Multifractal random walk driven by a Hermite process

Abstract : We introduce a Multifractal Random Walk (MRW) defined as a stochastic integral of an infinitely divisible noise with respect to a Hermite process. Hermite processes are self-similar stochastic processes with stationary increments and exhibit long-range dependence. We study the existence of the Hermite MRW and its properties. We propose a continuous time financial model that captures the multifractal properties observed in the empirical data. We also present a numerical analysis of our results.
Type de document :
Chapitre d'ouvrage
Handbook of high-frequency trading and modeling in finance, Wiley Handb. Finance Eng. Econom., Wiley, Hoboken, NJ, 2016
Liste complète des métadonnées

https://hal.inria.fr/hal-01526873
Contributeur : Ciprian Tudor <>
Soumis le : mardi 23 mai 2017 - 15:59:52
Dernière modification le : mardi 3 juillet 2018 - 11:34:29

Identifiants

  • HAL Id : hal-01526873, version 1

Collections

Citation

Alexis Fauth, Ciprian A. Tudor. Multifractal random walk driven by a Hermite process. Handbook of high-frequency trading and modeling in finance, Wiley Handb. Finance Eng. Econom., Wiley, Hoboken, NJ, 2016. 〈hal-01526873〉

Partager

Métriques

Consultations de la notice

111