
HAL Id: hal-01528536
https://inria.hal.science/hal-01528536

Submitted on 29 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Improvements for Search Systems using an
Integrated Cache of Lists+Intersections

Gabriel Tolosa, Luca Becchetti, Esteban Feuerstein, Alberto
Marchetti-Spaccamela

To cite this version:
Gabriel Tolosa, Luca Becchetti, Esteban Feuerstein, Alberto Marchetti-Spaccamela. Performance
Improvements for Search Systems using an Integrated Cache of Lists+Intersections. Information
Retrieval Journal, 2017, 20 (3), pp.172-198. �10.1007/978-3-319-11918-2_22�. �hal-01528536�

https://inria.hal.science/hal-01528536
https://hal.archives-ouvertes.fr

Performance Improvements for Search Systems

using an Integrated Cache of Lists+Intersections

Abstract. Modern information retrieval systems use sophisticated tech-
niques for e�ciency and scalability purposes. Among the most frequent
such techniques is the implementation of several levels of caching. The
main goal of a cache is to speedup computation by exploiting frequent,
recent or costly data used in the past. In this study we propose and
evaluate a static cache that works simultaneously as list and intersection
cache, o↵ering a more e�cient way of handling cache space. In addition,
we propose e↵ective strategies to select the term pairs that should popu-
late the cache. Simulation using two datasets and a real query log reveal
that the proposed approach improves overall performance in terms of
total processing time, achieving savings of up to 40% in the best case.

1 Introduction

Modern high scale information retrieval systems such as Web Search Engines
(WSE) utilize sophisticated techniques for e�ciency and scalability purposes to
deal with their requirements: they crawl and index tens of billions of documents
(thus managing a huge inverted index file) and must solve queries in minimum
fractions of time (i.e. milliseconds) to satisfy users expectations. In such a sce-
nario, caching becomes one of the most important and crucial tools to achieve
fast response times and to increase query throughput.

Basically, the total cost of serving a query is defined as the sum of process-
ing time (Ccpu) and disk access times (Cdisk). Ccpu involves decompressing the
posting lists, computing the query-document similarity scores and determining
the top-k documents that form the final answer set. In most cases a conjunctive
semantic is considered because intersections produce shorter lists than unions,
which leads to smaller query latencies [3] and higher precision levels. On the
other hand, Cdisk involves fetching from hard disk the (usually compressed)
posting lists of all the query terms.

The main goal of a cache is to speedup computation by storing frequent,
recent or costly data. The typical architecture of a search engine involves di↵erent
cache levels (Fig. 1): essentially, caching involves both query result pages (Result
cache) at the broker level and the posting lists of terms that appear in the queries
(List Cache) at search node level. The first level tries to minimize recomputation
of results for queries that appeared in the past, thus also reducing the workload
of back-end servers. The latter attempts at reducing the amount of disk fetch
operations, that are very expensive compared to CPU processing times. If a list
is found in cache disk cost is avoided.

Gabriel Tolosa, Luca Becchetti, Esteban Feuerstein, Alberto Marchetti-Spaccamela

A further approach involves caching portions of a query (i.e., pairs of terms),
as initially proposed in [14] and extended in [6]. This approach is named Inter-

section Caching and is implemented at search node level as well. The idea in this
case is to exploit term co-occurrence patterns, e.g., by keeping the intersection
of the postings lists of frequently co-occurring pairs of terms in the memory of
the search node, in order to not only save disk access time, but CPU time too.

.....

Front-end

Search nodes

q

Local
index

List
Cache

Intersection
Cache

q q q

User Query q Result
Cache

Fig. 1. Search Engine Architecture considered in this work

Some industry-scale search engines systems store the entire index in main
memory [5]. This means that the List Cache becomes useless, but the intersection
cache is still useful [9] because it allows to save CPU time (i.e. the cost of
intersecting two posting lists). For more general cases such as medium-scale
systems, only a fraction of the index is maintained in cache. Here, lists and
intersections caches are both very helpful to reduce disk access and processing
time. We consider this scenario in our work.

All types of caches (query results, posting lists, intersections), may be man-
aged using static or dynamic policies, or both. In the static case, the cache is
filled with items previously selected from a training set and its content remains
unaltered until the next update. In the dynamic case, the cache content changes
in an online fashion with respect to the query stream, as new entries may be
inserted and existing entries may be evicted. A great deal of relevant prior work
on caching is found in the literature. Section 2 summarizes some work related
to ours.

As we mentioned earlier, list and intersection caches are implemented at
search node level. Usually, these are independent and try to give benefits from
two di↵erent perspectives. The List Cache achieves a greater hit rate because
the frequency of individual terms is higher than that of pairs of terms, but each
hit in the later entails a higher benefit because the posting lists of two terms are
involved and also some computation is avoided.

Based on the observation that many terms co-occur frequently in di↵erent
queries our motivation is to build a cache that may capture the benefits of both
approaches in just one cache (instead of two). To do this, we implement a data

structure previously proposed by Lam et al. [13]. The original idea is to merge
the entries of two frequently co-occurring terms to form a single entry to store
the inverted files more compactly. We adapt this structure to a static cache in
which the pair of terms (bigram) selected o↵er a good balance between hit rate
and benefit, leading to an improvement in the total cost of solving a query. We
investigate di↵erent ways of choosing and combining the terms.

1.1 Our Contribution

In this work, we explore the possibility of reserving the whole memory space
allocated to caching at search nodes to an integrated cache, in order to reduce
query processing time. More precisely, as our main contribution we propose a
static cache (named Integrated Cache) that replaces both list and intersection
caches using a data structure previously used for pairing terms in disk inverted
indexes. This data structure already makes an e�cient use of memory space, but
we design a specific cache management strategy that avoids the duplication of
cached terms and we adopt a query resolution strategy (named S4 in [9]) that
tries to maximize the hit ratio. As a further contribution, we consider di↵erent
strategies to populate the integrated cache: besides a strong baseline, we consider
three greedy strategies that consider both frequency of term co-occurrence and
postings list size. Furthermore, we propose a novel, principled strategy, that
relies on casting the problem of selecting term pairs as a maximum weighted
matching, a well-known combinatorial optimization problem. We evaluate the
proposed framework against a competitive list caching policy using two real
web crawls with pretty di↵erent characteristics and a well-known query log over
a simulation framework. Rather than hit ratio, we consider the overall time
needed by the di↵erent strategies to process all queries as a performance metric.
Experimental evidence shows that substantial savings are possible using the
proposed approach.

The remainder of this paper is organized as follows: in the next section, we
review the related work in the literature. In Section 3, we provide some back-
ground about query processing and related data structures. In Section 4 Inte-
grated Cache proposal is presented while the methods for selecting the terms to
fill the cache are introduced in section 5. The following two sections are devoted
to the experimental setup and the methodology, respectively. The experimental
results are summarized in Section 8. We conclude and point to future research
directions in Section 9.

2 Related Work

There is a large body of work devoted to caching in text search systems, however
this is still an active research area because both the data to process and the
number of users are continuously growing.

Posting Lists Caching: Baeza et al. [1] analyze the problem of posting
list caching (combined with results caching) that achieves higher hit rates than
caching query results. Also, they propose an algorithm called QtfDf that selects

the terms to put in cache according to its frequency(t)
size(t) ratio. The most important

observation is that the static QtfDf algorithm has a better hit rate than all
dynamic versions. They also present a framework for the analysis of the trade-
o↵ between caching query results and caching posting lists.

In [24] inverted index compression and list caching techniques are explored.
Authors compare several inverted list compression algorithms and caching poli-
cies. They compare LFU, LRU, Optimized Landlord, Multi-Queue, ARC. The
last three policies try to balance recency (LRU) and frequency (LFU) and in
practice perform similarly.

Results Caching: The work in [16] is the first approach on the problem of
result caching. Based on the analysis of a query log and the amount of local-
ity observed, the author proposes to consider both frequency and recency into
the policy and proposes LRU-2S (two stages LRU) that tries to capture both
variables. In 2006, Fagni et al. [7] propose SDC (Static and Dynamic Cache)
to handle both long term popular queries and shorter query bursts in smaller
periods of time. SDC divides the cache space in two parts: a static one that is
filled (o✏ine) with the results of the most frequent queries (computed on the
basis of a query log), and a dynamic part that is managed with LRU.

Gan and Suel [11] study the problem of weighted result caching based on
the observation that most previous work focuses only on optimizing the hit
ratio while the processing costs of queries vary according to lists’ sizes, terms’
popularities, and so on. They propose weighted versions of LFU, LRU and SDC
policies and a Landlord strategy. The main result is the study of the weighted
case with the goal of optimizing the processing cost. In [18], cost aware strategies
for result caching are extensively evaluated. This is based on the observations
that cache misses have di↵erent costs and caching policies based on popularity
can not always minimize the total cost. So, authors propose to incorporate the
query costs into the caching policies and evaluate them in both static, dynamic
and hybrid cases.

Intersection Caching: The first proposal on intersection caching appears
in [14] where the authors introduce a three-level caching architecture for a web
search engine (results+intersections+posting lists). In this case, cache is disk
based (about 20% of the total index space) and the main idea is to save processing
cost for high co-occurent pairs of terms. They apply a greedy algorithm to select
which items to store in cache, and then evaluate a landlord-based policy.

Deeper studies regarding cost aware intersection caching are presented in [8]
and [9]. Basically, these works focus on two di↵erent scenarios: with the inverted
index residing on disk and in main memory. The authors also propose and eval-
uate di↵erent query resolution strategies specially designed to take advantage of
the Intersection Cache and explore both static, dynamic and hybrid policies.

Multilevel Caching: Saraiva et al. [21] propose a two-level caching scheme
that combines caching of search results with the caching of frequently accessed
postings lists. Long and Suel extend this idea to caching also intersections of
pairs of terms that are often co-used [14]. In a more recent work, Ozcan et al.
[19] introduce a 5-level static caching architecture.

3 Background

In this section we provide basic background about the data structures and algo-
rithms used to solve a query in a distributed search system. In general, a query
q = {t1, t2, t3, ..., tn} is a set of terms that represents the users information need.

3.1 Inverted Indexes

The main data structure used in information retrieval systems is the inverted
index. This data structure enables full-text indexing and retrieval using free text
queries and phrases [25]. They store the set of all unique terms in the document
collection (vocabulary) associated to a set of entries that form a posting list.
Each entry represents the occurrence of a term t within a document d. Usually, a
posting is composed by a document identifier (DocID) and a payload that is used
to store information about the occurrence of t within d (frequency, positions,
etc.). Each posting list is sorted in increasing order of DocID or score depending
on the solving strategies. Often, skip-lists [15] are used to index the lists [17]
to speed up their traversal when searching for a particular DocID. There is a
considerable body of literature on index construction, please refer to [2, 23, 25].
In the remainder, we denote by t both a term and the corresponding list.

3.2 Query Processing

The processing of queries in a distributed search system as depicted in Figure
1 is usually handled as follows [3]: the broker machine receives the queries and
looks for it in its result cache. If the result is found the answer is immediately
returned to the user with no extra computational cost. Otherwise, the query is
sent to the search nodes in the cluster where an inverted index resides.

Each search node fetches the posting lists of the query terms (from disk or
cache), reorders these in ascending order of their lengths, executes the intersec-
tion of the lists and finally ranks the resulting set. After that, a list containing
the top-k documents identifiers is sent to the broker which merges it with the
lists of other nodes to obtain the final answer. This is a time-consuming task
that is critical for the scalability of the system because of disk accesses (partially
a↵ected by the size of the document collection). To mitigate this situation dif-
ferent cache levels are used to reduce disk costs. This phase is the focus of our
work, where the proposed integrated cache may be used to improve performance.

To solve a query there exist two main strategies, namely Term-at-a-time
(TAAT) and Document-at-a-time (DAAT) [22]. In the TAAT approach, the
posting lists of the query terms are sequentially evaluated, starting from the
shortest to the longest one. This basically computes the result as R = \n

i=1ti =
(((t1 \ t2) \ t3) . . . \ tn). On the other hand, in the DAAT approach the post-
ing lists are traversed in parallel for each document and only the current k-th
best candidates are maintained in memory. The Max Successor algorithm [4] is
an e�cient strategy for DAAT processing. However, the presence of an Inter-

section Cache enables other possibilities such as the S4 strategy introduced in

[9]. This basically tests all the possible two-term combinations in the cache in
order to maximize the chance of a hit and rewrites the query according to this
result. In that work, the authors show that the S4 strategy allows a performance
improvement up to 30% combining it with cost aware cache policies.

4 Integrated Cache

Our proposal consists on using the paired data representation presented in [13]
to build an integrated cache that works as list and intersection cache at the same
time. In that work, an index compression technique based on pairing posting lists
of frequently co-occurring terms was proposed. The idea is to merge the lists of
two frequently co-occurring terms to build a new paired list in the inverted file.
This is obviously a more compact representation that may speed-up the query
processing time. This data structure is introduced as a compression technique
for inverted files combined with Gamma Coding and Variable Byte Coding [2]
schemes. As a complementary application, the authors show the use of this data
structure to build a static list cache. Our proposal extends this approach to an
integrated cache of lists+intersections.

In our approach, we use the “Separated Union” representation to maintain
an in-memory data structure, that replaces both the list and intersection. Re-
garding space savings, the main idea is to keep in cache those pairs of terms
that maximize the high hit ratio of the List Cache and the savings of the most
valuable precomputed intersections. We also propose to avoid the repetition of
single term lists when these can be reconstructed using information held in pre-
vious entries. This leads to an extra space saving and a more e�cient use of the
memory, exchanged for some extra computational cost.

The idea is best illustrated with an example. In Fig. 2 we show the SU data
representation [13] (entries 1 and 2) and the “extra” improvements we propose
(lines 3 and 4) to get an even more e�cient storage. In line 1, the entry for terms
t1 and t2 is shown. This contains the DocIDs for the first term only (t1�(t1

T
t2)),

then the postings of the second term only (t2 � (t1
T

t2)), and finally the last
area with the postings common to both terms (i.e. the intersection (t1

T
t2)).

Entry in line 2 is similar to the previous one. In line 3, we show an entry that
contains a previously cached term, t1 (i.e. in the first intersection). To avoid the
repetition of part of the postings we propose to reconstruct the full posting list
of t1 from the first entry (with a computational cost overhead) and include in
the entry a redirection (�). Although we incur in an extra cost to reconstruct
the posting list, this is cheaper than loading it from disk.

5 Selecting the Pairs of Terms

We consider several strategies to select the “best” intersections (bigrams) to
keep in cache. To this purpose, each postings list is weighted according to the
freq(ti)⇥ |ti| product, where freq(ti) is the raw frequency of term ti in a query
log training set and |ti| is the length of the posting list of term ti in the reference

Fig. 2. Data Structure used for the Integrated Cache

collection. Experimental evidence shows that this approach outperforms solely
frequency based selection criteria. Hereafter, we refer to this metric as FxS.

Greedy methods. We start with a naive approach that considers the ordering
of the best posting lists sorted according to FxS product and we form up bigrams
pairing together two consecutive terms as (1st, 2nd), (3rd, 4th), ..., ((n�1)th, nth).
We refer to this method as PfBT-seq. This approach only groups good terms but
doesn’t consider the size of their intersection (while if the size of the intersection
is larger, the space saving is larger too).

The second approach (PfBT-cuad) computes the intersection of each possible
bigram (for all term lists) and then selects the pairs that maximize (ti

T
tj)

without repetitions of terms. This algorithm is time consuming (O(n2)) so we
run it considering only sub-groups of lists that we estimate may fit in cache
(according to its size). For example, the 1GB cache holds roughly 1000 lists for a
given collection, so we compute the 500 best pairs and then we fill the remaining
space with pairs picked sequentially (as in PfBT-seq).

The third approach (named PfBT-win) is a particular case of the previous
one that tries to maximize the space saving among a group of posting lists. It
sets a window of w terms (instead of all terms) and computes the intersection of
each possible pair. Finally, it selects the pairs using the same criterion as before.

Term pairing as a matching problem. Our last method considers the term
pairing as an optimization problem, reducing it to the Maximum Weighted
Matching (MWM). In graph theory, a matching is a subset of edges such that
none of the selected edges share a common vertex. This is similar to [13] but we
apply a di↵erent weighting criterion. We formalize the problem as follows: Let
G(T,E) be a graph with vertex set the set T of terms and such that, for every
ti, tj 2 T , edge eij 2 E exists if and only if |ti

T
tj | > 0. Moreover, we weight

each edge eij by the size of the intersection |ti
T
tj |. The MWM is a matching

in G that maximizes the sum of the weights of the matched edges.

We use the method proposed by Galil [10] to solve the MWM problem. This
is an exact algorithm based on the blossom method by Edmonds. Although this
algorithm runs in O(n3) time, the size of our graphs (thousand of vertices at
most) makes it computationally tractable. In our experiments we refer to this
method as PfBT-mwm.

Note that all the above strategies select pairs of terms to fill the cache, so
there will not be situations like the ones depicted in lines 3 and 4 of Fig. 2. We
plan to consider other strategies (for example dynamic) in the future that will
take benefit of this idea.

6 Experimental Setup

6.1 Datasets

We select two completely di↵erent document collections to evaluate the Inte-

grated Cache. Our goal is to simulate two scenarios whose behaviors may be
rather distinct. The first document corpus is a subset of a large web crawl of the
UK obtained by Yahoo! in 2005. It includes 1.479.139 documents, with 6.493.453
distinct index terms and takes 29 GB of disk space in HTML format (uncom-
pressed). We refer to this corpus as UK. The second collection is a crawl derived
from the Stanford WebBase Project1 [12]. We select a new sample (march, 2013)
that contains about 7.774.632 documents and takes 241 GB of disk space in un-
compressed HTML format. Table 1 shows statistics about the two collections.

UK WB

documents 1.479.140 7.774.631

avg(document size) (bytes) 20.555 29.793

avg(terms)/doc 564 1.176

avg(unique terms)/doc 218 384

Table 1. Collections statistics

6.2 Query log

To evaluate the proposal we use the well known AOL Query Log [20] that con-
tains around 20 million queries. We select a subset of 6 millions queries to com-
pute statistics and around 2.7 millions queries as the test set (AOL-1). Then,
we filter the file keeping only unique queries. This allows to isolate the e↵ect of
the Result Cache simulating that it captures all the query repetitions (in the
case of having a cache of infinite size), thus giving a lower bound of the perfor-
mance improvement due to our cache. This second test file is about 800K queries
(AOL-2).

1 http://dbpubs.stanford.edu:8091/ testbed/doc2/WebBase/

7 Methodology

We use Zettair2 to index the collections and to obtain real fetching times of the
posting lists. The size of the (compressed) index for the UK collection is about
1.8 GB, which grows up to 23 GB for WB. Zettair compresses posting lists
using a variable-byte scheme with a B+Tree structure that e�ciently handles
the vocabulary. Each entry in the posting lists includes both a DocID and the
terms frequency in that document (used for ranking purposes).

Our integrated cache implementation reserves eight bytes for each posting
in the pure terms area (the DocID and the frequency uses four bytes each)
while the intersection area occupies twelve bytes because it stores the separated
frequencies of both terms.

7.1 Cost model

We model the cost of processing a query in a node in terms of disk fetch and CPU
times: Cq = Cdisk + Ccpu. Cdisk is calculated fetching all the terms from disk
using Zettair (we retrieve the whole posting list and measure the corresponding
fetching time). To calculate Ccpu we run a list intersection benchmark on the
same machine. This cost estimation methodology is also used in [8]. We adopt
this approach because running real tests is too expensive considering our dataset.

We run the experiments on a machine with a Intel(R) Core(TM)2 Quad CPU
(Q9550) processor running at 2.83 GHz and 8 GB of main memory. The hard
disk is a mid-range SATA with 320 GB. The operating system is Debian Linux
(kernel 3.2) and all the programs are coded in C++ and compiled with gcc 4.6.3.

8 Experiments

In this section, we provide a simulation-based evaluation of the proposal using
both document collections.
Experimental setup. The total amount of memory reserved for the cache
ranges from 100MB to 1GB for the UK collection while we increase the size up
to 16GB for the WB collection. This sizes allow to store about 60% and 70% of
the UK and WB indexes respectively.

For each query we log the total cost incurred using a static version of the
List Cache filled with the top-k most valuable posting lists according to the FxS
metric (this is our baseline). Then, we evaluate the Integrated Cache filling it
with data from the proposed four approaches that are also based in the FxS
metric (to allow a fair comparison against the list cache). We set w = 10 in our
experiments for the PfBT-win method. A deeper analysis of the optimal value
of w will be part of future work. Finally, we normalize the final costs to get a
more clear comparison.
Results. Figure 3 shows cost results for the AOL-1 query set. All evaluated
strategies outperform the baseline and the best strategy is PfBT-mwm. Figure

2 http://www.seg.rmit.edu.au/zettair/

4 shows the improvement that Integrated Cache achieves while increasing cache
sizes. Improvements range from 8% to 23% for the biggest cache size. However,
for the WB collection the behavior is slightly di↵erent. For small cache sizes, the
improvements are not significant but they grow up from 1 GB of cache space up
to 38% for the best case. This is because this collection has longer posting lists
and only a few are loaded for the small caches.

Fig. 3. Performance of the di↵erent approaches using the the AOL-1 query set

Fig. 4. Improvements of the di↵erent approaches (AOL-1 query set)

In the second experiment (see Figure 5) using the dataset of unique queries
(AOL-2) we evaluate the best strategy according to the previous results (PfBT-
mwm). As we expected, performance is slightly worse, because no repeated
queries are present. Improvements range from 7% up to 22% for the UK col-
lection. The behavior is again di↵erent for the WB collection. For smaller cache
sizes, the performance is worse (or just slightly better) up to 1GB cache and it
increases up to 30% in the best case (16GB).

9 Conclusion and Future Work

In this paper, we proposed an integrated cache for lists+intersections for text
search systems. We used a paired data structure along with a resolution strategy

Fig. 5. Performance of the PfBT-mwm approach using the the AOL-2 query set

that takes advantage of the intersection cache. We considered several heuristics
to populate the integrated cache, including one based on casting the problem
as a maximum weighted matching one. We provided an evaluation using two
completely di↵erent document collections and two subsets of a real query log.
We showed that the proposed Integrated Cache outperforms the solely posting
lists cache up to a 40%.

There are several interesting remaining open problems. First, we plan to ex-
tend this proposal to consider trigrams or more complex combinations of terms.
Another interesting open question concerns the design and implementation of
a dynamic version of this cache. Here, the access and eviction policies should
consider not only the terms but also the pairs. It is not clear how to best apply
standard replacement algorithms in an online fashion.

References

[1] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and F. Sil-
vestri. The impact of caching on search engines. In Proc. of the 30th annual Int.

Conf. on Research and Development in Information Retrieval, SIGIR ’07, pages
183–190, USA, 2007.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval: The Concepts

and Technology behind Search. Addison-Wesley Prof., Inc., 2nd edition, 2011.
[3] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and

J. Degenhardt. Early exit optimizations for additive machine learned ranking sys-
tems. In Proc. of the third ACM Int. Conf. on Web search and data mining, WSDM
’10, pages 411–420, USA, 2010.

[4] J. S. Culpepper and A. Mo↵at. Compact set representation for information re-
trieval. In Proc. of the 14th International Conf. on String Processing and Infor-

mation Retrieval, SPIRE’07, pages 137–148, Berlin, Heidelberg, 2007.
[5] J. Dean. Challenges in building large-scale information retrieval systems: Invited

talk. In Proc. of the Second ACM International Conf. on Web Search and Data

Mining, WSDM ’09, pages 1–1, New York, NY, USA, 2009. ACM.
[6] S. Ding, J. Attenberg, R. Baeza-Yates, and T. Suel. Batch query processing for web

search engines. In Proc. of the Fourth ACM International Conf. on Web Search

and Data Mining, WSDM ’11, pages 137–146, New York, NY, USA, 2011.

[7] T. Fagni, R. Perego, F. Silvestri, and S. Orlando. Boosting the performance of web
search engines: Caching and prefetching query results by exploiting historicalusage
data. ACM Trans. Inf. Syst., 24(1):51–78, Jan. 2006.

[8] E. Feuerstein and G. Tolosa. Analysis of cost-aware policies for intersection caching
in search nodes. In Proc. of the XXXII Conf. of the Chilean Society of Computer

Science, SCCC’13, 2013.
[9] E. Feuerstein and G. Tolosa. Cost-aware intersection caching and processing strate-

gies for in-memory inverted indexes. In In Proc. of 11th Workshop on Large-scale

and Distributed Systems for Information Retrieval, LSDS-IR’14, New York, 2014.
[10] Z. Galil. E�cient algorithms for finding maximum matching in graphs. ACM

Comput. Surv., 18(1):23–38, Mar. 1986.
[11] Q. Gan and T. Suel. Improved techniques for result caching in web search engines.

In Proc. of the 18th Int. Conf. on World wide web, WWW ’09, pages 431–440, 2009.
[12] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke. Webbase: A repository

of web pages. In Proc. of the 9th International World Wide Web Conf. on Computer

Networks, pages 277–293, Amsterdam, The Netherlands, The Netherlands, 2000.
North-Holland Publishing Co.

[13] H. T. Lam, R. Perego, N. T. Quan, and F. Silvestri. Entry pairing in inverted file.
In Proc. of the 10th International Conf. on Web Information Systems Engineering,
WISE ’09, pages 511–522, Berlin, Heidelberg, 2009. Springer-Verlag.

[14] X. Long and T. Suel. Three-level caching for e�cient query processing in large
web search engines. In Proc. of the 14th Int. Conf. on World Wide Web, WWW
’05, pages 257–266, USA, 2005.

[15] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Re-

trieval. Cambridge University Press, New York, NY, USA, 2008.
[16] E. Markatos. On caching search engine query results. Comput. Commun.,

24(2):137–143, Feb. 2001.
[17] S. Melink, S. Raghavan, B. Yang, and H. Garcia-Molina. Building a distributed

full-text index for the web. ACM Trans. Inf. Syst., 19(3):217–241, July 2001.
[18] R. Ozcan, I. S. Altingovde, and O. Ulusoy. Cost-aware strategies for query result

caching in web search engines. ACM Trans. Web, 5(2):9:1–9:25, May 2011.
[19] R. Ozcan, I. Sengor Altingovde, B. Barla Cambazoglu, F. P. Junqueira, and

O. Ulusoy. A five-level static cache architecture for web search engines. Infor-

mation Processing & Management, 48(5):828–840, Sept. 2012.
[20] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In Proc. of the

1st International Conf. on Scalable Information Systems, InfoScale ’06, New York,
NY, USA, 2006. ACM.

[21] P. C. Saraiva, E. Silva de Moura, N. Ziviani, W. Meira, R. Fonseca, and B. Riberio-
Neto. Rank-preserving two-level caching for scalable search engines. In Proc. of

the 24th annual Int. Conf. on Research and Development in Information Retrieval,
SIGIR ’01, pages 51–58, USA, 2001.

[22] H. Turtle and J. Flood. Query evaluation: Strategies and optimizations. Informa-

tion Processing and Management, 31(6):831–850, Nov. 1995.
[23] I. H. Witten, A. Mo↵at, and T. C. Bell. Managing Gigabytes (2Nd Ed.): Com-

pressing and Indexing Documents and Images. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1999.

[24] J. Zhang, X. Long, and T. Suel. Performance of compressed inverted list caching
in search engines. In Proc. of the 17th Int. Conf. on World Wide Web, WWW ’08,
pages 387–396, USA, 2008.

[25] J. Zobel and A. Mo↵at. Inverted files for text search engines. ACM Comput.

Surv., 38(2), July 2006.

