, pp.355-362, 2009.
DOI : 10.1145/1571941.1572003

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Gayo-avello and D. Brenes, Making the road by searching-A search engine based on swarm information foraging, p.2009, 2009.

G. Golovchinsky, J. Pickens, and M. Back, A taxonomy of collaboration in online information seeking, 2009.

D. A. Grossman and O. Frieder, Information retrieval, pp.978-979, 2004.
DOI : 10.1007/978-1-4020-3005-5

D. Hawking, N. Craswell, P. Bailey, and K. Griffiths, Measuring search engine quality, Information Retrieval, vol.4, issue.1, pp.33-59, 2001.
DOI : 10.1023/A:1011468107287

M. A. Hearst, What's missing from collaborative search? Computer, pp.58-61, 2014.
DOI : 10.1109/mc.2014.77

X. Hu, J. Zhang, and Y. Li, Orthogonal Methods Based Ant Colony Search for Solving Continuous Optimization Problems, Journal of Computer Science and Technology, vol.39, issue.10, pp.2-18, 2008.
DOI : 10.1007/978-1-4612-1478-6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Jarvelin and J. Kekalainen, Cumulated gain-based evaluation of IR techniques, ACM Transactions on Information Systems, vol.20, issue.4, pp.422-446, 2002.
DOI : 10.1145/582415.582418

T. Joachims, Optimizing search engines using clickthrough data, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, p.133, 2002.
DOI : 10.1145/775047.775067

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Joachims, Evaluating retrieval performance using clickthrough data.. Text Mining, pp.79-96, 2003.

S. Jung, J. L. Herlocker, and J. Webster, Click data as implicit relevance feedback in web search, Information Processing & Management, vol.43, issue.3, pp.791-807, 2007.
DOI : 10.1016/j.ipm.2006.07.021

I. Koychev and I. Schwab, Adaptation to drifting user's interests, ECML workshop: Machine learning in new information age, pp.39-46

I. Kushchu, Web-Based Evolutionary and Adaptive Information Retrieval, IEEE Transactions on Evolutionary Computation, vol.9, issue.2, pp.117-125, 2005.
DOI : 10.1109/TEVC.2004.842093

S. Lawrence and C. L. Giles, Accessibility of information on the Web, intelligence, vol.11, issue.1, pp.32-39
DOI : 10.1145/333175.333181

P. Li, C. J. Burges, and Q. Wu, McRank: Learning to rank using multiple classification and gradient boosting Advances in neural information processing systems 20 -proceedings of the 2007 conference, 2009.

B. Liu, R. Jones, and K. L. Klinkner, Measuring the meaning in time series clustering of text search queries, Proceedings of the 15th ACM international conference on Information and knowledge management , CIKM '06, pp.836-837, 2006.
DOI : 10.1145/1183614.1183755

Y. Liu, Y. Fu, M. Zhang, S. Ma, and L. Ru, Automatic search engine performance evaluation with click-through data analysis, Proceedings of the 16th international conference on World Wide Web , WWW '07, pp.2007-1133, 2007.
DOI : 10.1145/1242572.1242731

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Malizia and K. Olsen, Emerging social search paradigms: Can we learn from ants?, Proceedings. of the Italian workshop on artificial life and evolutionary computation, pp.1-4, 2012.
DOI : 10.1109/mc.2012.182

A. Malizia and K. Olsen, Toward a New Search Paradigm-Can We Learn from Ants?, Computer, vol.45, issue.5, 2012.
DOI : 10.1109/MC.2012.182

N. Martínez-bazan, V. Muntés-mulero, S. Gómez-villamor, J. Nin, M. Sánchez-martínez et al., Dex, Proceedings of the sixteenth ACM conference on Conference on information and knowledge management , CIKM '07, pp.573-582, 2007.
DOI : 10.1145/1321440.1321521

C. Olston and E. H. Chi, ScentTrails, ACM Transactions on Computer-Human Interaction, vol.10, issue.3, pp.177-197, 2003.
DOI : 10.1145/937549.937550

G. Pass, A. Chowdhury, and C. Torgeson, A picture of search, Proceedings of the 1st international conference on Scalable information systems , InfoScale '06, 2006.
DOI : 10.1145/1146847.1146848

F. Radlinski and T. Joachims, Active exploration for learning rankings from clickthrough data, Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '07, p.570, 2007.
DOI : 10.1145/1281192.1281254

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Radlinski, R. Kleinberg, and T. Joachims, Learning diverse rankings with multi-armed bandits, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.784-791, 2008.
DOI : 10.1145/1390156.1390255

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. E. Rose and D. Levinson, Understanding user goals in web search, Proceedings of the 13th conference on World Wide Web , WWW '04, pp.13-19, 2004.
DOI : 10.1145/988672.988675

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Sakai, Alternatives to Bpref, Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '07, pp.71-78, 2007.
DOI : 10.1145/1277741.1277756

C. Silverstein, H. Marais, M. Henzinger, and M. Moricz, Analysis of a very large web search engine query log, ACM SIGIR Forum, vol.33, issue.1, pp.6-12, 1999.
DOI : 10.1145/331403.331405

B. Smyth, E. Balfe, J. Freyne, P. Briggs, M. Coyle et al., Exploiting query repetition and regularity in an adaptive community-based Web search engine. User Modelling and User-Adapted Interaction, pp.383-423, 2004.
DOI : 10.1007/s11257-004-5270-4

T. Stützle and H. H. Hoos, MAX?MIN Ant system The Netherlands, SIGIR '07 Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pp.391-398, 2007.

T. Turchi, A. Malizia, P. Castellucci, and K. Olsen, Collaborative Information Seeking with Ant Colony Ranking in Real-Time, Proceedings of the th Italian Research Conference on Digital Libraries . forthcoming, 2015.
DOI : 10.1145/1571941.1572073

URL : http://bura.brunel.ac.uk/bitstream/2438/13248/1/Fulltext.pdf

J. Wen and H. Zhang, Query Clustering in the Web Context, Clustering and information retrieval, pp.195-225, 2004.
DOI : 10.1007/978-1-4613-0227-8_7

J. Wu and K. Aberer, Swarm Intelligent Surfing in the Web, 2003.
DOI : 10.1007/3-540-45068-8_80

Y. Xie and D. O-'hallaron, Locality in search engine queries and its implications for caching, Proceedings -IEEE INFOCOM, pp.1238-1247, 2002.

J. Xu and H. Li, AdaRank, Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '07, pp.391-398, 2007.
DOI : 10.1145/1277741.1277809

Y. Xu and D. Mease, Evaluating web search using task completion time, Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, SIGIR '09, p.676, 2009.
DOI : 10.1145/1571941.1572073

J. Y. Yeh, J. Y. Lin, H. R. Ke, and W. P. Yang, Learning to rank for information retrieval using genetic programming, Proceedings of SIGIR 2007: Learning to rank for information retrieval, 2007.

Z. Yue, S. Han, D. He, J. A. Jiang, P. Ghodsnia et al., Influences on query reformulation in collaborative web search A3CRank: An adaptive ranking method based on connectivity, content and clickthrough data, Computer Information Processing & Management, vol.47, issue.462, pp.46-53, 2010.

Z. Bidoki, A. M. Yazdani, and N. , DistanceRank: An intelligent ranking algorithm for web pages, Information Processing & Management, vol.44, issue.2, pp.877-892, 2008.
DOI : 10.1016/j.ipm.2007.06.004

Z. Zheng, K. Chen, G. Sun, and H. Zha, A regression framework for learning ranking functions using relative relevance judgments, Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '07, p.287, 2007.
DOI : 10.1145/1277741.1277792

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen et al., A general boosting method and its application to learning ranking functions for web search, NIPS, pp.1697-1704, 2007.