Monotone Simultaneous Paths Embeddings in $\mathbb{R}^d$

Abstract : We study the following problem: Given $k$ paths that share the same vertex set, is there a simultaneous geometric embedding of these paths such that each individual drawing is monotone in some direction? We prove that for any dimension $d\geq 2$, there is a set of $d + 1$ paths that does not admit a monotone simultaneous geometric embedding.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [17 references]  Display  Hide  Download


https://hal.inria.fr/hal-01529154
Contributor : Olivier Devillers <>
Submitted on : Wednesday, January 3, 2018 - 4:19:10 PM
Last modification on : Wednesday, February 13, 2019 - 2:58:21 PM
Document(s) archivé(s) le : Thursday, May 3, 2018 - 12:36:11 PM

Files

dmtcs.pdf
Files produced by the author(s)

Identifiers

Citation

David Bremner, Olivier Devillers, Marc Glisse, Sylvain Lazard, Giuseppe Liotta, et al.. Monotone Simultaneous Paths Embeddings in $\mathbb{R}^d$. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2018, 20 (1), pp.1-11. ⟨https://dmtcs.episciences.org/4177⟩. ⟨10.23638/DMTCS-20-1-1⟩. ⟨hal-01529154v2⟩

Share

Metrics

Record views

560

Files downloads

602