Generating Test Sequences to Assess the Performance of Elastic Cloud-based Systems

Abstract : Elasticity is one of the main features of cloud-based systems (CBS), where elastic adaptations, such as those to deal with scaling in or scaling out of computational resources, help to meet performance requirements under varying workload. There is an industrial need to find configurations of elastic adaptations and workload that could lead to degradation of performance in a CBS, serving possibly millions of users. However, the potentially great number of such configurations poses a challenge: executing and verifying all of them on the cloud can be prohibitively expensive in both, time and cost. We present an approach to model elasticity adaptation due to workload changes as a classification tree model and consequently generate short test sequences of configurations that cover all T-wise interactions between parameters in the model. These test sequences, when executed, help us to assess the performance of elastic CBS. Using MongoDB as a case study, test sequences generated by our approach reveal several significant performance degradations.
Type de document :
Communication dans un congrès
IEEE Cloud 2017 - 10th IEEE International Conference on Cloud Computing, Jun 2017, Honolulu, United States
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01526275
Contributeur : Michel Albonico <>
Soumis le : lundi 22 mai 2017 - 21:40:55
Dernière modification le : mardi 4 décembre 2018 - 10:18:08
Document(s) archivé(s) le : mercredi 23 août 2017 - 18:52:54

Fichier

icst_to_cloud.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01526275, version 1

Citation

Michel Albonico, Stefano Alesio, Jean-Marie Mottu, Sagar Sen, Gerson Sunyé. Generating Test Sequences to Assess the Performance of Elastic Cloud-based Systems. IEEE Cloud 2017 - 10th IEEE International Conference on Cloud Computing, Jun 2017, Honolulu, United States. 〈hal-01526275〉

Partager

Métriques

Consultations de la notice

412

Téléchargements de fichiers

109