
HAL Id: hal-01527396
https://hal.inria.fr/hal-01527396

Submitted on 24 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Aspect-Oriented Change Realization Based on
Multi-Paradigm Design with Feature Modeling

Radoslav Menkyna, Valentino Vranić

To cite this version:
Radoslav Menkyna, Valentino Vranić. Aspect-Oriented Change Realization Based on Multi-Paradigm
Design with Feature Modeling. David Hutchison; Takeo Kanade; Madhu Sudan; Demetri Terzopoulos;
Doug Tygar; Moshe Y. Vardi; Gerhard Weikum; Tomasz Szmuc; Marcin Szpyrka; Jaroslav Zendulka;
Josef Kittler; Jon M. Kleinberg; Friedemann Mattern; John C. Mitchell; Moni Naor; Oscar Nierstrasz;
C. Pandu Rangan; Bernhard Steffen. 4th Central and East European Conference on Software En-
gineering Techniques (CEESET), Oct 2009, Krakow, Poland. Springer, Lecture Notes in Computer
Science, LNCS-7054, pp.40-53, 2012, Advances in Software Engineering Techniques. <10.1007/978-3-
642-28038-2_4>. <hal-01527396>

https://hal.inria.fr/hal-01527396
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Aspect-Oriented Change Realization Based on
Multi-Paradigm Design with Feature Modeling

Radoslav Menkyna and Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava,
Ilkovičova 3, 84216 Bratislava 4, Slovakia

Radoslav.Menkyna@softec.sk, vranic@fiit.stuba.sk

Abstract. It has been shown earlier that aspect-oriented change realization based
on a two-level change type framework can be employed to deal with changes so
they can be realized in a modular, pluggable, and reusable way. In this paper,
this idea is extended towards enabling direct change manipulation using multi-
paradigm design with feature modeling. For this, generally applicable change
types are considered to be (small-scale) paradigms and expressed by feature
models. Feature models of the Method Substitution and Performing Action After
Event change types are presented as examples. In this form, generally applicable
change types enter an adapted process of the transformational analysis to deter-
mine their application by their instantiation over an application domain feature
model. The application of the transformational analysis in identifying the details
of change interaction is presented.
Keywords: change, aspect-oriented programming, multi-paradigm design, fea-
ture modeling, change interaction

1 Introduction

Changes of software applications exhibit crosscutting nature either intrinsically by be-
ing related to many different parts of the application they affect or by their perception
as separate units that can be included or excluded from a particular application build.
It is exactly aspect-oriented programming that can provide suitable means to capture
this crosscutting nature of changes and to realize them in a pluggable and reapplicable
way [1].

Particular mechanisms of aspect-oriented change introduction determine the change
type. Some of these change types have already been documented [2,1], so by just iden-
tifying the type of the change being requested, we can get a pretty good idea of its
realization. This is not an easy thing to do. One possibility is to have a two-level change
type model with some change types being close to the application domain and other
change types determining the realization, while their mapping is being maintained in
a kind of a catalog [1].

But what if such a catalog for a particular domain does not exist? To postpone
change realization and develop a whole catalog may be unacceptable with respect to

41

time and effort needed. The problem of selecting a suitable realizing change type re-
sembles paradigm selection in multi-paradigm design [3]. This other way around – to
treat change realization types as paradigms and employ multi-paradigm design to select
the appropriate one – is the topic of this paper.

We first take a look at the two-level aspect-oriented change realization model
(Sect. 2). Subsequently, the approach to modeling change realization types as paradigms
using feature modeling is introduced (Sect. 3). The approach employs the application
domain feature model with changes expressed as features (Sect. 4). The key part of the
approach is the transformational analysis – the process of finding a suitable paradigm
– tailored to change realization (Sect. 5). Afterwards, it is shown how the transforma-
tional analysis results can be used to identify change interaction (Sect. 6). The approach
is discussed with respect to related work (Sect. 7). Concluding notes close the paper
(Sect. 8).

2 Two-Level Change Realization Framework

In our earlier work [2,1], we proposed a two-level aspect-oriented change realization
framework. Changes come in the form of change requests each of which may consist of
several changes. We understand a change as a requirement focused on a particular issue
perceived as indivisible from the application domain perspective.

Given a particular change, a developer determines the domain specific change type
that corresponds to it. Domain specific change types represent abstractions and genera-
lizations of changes expressed in the vocabulary of a particular domain. A developer
gets a clue to the change realization from the cataloged mappings of domain specific
change types to generally applicable change types, which represent abstractions and
generalizations of change realizations in a given solution domain (aspect-oriented lan-
guage or framework). Each generally applicable change type provides an example code
of its realization. It can also be a kind of an aspect-oriented design pattern or a domain
specific change can even be directly mapped to one or more aspect-oriented design
patterns.

As an example, consider some changes in the general affiliate marketing software
purchased by a merchant who runs his online music shop to advertise at third party web
sites (denoted as affiliates).1 This software tracks customer clicks on the merchant’s
commercials (e.g., banners) placed in affiliate sites and whether they led to buying
goods from the merchant in which case the affiliate who referred the sale would get
the provision.

Consider a change that subsumes the integration of the affiliate marketing software
with the third party newsletter used by the merchant so that every affiliate would be
a member of the newsletter. When an affiliate signs up to the affiliate marketing soft-
ware, he should be signed up to the newsletter, too. Upon deleting his account, the
affiliate should be removed from the newsletter. This is an instance of the change type
called One Way Integration [2], one of the web application domain specific change
types. Its essence is the one way notification: the integrating application notifies the

1 This is an extended scenario originally published in our earlier work [2,1].

42

integrated application of relevant events. In this case, such events are the affiliate sign
up and affiliate account deletion.

The catalog of changes [1] would point us to the Performing Action After Event
generally applicable change type. As follows from its name, it describes how to im-
plement an action after an event in general. Since events are actually represented by
methods, the desired action can be implemented in an after advice [2]:

public aspect PerformActionAfterEvent {
pointcut methodCalls(TargetClass t, int a): . . .;
after(/⇤ captured arguments ⇤/): methodCalls(/⇤ captured arguments ⇤/) {

performAction(/⇤ captured arguments ⇤/);
}
private void performAction(/⇤ arguments ⇤/) { /⇤ action logic ⇤/ }

}

The after advice executes after the captured method calls. The actual action is imple-
mented as the performAction() method called by the advice.

To implement the newsletter sign up change, in the after advice we will make a post
to the newsletter sign up/sign out script and pass it the e-mail address and name of the
newly signed-up or deleted affiliate.

As another example, consider a change is needed to prevent attempts to register
without providing an e-mail address. This is actually an instance of the change type
called Introducing Additional Constraint on Fields [2], which can be realized using
Performing Action After Event or Additional Parameter Checking, but if we assume
no form validation mechanism is present, even the most general Method Substitution
(which wasn’t considered originally [1] for this) can be used to capture method calls:

public aspect MethodSubstition {
pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(TargetClass t, int a): methodCalls(t, a) {

if (. . .) { . . . } // the new method logic
else proceed(t, a);

}
}

3 Generally Applicable Change Types as Paradigms

Generally applicable change types are independent of the application domain and may
even apply to different aspect-oriented languages and frameworks (with an adapted
code scheme, of course). The expected number of generally applicable change types
that would cover all significant situations is not high. In our experiments, we managed
to cope with all situations using only six of them.

On the other hand, in the domain of web applications, eleven application specific
changes we identified so far cover it only partially. Each such change type requires
a thorough exploration in order to discover all possible realizations by generally appli-
cable change types and design patterns with conditions for their use, and it is not likely
that someone would be willing to invest effort into developing a catalog of changes
apart of the momentarily needs.

43

The problem of selecting a suitable generally applicable change type resembles the
problem of the selection of a paradigm suitable to implement a particular application
domain concept, which is a subject of multi-paradigm approaches [4]. Here, we will
consider multi-paradigm design with feature modeling (MPDFM), which is based on an
adapted Czarnecki-Eisenecker [5] feature modeling notation [6]. Section 3.1 explains
how paradigms are modeled in MPDFM. Section 3.2 and 3.3 introduces two examples
of change paradigm models.

3.1 Modeling Paradigms

In MPDFM, paradigms are understood as solution domain concepts that correspond to
programming language mechanisms (like inheritance or class). Such paradigms are be-
ing denoted as small-scale to distinguish them from the common concept of the (large-
scale) paradigm as a particular approach to programming (like object-oriented or pro-
cedural programming) [3].

In MPDFM, feature modeling is used to express paradigms. A feature model consists
of a set of feature diagrams, information associated with concepts and features, and
constraints and default dependency rules associated with feature diagrams. A feature
diagram is usually understood as a directed tree whose root represents a concept being
modeled and the rest of the nodes represent its features [7].

The features may be common to all concept instances (feature configurations) or
variable, in which case they appear only in some of the concept instances. Features are
selected in a process of concept instantiation. Those that have been selected are denoted
as bound. The time at which this binding (or choosing not to bind) happens is called
binding time. In paradigm modeling, the set of binding times is given by the solution
model. In AspectJ we may distinguish among source time, compile time, load time, and
runtime.

Each paradigm is considered to be a separate concept and as such presented in
its own feature diagram that describes what is common to all paradigm instances (its
applications), and what can vary, how it can vary, and when this happens. Consider
the AspectJ aspect paradigm feature model shown in Fig. 1. Each aspect is named,
which is modeled by a mandatory feature Name (indicated by a filled circle ended
edge). The aspect paradigm articulates related structure and behavior that crosscuts
otherwise possibly unrelated types. This is modeled by optional features Inter-Type
Declarations, Advices, and Pointcuts (indicated by empty circle ended edges). These
features represent references to equally named auxiliary concepts that represent plural
forms of respective concepts that actually represent paradigms in their own right (and
their own feature models [3]). To achieve its intent, an aspect may – similarly to a class
– employ Methods (with the method being yet another paradigm) and Fields.

An aspect in AspectJ is instantiated automatically by occurrence of the join points
it addresses in accordance with Instantiation Policy. The features that represent dif-
ferent instantiation policies are mandatory alternative features (indicated by an arc over
mandatory features), which means that exactly one of them must be selected. An aspect
can be Abstract, in which case it can’t be instantiated, so it can’t have Instantiation
Policy either, which is again modeled by mandatory alternative features.

44

!"#$%&

'(&$)*+,#$-

.$%/0)0&12("!

'("&0(&10&12(-

32/1%,

!"#$%&"!

4&0&1%

506$

71(0/!891%$"!

321(&%:&"!

71$/8"

;$&<28"!

41(=/$&2(3$)->?@$%&
3$)-A2(&)2/-7/2B

321(&%:&! 321(&%:&! C<2/$ D$/2B

4%2#$

'(&$)E0%$"!
A/0""$"!

'(<$)1&0(%$"!

!%%$""!

3)191/$=$8

!?"&)0%&

Fig. 1. The AspectJ aspect paradigm (adopted from [3]).

An aspect can be declared to be Static or Final. It doesn’t have to be either of the
two, but it can’t be both, which is modeled by optional alternative features of which
only one may be selected (indicated by an arc over optional features). An aspect can
also be Privileged over other aspects and it has its type of Access, which is modeled
as a reference to a separately expressed auxiliary concept. All the features in the aspect
paradigm are bound at source time.

The constraint associated with the aspect paradigm feature diagram means that the
aspect is either Final or Abstract. We use first-order predicate logic to express con-
straints associated with feature diagrams, but OCL could be employed, too, as a widely
accepted and powerful notation for such uses (but even of wider applicability, e.g. in-
stead of object algebras [8]).

Generally applicable changes may be seen as a kind of conceptually higher language
mechanisms and modeled as paradigms in the sense of MPDFM.

3.2 Method Substitution

Figure 2 shows the Method Substitution change type paradigm model. All the features
have source time binding. This change type enables to capture calls to methods (Orig-
inal Method Calls) with or without the context (Context) and to alter the functional-
ity they implement by the additional functionality it provides (Altering Functionality)
which includes the possibility of affecting the arguments (Check/Modify Arguments)
or return value (Check/Modify Return Value), or even blocking the functionality of the
methods whose calls have been captured altogether (Proceed with Original Methods).
Note the Context feature subfeatures. They are or-features, which means at least one
them has to be selected.

45

!"#$%&'()*+#,#)#,%-

./,0,-12'

!"#$%&'3122+

42#"/,-0'

5)-6#,%-12,#7
4+8"6#! 3%-#"9#'

!"#$%&'

4/0):"-#+

;1/0"#'

321++

</%6""&'=,#$'

./,0,-12'!"#$%&+

3$"6>?!%&,@7'

4/0):"-#+

3$"6>?!%&,@7'

A"#)/-'B12)"

Constraints:
Aspect.Pointcut
Aspect.Advice.Around

Fig. 2. Method Substitution.

Method Substitution is implemented by an aspect (Aspect) with a pointcut specify-
ing the calls to the methods to be altered by an around advice, which is expressed by
the constraints associated with its feature diagram (Fig. 2).

3.3 Performing Action After Event

Figure 3 shows the Performing Action After Event change type paradigm model. All
the features have source time binding. This change type is used when an additional
action (Action After Event) is needed after some events (Events) of method calls or
executions, initialization, field reading or writing, or advice execution (modeled as or-
features) taking or not into account their context (Context).

!"#$%#&'()*+,-'%(*

+$-"#*./"(-

+,-'%(*

+$-"#*./"(-
+01",-! 2%(-"3-*

24550 .3",6-'%(0 7"-8%9*

+#)6&"(-0

:4#)"-*

25400

;('-'45'<4-'%(0

='"59*

>"49'()0*

='"59*

?#'-'()0*

+9/',"*

.3",6-'%(0

./"(-0

28",@A7%9'$B*

>"-6#(*C456"

Constraints:
Aspect.Pointcut
Aspect.Advice.After

Fig. 3. Performing Action After Event.

Performing Action After Event is implemented by an aspect (Aspect) with a point-
cut specifying the events and an after advice over this pointcut used to perform the
desired actions, which is expressed by the constraints associated with its feature dia-
gram (Fig. 3).

46

4 Feature Model of Changes

For the transformational analysis, the application domain feature model that embraces
the changes is needed. We will present how changes can be expressed in the application
domain feature model in our running example of affiliate tracking software.

4.1 Expressing Changes in a Feature Model

In our affiliate marketing example, we may consider the following changes:

– SMTP Server Backup A/B – to introduce a backup server for sending notifications
(with two different implementations, A and B)

– Newsletter Sign Up – to sign up an affiliate to a newsletter when he signs up to the
tracking software

– Account Registration Constraint – to check whether the affiliate who wants to regi-
ster submitted a valid e-mail address

– Restricted Administrator Account – to create an account with a restriction of using
some resources

– Hide Options Unavailable to Restricted Administrator – to restrict the user interface
– User Name Display Change — to adapt the order of displaying the first name and

surname
– Account Registration Statistics – to gain statistical information about the affiliate

registrations

These changes are captured in the initial feature diagram presented in Fig. 4. The
concept we model is our affiliate marketing software.2 All the changes are modeled as
optional features as they can, but don’t have to be applied. We may consider the pos-
sibility of having different realizations of a change of which only one may be applied.
This is expressed by alternative features. In the example, no Affiliate Marketing instance
can contain both SMTP Server Backup A and SMTP Server Backup B.

SMTP Server
Backup A

Newsletter
Sign Up

User Name
Display Change

 Restricted
Administrator

Account

Hide Options Unavailable
to Restricted Administrator

Affiliate Marketing

SMTP Server
Backup B

Account
Registration
Constraint

Account
Registration

Statistics

Fig. 4. Changes in the affiliate marketing software.

Some change realizations make sense only in the context of some other change
realizations. In other words, such change realization require the other change realiza-
tions. In our scenario, hiding options unavailable to a restricted administrator makes

2 In general, there may be several top-level concepts in one application domain.

47

sense only if we have introduced a restricted administrator account. This is modeled by
having Hide Options Unavailable to Restricted Administrator to be a subfeature of Re-
stricted Administrator Account. For a subfeature to be included in a concept instance,
its parent feature must be included, too.

The feature – subfeature relationship represents a direct dependency between two
features. Such dependency can be an indication of a possible interaction between
change realizations. However, with alternative features, no interaction can occur be-
cause an application instance can contain only one change realization.

4.2 Partial Feature Model

Often, no feature model of the system is available. Creating the feature model of the
whole system is difficult and time consuming. Fortunately, as it has been shown [9]
– for the purpose of change interaction analysis, it is a partial feature model is suffi-
cient. The process of constructing a partial feature model starts with the feature model
in which aspect-oriented change realizations are represented by variable features that
extend the existing system represented by a concept node as an abstract representa-
tion of the underlying software system, which is exactly the model we discussed in the
previous section.

In partial feature model construction, only the features that potentially take part
in change interaction are being identified and modeled. Starting at change features,
we proceed bottom up identifying their parent features until related features become
grouped in common subtrees [9].

A partial feature model constructed from the initial feature model of the changes
being introduced into our affiliate marketing software (presented in Fig. 4) is depicted
in Fig. 5. All the identified change parent features are open because the sets of their
subfeatures are incomplete, since we model only the changes that affect them, and since
there may be other changes in the future.

Newsletter
Sign Up

[Displaying
Menu Items]

[Banner
Management]

Hide Options
Unavailable to

Restricted
Administrator

[Affiliate Marketing]

[SMTP Server
Creation]

Account
Registration
Constraint

Account
Registration

Statistics

SMTP Server
Backup B

[Affiliate
Sign Up]

User Name
Display Change

[Displaying Grid
Data]

 Restricted
Administrator

Account

[Campaign
Management]

 Restricted
Administrator

Account

SMTP Server
Backup A

Constraints:
Hide Operations Unavailable to Restricted Administrator)
Restricted Administration Account

Fig. 5. A partial feature model of the affiliate marketing software.

48

At this stage, it is possible to identify potential locations of interaction. Such loca-
tions are represented as features of the system to which changes are introduced. The
highest probability of interaction is among sibling features (direct subfeatures of the
same parent feature) because they are potentially interdependent. This is caused by
the fact that changes represented by such features usually employ the same or similar
pointcuts which is generally a source of unwanted interaction. Such locations should
represent primary targets of evaluation during the transformational analysis, which is
the topic of the following section.

Interaction can occur also between indirect siblings or non-sibling features. How-
ever, with an increasing distance between features that represent changes, the probabi-
lity of their interaction decreases.

5 Transformational Analysis

The input to the transformational analysis in multi-paradigm design with feature mo-
deling [3] are two feature models: the application domain one and the solution domain
one. The output of the transformational analysis is a set of paradigm instances anno-
tated with application domain feature model concepts and features that define the code
skeleton.

A concept instance is defined as follows [3]:

An instance I of the concept C at time t is a C’s specialization achieved by
configuring its features which includes the C’s concept node and in which each
feature whose parent is included in I obeys the following conditions:
1. All the mandatory features are included in I.
2. Each variable feature whose binding time is earlier than or equal to t is in-

cluded or excluded in I according to the constraints of the feature diagram
and those associated with it. If included, it becomes mandatory for I.

3. The rest of the features, i.e. the variable features whose binding time is
later than t, may be included in I as variable features or excluded accor-
ding to the constraints of the feature diagram and those associated with it.
The constraints (both feature diagram and associated ones) on the included
features may be changed as long as the set of concept instances available
at later instantiation times is preserved or reduced.

4. The constraints associated with C’s feature diagram become associated
with the I’s feature diagram.

5.1 Transformational Analysis of Changes

For determining change types that correspond to the changes that have to be realized,
a simplified transformational analysis can be used. Changes presented in the application
domain feature model are considered to be application domain concepts, and gene-
rally applicable change types to be paradigms. A complete application domain feature
model may be used if available, otherwise a partial feature model has to be constructed.
For each change C from the application domain feature model, the following steps are
performed:

49

1. Select a generally applicable change type P that has not been considered for C yet.
2. If there are no more paradigms to select, the process for C has failed.
3. Try to instantiate P over C at source time. If this couldn’t be performed or if P’s root

doesn’t match with C’s root, go to step 1. Otherwise, record the paradigm instance
created.

Paradigm instantiation over application domain concepts means that the inclusion
of some of the paradigm nodes is being stipulated by the mapping of the nodes of one
or more application domain concepts to them in order to ensure the paradigm instances
correspond to these application domain concepts.

If the transformational analysis fails for some change, this change is probably an
instance of a new change type. The process should continue with AspectJ paradigms,
which is the subject of the general transformational analysis [3].

5.2 Example

We will demonstrate the transformational analysis on several changes in the affiliate
marketing software (introduced in Sect. 4.1) with the AspectJ paradigm model [3] ex-
tended by feature models of the generally applicable change types (see Sect. 3) as a so-
lution domain.

The Restricted Administrator Account change provides an additional check of ac-
cess rights upon execution of specified methods. Methods should be executed only if
access is granted. This scenario suites best to the Method Substitution change type
which can control the execution of selected methods, and ensure displaying an error
message or logging in case of an access violation event.

Figure 6 shows the transformational analysis of the Restricted Administrator Ac-
count change. The Target Class and Method Arguments features are included to capture
additional context which is needed by the Proceed with Original Methods feature when
the access is granted. The If Access Granted annotation indicates the condition of pro-
ceeding with the original methods. Note that the Banner Management and Campaign
Management features are mapped to the Original Method Calls feature expressed by an
annotation. This means that the change affects the behavior represented by them. Such
annotations are crucial to change interaction evaluation (discussed in the next section).

!"#$%&'()*+#,#)#,%-

./,0,-12'

!"#$%&''3122

4/%5""&'6,#$'

./,0,-12'!"#$%&+

7+8"5#!

9"+#/,5#"&'

7&:,-,+#/1#%/'

755%)-#

31:81,0-'

!1-10":"-#

;<'755"++'

;+'=/1-#"&

>1--"/

!1-10":"-#

3%-#"?#'

!"#$%&'

7/0):"-#+
@1/0"#'

321++

72#"/,-0'

A)-5#,%-12,#B

Fig. 6. Transformational analysis of the Restricted User Account change.

50

The transformational analysis of Account Registration Constraint would be similar.
Again, we would employ the Method Substitution change type. The Original Method
Calls feature would map to the Affiliate Sign Up feature and the original method will
be executed only if a valid e-mail address is provided.

Figure 7 shows the transformational analysis of the Newsletter Sign Up change.
Recall that this change adds a new affiliate to the existing list of newsletter recipients,
which can be best realized as Performing Action After Event. In this case, the Events
feature is mapped to the Affiliate Sign Up feature which represents the execution of
the affiliate sign up method. Through Method Arguments, the data about the affili-
ate being added can be accessed (Affiliate Data) from which his e-mail address can
be retrieved and subsequently added to the newsletter recipient list by the Action Af-
ter Events feature. A similar transformation would apply to the Account Registration
Statistics change.

Performing Action
After Event

Events Action After
EventsAspect®

Newsletter
Sign Up

ExecutionAffiliate
Sign Up

Add Affiliate
to Newsletter

Recipients

Context

Method
Arguments Affiliate Data

Fig. 7. Transformational analysis of the Newsletter Sign Up change.

6 Change Interaction

Change realizations can interact: they may be mutually dependent or some change re-
alizations may depend on the parts of the underlying system affected by other change
realizations [1]. The interaction is most probable if multiple changes affect the same
functionality. As has been shown, such situations could be identified in part already
during the creation of a partial feature model [9], but the transformational analysis can
reveal more details needed to avoid the interaction of change realizations.

Consider, for example, the Newsletter Sign Up and Account Registration Statistics
changes. Despite they share the target functionality (Affiliate Sign Up), no interaction
occurs. This is because both changes are realized using the Performing Action After
Event change type which employs an after() advice. In such a situation, it is important
to check whether the execution order of the advices is significant. In this particular case,
it is not.

The Account Registration Constraint change represents a potential source of in-
teraction with Newsletter Sign Up and Account Registration Statistics because it also
targets the same functionality. This change is realized using the Method Substitution
paradigm through which it can disable the execution of the method that registers a new

51

affiliate. If the Newsletter Sign Up and Account Registration Statistics change realiza-
tions rely on method executions, not calls, i.e. they employ an execution() pointcut, no
interaction occurs. On the other hand, if the realizations of these changes would rely on
method calls, i.e. they would employ a call() pointcut, their advices would be executed
even if the registration method haven’t been executed, which is an undesirable system
behavior.

In most cases, the interaction can be solved by adapting change realizations. Un-
solvable change interaction should be introduced in the application domain model by
constraints that will prevent affected changes from occurring together.

7 Related Work

The impact of changes implemented by aspects has been studied using slicing in con-
cern slice dependency graphs [10]. It has been shown that the application domain fea-
ture model can be derived from concern slice dependency graphs [11]. Concern slice
dependency graphs provide in part also a dynamic view of change interaction that could
be expressed using a dedicated notation (such as UML state machine or activity dia-
grams) and provided along with the feature model covering the structural view.

Applying program slicing to features implemented as aspects with interaction un-
derstood as a slice intersection has been applied so far only to a very simplified version
of AspectJ. Extension to cover complicated constructs has been identified as problem-
atic. Even at this simplified level, it appears to be too coarse for applications in which
the behavior is embedded in data structures [12].

Even if the original application haven’t been a part of a product line, changes mo-
deled as its features tend to form a kind of a product line out of it. This could be seen
as a kind of evolutionary development of a new product line [13].

As an alternative to our transformational analysis, framed aspects [14,15] can be
applied to the application domain feature model with each change maintained in its
own frame in order to keep it separate.

Annotations that determine the feature implementation in so-called crosscutting fea-
ture models [16] are similar to annotations used in our transformational analysis, but no
formal process to determine them is provided.

An approach to introduce program changes by changing the interpreter instead
based on grammar weaving has been reported [17]. With respect to suitability of aspect-
oriented approach to deal with changes, it is worth mentioning that weaving – a promi-
nent characteristic of aspect-oriented programming – has been identified as crucial for
the automation of multi-paradigm software evolution [18].

8 Conclusions and Further Work

The work reported here is a part of our ongoing efforts of comprehensively covering
aspect-oriented change realization whose aim is to enable change realization in a modu-
lar, pluggable, and reusable way. In this paper, we extended the original idea of having
two-level change type framework to facilitate easier aspect-oriented change realization

52

by enabling direct change manipulation using multi-paradigm design with feature mo-
deling (MPDFM) with generally applicable change types as (small-scale) paradigms.

We introduced the paradigm models of the Method Substitution and Performing Ac-
tion After Event change types. We also developed paradigm models of other generally
applicable change types not presented in this paper such as Enumeration Modification
with Additional Return Value Checking/Modification, Additional Return Value Check-
ing/Modification, Additional Parameter Checking or Performing Action After Event,
and Class Exchange.

We adapted the process of the general transformational analysis in MPDFM to work
with changes as application domain concepts and generally applicable change types as
paradigms. We demonstrated how such transformational analysis can help in identifying
the details of change interaction.

Our further work includes extending our approach to cover the changes realized by
a collaboration of multiple generally applicable change types and design patterns. We
also work on improving change type models by expressing them in the Theme notation
of aspect-oriented analysis and design [19].

Acknowledgements

The work was supported by the Scientific Grant Agency of Slovak Republic (VEGA)
grant No. VG 1/0508/09 and SOFTEC, s. r. o., Bratislava, Slovakia.

References

1. Vranić, V., Bebjak, M., Menkyna, R., Dolog, P.: Developing Applications with Aspect-
oriented Change Realization. In: Proc. of the 3rd IFIP TC2 Central and East European Con-
ference on Software Engineering Techniques CEE-SET 2008. LNCS, Brno, Czech Republic,
Springer, Heidelberg (2008) (to appear)

2. Bebjak, M., Vranić, V., Dolog, P.: Evolution of Web Applications with Aspect-oriented
Design Patterns. In: Brambilla, M., Mendes, E. (eds.) Proc. of ICWE 2007 Workshops,
2nd International Workshop on Adaptation and Evolution in Web Systems Engineering,
AEWSE 2007, in conjunction with 7th International Conference on Web Engineering,
ICWE 2007, pp. 80–86. Como, Italy (2007)

3. Vranić, V.: Multi-paradigm Design with Feature Modeling. Computer Science and Informa-
tion Systems Journal (ComSIS) 2(1), 79–102 (2005)

4. Vranić, V.: Towards Multi-paradigm Software Development. Journal of Computing and
Information Technology (CIT) 10(2), 133–147 (2002)

5. Czarnecki, K., Eisenecker, U.W.: Generative Programing: Methods, Tools, and Applications.
Addison-Wesley (2000)

6. Vranić, V.: Reconciling Feature Modeling: A Feature Modeling Metamodel. In: Weske,
M., Liggsmeyer, P. (eds.) Proc. of the 5th Annual International Conference on Object-
Oriented and Internet-Based Technologies, Concepts, and Applications for a Networked
World (Net.ObjectDays 2004). LNCS, vol. 3263, pp. 122–137. Springer, Heidelberg (2004)

7. Vranić, V., Šípka, M.: Binding Time Based Concept Instantiation in Feature Modeling. In:
Morisio, M. (ed.) Proc. of the 9th International Conference on Software Reuse (ICSR 2006).
LNCS, vol. 4039, pp. 407–410. Turin, Italy, Springer, Heidelberg (2006)

53

8. Navarčik, M., Polášek, I.: Object Model Notation. In: Proc. of the 8th International Con-
ference on Information Systems Implementation and Modelling, ISIM 2005, Rožnov pod
Radhoštěm, Czech Republic (2005)

9. Vranić, V., Menkyna, R., Bebjak, M., Dolog, P.: Aspect-oriented Change Realizations and
their Interaction Submitted to e-Informatica Software Engineering Journal, CEE-SET 2008
special issue.

10. Khan, S., Rashid, A.: Analysing Requirements Dependencies and Change Impact Using
Concern Slicing. In: Proc. of Aspects, Dependencies, and Interactions Workshop (affiliated
to ECOOP 2008), Nantes, France (2006)

11. Menkyna, R.: Dealing with Interaction of Aspect-oriented Change Realizations Using Fea-
ture Modeling. In:Bieliková, M. (ed.) Proc. of the 5th Student Research Conference in In-
formatics and Information Technologies , IIT.SRC 2009, Bratislava, Slovakia (2009)

12. Monga, M., Beltagui, F., Blair, L.: Investigating Feature Interactions by Exploiting Aspect
Oriented Programming. Technical Report comp-002-2003, Lancaster University, Lancaster,
UK (2003) Available at http://www.comp.lancs.ac.uk/computing/aose.

13. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product-Line
Approach. Addison-Wesley (2000)

14. Loughran, N., Rashid, A., Zhang, W., Jarzabek, S.: Supporting Product Line Evolution with
Framed Aspects. In: Workshop on Aspects, Componentsand Patterns for Infrastructure Soft-
ware (held with AOSD 2004, International Conference on Aspect-Oriented Software Devel-
opment), Lancaster, UK (2004)

15. Loughran, N., Sampaio, A., Rashid, A.: From Requirements Documents to Feature Models
for Aspect Oriented Product Line Implementation. In: MDD for Software Product-lines:
Fact or Fiction?, a Workshop held with ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems, MoDELS/UML 2005), Montego Bay, Jamaica
(2005)

16. Kulesza, U., Garcia, A., Bleasby, F., Lucena, C.: Instantiating and Customizing Aspect-
oriented Architectures Using Crosscutting Feature Models. In: Workshop on Early As-
pects held with OOPSLA 2005, San Diego, USA (2005) Available at http://www.early-
aspects.net/oopsla05ws.

17. Forgáč, M., Kollár, J.: Adaptive Approach for Language Modification. Journal of Computer
Science and Control Systems 2(1), 9–12 (2009)

18. Kollár, J., Porubän, J., Václavík, P., Tóth, M., Bandáková, J., Forgáč, M.: Multi-paradigm
Approaches to Systems Evolution. In: Computer Science and Technology Research Survey,
Košice, Slovakia (2007)

19. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Approach.
Addison-Wesley (2005)

