
HAL Id: hal-01532489
https://inria.hal.science/hal-01532489

Submitted on 2 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Production Deployment Tools for IaaSes: an Overall
Model and Survey

Hélène Coullon, Dimitri Pertin, Christian Pérez

To cite this version:
Hélène Coullon, Dimitri Pertin, Christian Pérez. Production Deployment Tools for IaaSes: an Overall
Model and Survey. The IEEE 5th International Conference on Future Internet of Things and Cloud
(FiCloud), Aug 2017, Prague, Czech Republic. pp.183-190, �10.1109/FiCloud.2017.51�. �hal-01532489�

https://inria.hal.science/hal-01532489
https://hal.archives-ouvertes.fr


Production Deployment Tools for IaaSes: an
Overall Model and Survey

Hélène Coullon, Dimitri Pertin
Inria, LS2N, IMT Atlantique

Nantes, France
Email: helene.coullon@inria.fr, dimitri.pertin@inria.fr

Christian Perez
Inria, LIP, ENS Lyon

Lyon, France
Email: christian.perez@inria.fr

Abstract—Emerging applications for the Internet of
Things (IoT) are complex programs which are composed
of multiple modules (or services). For scalability, reliability
and performance, modular applications are distributed on
infrastructures that support utility computing (e.g., Cloud,
Fog). In order to simply operate such infrastructures,
an Infrastructure-as-a-Service (IaaS) manager is required.
OpenStack is the de-facto open-source solution to address
the IaaS level of the Cloud paradigm. However, OpenStack
is itself a large modular application composed of more than
150 modules that make it hard to deploy manually.

To fully understand how IaaSes are deployed today, we
propose in this paper an overall model of the application
deployment process which describes each step with their
interactions. This model then serves as the basis to analyse
five different deployment tools used to deploy OpenStack
in production: Kolla, Enos, Juju, Kubernetes, and TripleO.
Finally, a comparison is provided and the results are
discussed to extend this analysis.

I. INTRODUCTION

Emerging applications for the Internet of Things (IoT)
are composed of multiple modules (or services) that
interact together through well defined interfaces [1].
For scalability, reliability and performance, modular
applications are distributed on infrastructures that sup-
port utility computing (e.g., Cloud, Fog). In order to
simply operate compute, network and storage resources
of such infrastructures, an Infrastructure-as-a-Service
(IaaS) manager is required. However, IaaS managers are
themself complex modular applications that are hard to
deploy manually on such dynamic and global network
infrastructures [2], [3]. Thus, we investigate in this paper
how IaaSes are deployed today.

OpenStack [4] is the de-facto open-source solution
to address the IaaS level of the Cloud paradigm. Its
community has gathered more than 500 organizations
(e.g., Google, IBM, Intel), that have produced more than
20 million lines of code in six years. While its adoption
is still growing in various domains such as public admin-
istrations, e-commerce and science,1 OpenStack is itself
a large modular distributed application composed of

1See http://superuser.openstack.org/ for further information

more than 30 projects that manage the different aspects
of an IaaS (e.g., compute instances, storage, network).
While they are not all mandatory to deploy an operable
IaaS, these projects gather more than 150 services whose
deployment is a tedious challenge that cannot be handled
manually on dynamic and large-scale infrastructures [5].

For this reason, this paper investigates how a complex
distributed software like OpenStack is deployed today.
More specifically, the contributions of this paper are:
(i) the description of a deployment process depicted in
Section II; (ii) its use in Section III to compare five
existing deployment tools already used to deploy Open-
Stack, i.e., Kolla, Enos, Juju, Kubernetes and TripleO;
and (iii) a discussion in Section IV that extends the
previous analysis. Finally, the paper gives a state of the
art on related surveys in Section V and a conclusion that
opens to research perspectives in Section VI.

II. DEPLOYMENT MODEL

This section first introduces a set of definitions used
throughout this paper. Then, we present a generic de-
ployment model used as a basis to study and compare
different deployment tools in Section III.

A. Definitions

Distributed Software: A distributed software, or a
software, defines the overall entity to deploy on a dis-
tributed infrastructure. It could be an end-user applica-
tion, a middleware, a framework, or a distributed system,
such as OpenStack which is studied in this paper.

Service: The distributed software is composed of
different services, also called modules in this paper.
Thus, services are subparts of the overall software to
distribute (configure and install) on the infrastructure.

Resource: A resource defines an entity that will host
one or multiple services of the overall software. A
resource could be a bare-metal machine (i.e., a physical
server without any operating system) or a virtualized
system (either container of virtual machine).

http://superuser.openstack.org/


B. Model

Figure 1 graphically presents an overview of a generic
deployment process that will be used in the next section
to study deployment tools. This model is composed of
rounded rectangles that we call components or steps.
In this model, each step is usually found in existing
deployment tools. The arrow semantic follows the usual
workflow or dataflow rules: the execution of the step at
the destination of an arrow is started when the source
step is finished; output data is produced by the source
step and is transferred to the destination step.

As it will be shown in Section III, depending on the
studied tool, this deployment model can be adapted (e.g.,
order of steps, merged steps).

a) Service packaging: The first step prepares the
software to be deployed. The service packaging aims at
splitting a software into different services, and at adapt-
ing these services to the chosen deployment process. For
example, a deployment process designed for containers
requires to encapsulate the service with its dependencies
in a container image.

b) Template: Once the services are packaged, a
Template can be written by the operator (i.e., the user
of the deployment tool). A template is composed of two
parts. First, a description of the deployment topology
that defines the services (e.g., a database reachable
via a port), resources (e.g., a virtual machine running
Debian), their associated constraints (e.g., CPU, RAM,
disk capacities) and the relations between them (e.g., set
the database service on a virtual machine). Secondly,
information about the orchestration of services (e.g.,
scaling rules) can be set to manage their lifecycle. Since
this step is always managed by an operator in existing
tools, it is represented with a human icon in Figure 1.

c) Dependencies: This step takes into account the
relationships declared in the template to build a depen-
dency graph or a sequential order of deployment. This
graph could be needed by any of the following steps, as
depicted in the model by the dashed rectangle.

d) Placement: The Placement consists in solv-
ing complex multi-objectives bin-packing problems, or
scheduling problem. The problem is to fit n software
modules or virtual machines to m available physical
resources while respecting their constraints, and while
answering objective functions (e.g., minimizing the num-
ber of allocated machines). As this problem is NP-
hard, solvers can use exact algorithms for small size
cases only [6], otherwise heuristics are needed to scale
up [7]. As depicted on the figure, this step requires
information on the available resources and their current
configuration.

e) Allocation: The Allocation step starts when the
Placement is over. It consists in reserving resources
chosen in the Placement step.

f) Provisioning: The Provisioning step defines the
action of preparing the resources for their future role,
i.e., hosting software services. In this paper, the provi-
sioning step manages the operating system installation
(if needed) as well as any installation requirement of the
deployment tool (for example Docker when containers
are used for deployment). Thus, Provisioning is more or
less heavy, depending on the kind of available resources
and on the kind of deployment process (i.e., install an
operating system takes longer than install a container
system).

g) Configuration: Once the resources are provi-
sioned, it is necessary to configure them to run the
service. While the provisioning is specific to the require-
ments of the deployment tool, the Configuration consists
in installing and configuring any requirement specific to
the service to deploy. For example the Configuration step
could install a specific package needed by the software,
or could configure a system configuration file for the
specific use of the service.

h) Service install: Once the Configuration step is
finished, the software services and their configuration
files are set on the resources. Where services have to be
deployed is known thanks to Placement and Allocation,
and resources are prepared for installation thanks to
the Packaging, Provisioning and Configuration steps.
Finally the order of installation is known thanks to the
Dependencies step.

i) Monitoring: Once the deployment is finished,
the Monitoring step starts. Its aim is to monitor the
physical and virtual resources to detect hardware or
software failures.

j) Reconfiguration: Finally, the last step of the
deployment process, which is also started after Service
install is the Reconfiguration. As depicted in Figure 1,
this step can rely on information from Monitoring. If
needed, this step initiates a loop to one of the following
steps: Software packaging, for example if a new version
of a service is available; Template, each time a modifica-
tion of the template is needed; Placement, for example
if some resources fail; Service install if the deployment
of a service as to be repeated without modification in
other steps.

III. OPENSTACK DEPLOYMENT

In this section, five different existing solutions to
deploy OpenStack in production are studied and com-
pared: Kolla; Enos; Juju; Kubernetes; and TripleO. For
each solution, a representation of the deployment pro-
cess adapted from the model of Figure 1 is given. A
new semantic is introduced in our new representations
for each tool. This semantic is based on white and
black circles that represent use and provide interfaces
of components and their connection. The additional



Service
Packaging

Template

Placement

Allocation

Provisioning

Configuration

Service install

Monitoring

Information
on resources

Dependencies

Reconfiguration

Fig. 1. Deployment model

Packaging:
Docker Images

1) Template
2) Dependencies
Playbooks, config files

Placement:
Inventory

1) Configuration
2) Service install
Ansible and Docker

Reconfiguration

Language:
YAML and Jinja2

Image Store:
Docker registry

Fig. 2. Kolla model

Packaging:
Docker Images

1) Template
2) Dependencies
Enos DSL, config files

1) Configuration
2) Service install
Ansible and Docker

Reconfiguration

Language:
YAML and Jinja2

Image Store:
Docker registry

1) Allocation
2) Provisioning
3) Placement
Inventory

Resource provider:
Grid5000, Vagrant

Fig. 3. Enos model

Image Store:
Juju Store

Packaging:
Juju Charms

Resource provider:
EC2, Openstack,
MAAS, LXD, ...

Template:
Juju Bundles

1) Monitoring:
2) Reconfiguration:
Juju controller/agents

Language:
YAML

Resource agent:
Juju agents

Resource manager:
Juju controller

1) Allocation
2) Provisioning
3) Placement
Juju controller

1) Configuration
2) Dependencies
3) Service install
Juju controller/agents

Fig. 4. Juju model

Packaging:
Docker Images

1) Allocation:
2) Provisioning:
k8s Kubelet

Resource provider:
Docker

Image Store:
Docker registry

Template:
Deployment

Placement:
k8s scheduler

1) Configuration:
2) Service Install:
k8s Kubelet

1) Monitoring:
2) Reconfiguration:
k8s Cluster master

Language:
YAML and JSON

Resource agent:
K8s Kubelet

Resource manager:
K8s Cluster master

Fig. 5. Kubernetes model

Packaging:
Golden Images

1) Allocation:
2) Provisioning:
3) Configuration
Heat

Template:
HOT

Placement:
Nova scheduler

Service Install:
Heat

1) Monitoring:
2) Reconfiguration:
Ceilometer

Language:
YAML

Resource agent:
Ironic

Resource manager:
Ironic

Resource provider:
Ironic

Image Store:
Glance

Dependencies:
Heat

Fig. 6. TripleO model

components, compared to the generic model, give more
details about each deployment phase regarding external
tools. While internal tools are depicted by green boxes,
external tools are represented by white boxes. Moreover,
each deployment step can be handled manually (repre-
sented by a human icon on the figures) or automatically
(default).

A. Kolla

Kolla is an OpenStack project that aims at deploying
OpenStack by packaging each service as a Docker con-
tainer [8]. It has to be noticed that Kolla is designed
to deploy OpenStack and would not be natively used
to deploy another distributed software. Kolla intensively
relies on Ansible [9]. Ansible is a popular configuration
management tool used to apply tasks on multiple hosts,

described by a declarative language. The following de-
tails the Kolla deployment steps (according to the model
defined previously). A representation of the deployment
process of Kolla is depicted in Figure 2.

For the Software packaging, Kolla provides one Dock-
erfile per OpenStack service (more than 150). A Docker-
file describes the instructions to build container images.
Kolla also provides a tool to easily build these images
and to push them to a Docker registry as depicted in
Figure 2.

The Template step consists in editing a configuration
file which contains various deployment variables (e.g.,
enabled services). These variables will be provided to
Ansible playbooks to populate service configuration files
written in Jinja2, a templating library that provides
conditionals [10]. Neither relations or constraints are



specified by the operator. Service dependencies are man-
ually defined in the Ansible playbooks, used to install
services, which is the reason why they are represented
in the same box as template in Figure 2. In Kolla,
dependencies impact only the Service install phase.

Allocation and Provisioning are not supported by
Kolla (thus, not represented on the figure). These phases
must be performed by an external tool. Once the re-
sources have been provisioned, the operator (the user)
manually maps services to resource IP addresses through
an inventory file, thus performing the Placement step
manually. As a consequence, this is a particular situation
where allocation and provisioning are realized prior the
service placement. After the placement, Ansible is used
first to generate the service configuration files, and to run
the Docker containers according to Ansible playbooks
(Configuration and Service install are in the same step).
As depicted in the figure, container images are fetched
from the registry. Monitoring is not supported in Kolla.
However, software Reconfiguration can manually be
triggered by the operator.

B. Enos

Enos is a framework to deploy and evaluate Open-
Stack on different infrastructures [11]. To that end, Enos
extends Kolla with an intern provisioning engine that
can request external resource providers. Moreover, to
declare the desired topology, Enos leverages its own DSL
which improves the template capacity of Kolla. Figure 3
represents the deployment model for Enos.

As depicted on this figure, the defined topology is
used by the Enos engine to manage automatically the
Allocation, then the Provisioning steps (which are thus
merged in the same box in the figure). It has to be noticed
that during the provisioning Enos handles the installation
of Python and Docker on the resources. To that end, Enos
defines internally a way to interface with an external
resource provider, which is in charge of the resource
Allocation and Provisioning. Currently, Enos is able to
interface with Vagrant (deploying virtual machines), and
the Grid’5000 testbed [12] (for bare metal provisioning).
After the provisioning, Enos automatically generates the
inventory files, thus performing an automatic Placement
step. The rest of the deployment process is similar to the
previous study.

C. Juju

Juju is the service orchestration tool developed by
Canonical [13] and is meant to deploy any distributed
software. Similarly to Enos, Juju relies on external
providers, but its template is more expressive. Its de-
ployment model is depicted in Figure 4.

In Juju, services are packaged as a set of files named
Charms. A charm contains a collection of scripts which

are triggered by Juju during the service lifecycle. These
instructions (e.g., install, start, stop) can be expressed
by any scripting languages such as bash or Python. Juju
charms can also define provide and require interfaces to
describe relations or interactions between services.

Furthermore, bundles can express some constraints
based on the resource capacity (e.g., CPU cores, RAM
capacity). Juju’s community has written a large amount
of charms and bundles that can be found on the Juju
Store2 (e.g., OpenStack). Since service relations can
be declared in the template, a Dependency graph is
automatically generated by Juju. This dependency has
an impact on the Service install step which interrupts
the deployment of a service as long as its dependencies
are not satisfied.

Similarly to Enos, the Allocation, Provisioning and
Placement phases are automatic. The Juju client (CLI
or GUI) is in charge of calling an external tool through
the controller for Allocating and Provisioning machines.
While classical cloud providers such as AWS or Open-
Stack can be used, more specific providers like LXD3

or MAAS4 can also be used to deploy charms on
container or bare-metal machines. A Juju deployment
is based on a Juju controller node which is in charge
of the Configuration and the Service install. The Juju
controller copies the charms to the appropriate resource
and requests an agent deployed on it to trigger the
required scripts (e.g., install, start the services).

The particularity of Juju is that the controller keeps
the states of agents in a database to monitor services
and resources. As depicted in Figure 4, the operator
(the user) can manually reconfigure the deployment
when the template is modified (arrow to template), or
modify the topology when scaling instructions are given
(arrow to allocation), or even upgrade services (arrow to
configuration).

D. Kubernetes

Spearheaded by Google, Kubernetes is a deployment
tool for any containerized application [14]. Its main
assets reside in the placement and monitoring phase. In-
deed, Kubernetes contains a scheduler whose placement
decisions are based on predicates (or constraints) and
priorities policies (or objective functions). Furthermore,
a master controller is in charge of the monitoring and
the automated reconfiguration of the deployment. Its
deployment process is represented in Figure 5.

Kubernetes’ Service packaging is similar to Kolla,
since each OpenStack service must be encapsulated
with its dependencies in a dedicated Docker container.

2Juju Store: https://jujucharms.com/store
3The LXD container hypervisor https://www.ubuntu.com/cloud/lxd
4Metal as a Service https://maas.io/

https://jujucharms.com/store
https://www.ubuntu.com/cloud/lxd
https://maas.io/


However, Kubernetes does not provide a tool to build
the related service containers.

Kubernetes templates are JSON or YAML-based files
that describe specific Kubernetes objects (e.g., pod,
resources, replica sets). Compared to Juju, Kubernetes
does not declare dependencies. Thus, this step is not
depicted on Figure 5. However, hardware requirements
and limitations can be specified. For example, a container
can require at least 64MB of RAM, and be limited to
128MB.

In Kubernetes, a basic scheduling unit is called a
Pod. A pod is a set of one or more containers that are
scheduled on the same machine, and share the same
resources (e.g., IP address, storage volume). A pod is
managed by a Kubelet agent. The Placement is auto-
matically managed by the Kubernetes scheduler. It is in
charge of placing unscheduled pods on nodes according
to different predicates and priorities. First, predicates are
used to filter out unsuitable nodes (e.g., free resource
requirements, hostnames, available host ports), then the
scheduler applies priorities policies to rank the chosen
ones (e.g., favoring the least loaded nodes). To that
end, the scheduler relies on the information stored at
the resource manager, as depicted in Figure 5. The
resource manager corresponds to the Kubernetes master.
It requests information from the Kubelets about nodes,
and stores this information in its database. Both pred-
icates and priority functions are customizable, making
the Kubernetes scheduler extensible. Once scheduled,
the pod Allocation and Provisioning are automatically
managed by Kubelets. The resource provisioner requires
to load Docker images from a Docker registry (e.g.,
DockerHub).

As depicted in Figure 5, the Monitoring phase relies
on the cluster states stored in the master database men-
tioned earlier to trigger the appropriate reconfiguration
if the template and the deployment state differ. For
instance, failed containers are restarted or rescheduled
for self-healing (respectively represented in the figure
by the arrow to service install and placement) or auto-
scaling, based on the scaling rules described in the tem-
plate. Reconfiguration can also perform online rolling
upgrades by swapping out containers which guarantees
a continuous service delivery, and rollbacks to working
containers if upgrading fails.

E. TripleO

TripleO is an OpenStack project that aims at deploying
OpenStack instances using OpenStack itself (TripleO
meaning OpenStack On OpenStack). To that end, an
underlying OpenStack deployment (called undercloud)
is necessary to provide the required services to deploy
OpenStack instances on bare-metal machines. Since the
undercloud is a pre-requisite, TripleO provides a tool

to easily deploy undercloud services on a running host.
Beyond classical OpenStack services, the undercloud
requires the following OpenStack services: (i) Nova
and Ironic for bare-metal Provisioning; (ii) Heat, the
application orchestrator; (iii) Ceilometer for Monitoring;
(iv) Glance, the image store. These projects are depicted
in Figure 6 which represents the deployment model of
TripleO. Heat has a major role in TripleO since it calls
the undercloud’s OpenStack API to deploy the overcloud
services.

For the Packaging, TripleO deploys OpenStack ser-
vices to bare-metal machines, encapsulated inside pre-
built disk images. These so-called golden images contain
an operating system, the desired OpenStack services and
some tools for configuration. TripleO provides an image
building tool, diskimage-builder, which aims at building
the desired services on top of a native Linux distribution
(e.g., CentOS, Ubuntu). The built images can then be
stored in Glance, the image store service.

HOT (Heat Orchestration Template) is a Template for-
mat used by Heat to orchestrate applications. It describes
the required machines, their services, their configurations
and their relations. Besides, it is possible to define
hardware resource constraints, and scaling policies that
will be used in the placement and monitoring phase
respectively. The relations defined in the template are
automatically used to compute a graph during the Depen-
dencies step. This graph will be used at different levels:
from the Placement step to the Service install phase, as
depicted in Figure 6 by the dashed rectangle.

The Placement is automatically managed by the Nova
scheduler which is in charge of mapping the services to
the resources listed by Ironic (the resource manager in
the figure). As depicted in Figure 6, Ironic both inspects
the bare metal nodes (which is the role of the agent in the
figure), and stores the collected data in its database (il-
lustrated by the resource manager). The Nova scheduler
works similarly to the Kubernetes scheduler described
in the previous paragraph. It is based on filtering and
weighting functions. Nova provides also a large set of
predicates and priorities policies. The Allocation and
Provisioning steps are requested by Heat, which relies
on Ironic to provision bare metal machines with the
golden images built during the Service packaging step,
and stored in Glance.

As mentioned earlier, HOT can declare auto-scaling
groups to manage service scalability based on resource
monitoring (arrow to placement in Figure 6). Further-
more, rolling update policies can be defined in the
template. The other reconfiguration aspects are currently
manually managed by the operator.



Kolla Enos Juju Kubernetes TripleO

Environment containers containers any containers bare-metal
Packaging containers containers scripts containers disk images
Template (all manual) no relations no relations relations no relations relations

no constraints no constraints constraints constraints constraints
no orchestration no orchestration no orchestration orchestration orchestration

Dependencies manual manual automatic manual automatic
sequence sequence graph sequence graph
install install install install from placement to install

Placement manual automatic automatic automatic automatic
extern/intern extern/intern extern/intern intern intern

Allocation NS automatic automatic automatic automatic
extern extern/intern extern/intern intern intern

Provisioning NS automatic automatic automatic automatic
extern extern/intern extern/intern intern intern

Monitoring NS NS manual manual/auto manual/auto
Reconfiguration manual manual manual manual/auto manual/auto

resource resource (auto) resource (manual)
software software (auto) software (manual)

template template template template (manual) template (manual)
scaling scaling (auto) scaling (auto)

TABLE I
COMPARATIVE TABLE OF THE STUDIED DEPLOYMENT TOOLS BASED ON THE STEPS DEFINED IN SECTION II

IV. DISCUSSION

Table I gives a comparative overview of the tools
studied in the previous section, driven by the model steps
described in Section II. In this table, a step that is not
supported by a tool is tagged NS. In this section, we
discuss various comparison criteria.

A. Environment heterogeneity

As depicted in Table I, by using the five deployment
tools previously detailed, services can be deployed ei-
ther on bare-metal or on virtualised environments (i.e.,
containers or virtual machines). Each environment has
its pros and cons. First, unlike VMs and bare-metal
environments, Docker containers do not bundle a full
operating system which makes them fast to deploy,
scale and reschedule. This is an important consideration
for dynamic infrastructures used for instance for IoT
and mobile edge applications, where nodes can join,
leave or move. On the other hand, Docker containers
are not suited for any kind of service. Contrary to
bare-metal and VM environments, Docker containers
are designed for stateless services, and are not mature
enough to run databases that are in charge of persistent
data [15]. Furthermore, while VMs share the underlying
hardware between multiple operating systems, a bare-
metal environment monopolizes all of the physical re-
source of the machine, which provides more hardware
resources and reliable capacity for services that are
sensitive to performance. Thus, by managing heteroge-
neous environments, a deployment tool is able to place
services to the appropriate environment, according to
their nature and requirements. For instance, stateless
services can be deployed on Docker containers for

scalability and reconfiguration, while stateful and I/O
intensive databases could be deployed on bare-metal
servers. Moreover, the deployment tool can package a
service for the appropriate resource. For instance in IoT
infrastructures, virtual machines might not be deployable
on small Things (devices) with very limited capacity,
while Docker containers might fit. In our comparison,
Juju is the only one able to manage the three types of
environment by using scripts and external providers.

B. Size of the service packages

Three different kinds of service packages are repre-
sented in Table I: Scripts; Container images; and Disk
images. Packages are characterised by the time required
to be built, and by their associated size (in bytes). They
have an impact on the time spent for Packaging, Service
install and for Reconfiguration. The smaller packages
are, the faster they are transferred to the Image Store,
and to the resources during the Service install step.
Since they do not embed a full operating system (but
libraries and services) containers are faster to build and
transfer than disk images. TripleO is the only one which
is limited to disk images.

C. Expressiveness of the template

The different Template languages offered by deploy-
ment tools differ in the way they can express relations,
constraints and orchestration rules like scaling or recon-
figuration policies. An expressive language is required
to manage complex systems and resources since it en-
ables better Dependencies, Placement and Reconfigura-
tion processes. However, it increases the complexity of
writing templates since fine-grained descriptions must be



provided. For example, the operator must indeed clearly
understand the services and the application workflow
to define dependencies. For instance, Kolla, Enos and
TripleO are straightforward since they are dedicated
to OpenStack. For instance, in Kolla and Enos, the
workflow is provided in the Ansible playbooks. Thus, the
operator only needs to select which OpenStack services
to deploy. However, they have limitations related to the
lack of expressiveness to declare orchestration rules.
However, Kubernetes and HOT, the template language
used in TripleO, can express such rules.

Dependencies can be limited to a sequential order or
can be represented as a complete dependency graph.
Moreover, dependencies can be used to optimize one
or a set of the following steps: Placement; Allocation;
Provisioning; Configuration; Service install. HOT is the
only template language declaring service dependencies
to build a dependency graph that improves all these steps.

D. Automatic placement/allocation/provisioning

As depicted in Table I, placement, allocation and
provisioning steps can be manual or automatic, and
managed internally or externally. While automatic man-
agement is required to ease the deployment, it requires
to develop a placement manager that can be more or
less complex. For instance, the placement manager of
Enos is straightforward, while Kubernetes and TripleO
rely on extensible schedulers. On the one hand, com-
plex placement constraints and objective functions like
locality, energy considerations and capacity awareness
might be required for some deployments. In such case,
an internal management of these steps brings control
and fine-grained knowledge on resources. Kubernetes
and TripleO are the only tools that can express such
constraints, and that can retrieve fine-grained description
of resources due to their agents. Note that in such case,
the placement step is done after the allocation and the
provisioning. On the other hand, when these steps are
managed externally, like in Enos and Juju, the tool is
able to deploy on multiple clouds (e.g., AWS, GCE),
and the placement is done after the allocation and the
provisioning.

E. Automatic reconfiguration and prerequisites

Monitoring and Reconfiguration steps are directly
linked and can handle multiple cases:

• resource monitoring corresponds to reconfigura-
tions due to failures or joining/leaving resources;

• software monitoring is associated to reconfigura-
tions when services fail;

• template monitoring, refers to the reconfiguration
when the template and the current deployment differ
(e.g., updates, template modifications);

• scaling monitoring triggers reconfiguration when
specific events happen (e.g., overloaded resources).

An architecture based on controller and agents is
required for monitoring and automatic reconfiguration.
Agents must be installed on resources to send metrics
to the controller. Juju, Kubernetes and TripleO are such
deployment tools which require that the controller and
agents are deployed, raising a chicken and egg issue. In
our study, we have indeed observed some prerequisites.
Juju needs a controller on the desired cloud provider,
Kubernetes requires a controller and the Kubelet agents,
and TripleO requires a running undercloud to deploy its
overclouds.

F. IaaS as a deployment tool

The deployment process depicted in Figure 1 is a sub-
part of an IaaS managing system. It has been illustrated
by TripleO in Figure 6 since TripleO relies on the Open-
Stack services of the undercloud to deploy overclouds.
Thus, a deployment tool like TripleO would directly
benefit from the improvements of OpenStack services,
factorizing the effort for both applications (OpenStack
as an IaaS and as a deployment tool). For instance, an
improvement in the Nova scheduler would improve the
placement step of the deployment model.

G. Discussion conclusion

The conclusion of this comparison is that each tool
has its pros and cons. Nevertheless, TripleO is a particu-
larly interesting candidate. While it manages only bare-
metal machines, TripleO can be improved to manage
OpenStack services that handle containers and virtual
machines. Its template has a good expressiveness and is
able to define constraints, dependencies and orchestra-
tion rules. Its placement management is based on the
nova scheduler which is extensible, and Ironic agents
to collect resource metrics. Finally it can benefit from
the ongoing research effort for a fully decentralized
OpenStack system to provide a deployment tool adapted
for the future dynamic and global infrastructures.

V. RELATED WORK

This section presents existing surveys that are related
to the deployment of distributed modular softwares. Each
related survey presented in this section can be attached
to one or multiple steps of the deployment process
presented in Figure 1.

First the survey presented in [16] focuses on cloud
modeling languages. Studied languages have not been
used to deploy OpenStack and cannot be compared to
the one presented in this paper. One can note, though,
that the TOSCA [17] modeling specification is close to
HOT 5 and is described in the survey [16].

5http://fr.slideshare.net/openstackil/heat-tosca

http://fr.slideshare.net/openstackil/heat-tosca


Secondly, while the title of [18]: “Resource Provi-
sioning Techniques in Cloud Computing Environment
- A Survey” refers to resource provisioning, it can be
classified into the Placement deployment step presented
in Figure 1. The survey [19] also refers to the place-
ment step of the deployment process, however it studies
the specific case of placement algorithms in federated
clouds, i.e., a federation of IaaSes. Furthermore, the
work presented in [20] is a survey on the Placement
and Allocation steps of our deployment process. These
three surveys compare scheduling algorithms.

Thirdly, the work presented in [21] focuses on the
Configuration step of the deployment process. One can
note that the configuration step of the deployment pro-
cess can itself be considered as a deployment process at
a lower level (closer to resources). For this reason, some
steps or criteria are common to our contribution.

Finally, the last category of related survey deals with
the Monitoring step. The survey presented in [22] in-
troduces a taxonomy of seven different levels where
cloud monitoring could appear. The paper [23] also
proposes a survey on cloud monitoring which relies on a
heavy set of categories including for example scalability,
portability, flexibility or resource usage metering.

To conclude, many existing surveys related to deploy-
ment have studied a specific subpart of a deployment
process. Our survey, on the other hand, introduces an
overall deployment process on which our comparison
and analysis is based. Moreover, as far as we know,
no existing survey has clearly compared production
deployment tools, especially concerning the specific case
of OpenStack. To be able to handle large scale and highly
dynamic future infrastructures such as Fog and Edge,
though, OpenStack appears as one good candidate [24].

VI. CONCLUSION

In this paper, we have first analyzed the deployment
phases through a model in ten steps to fully understand
the deployment process. This model has then served to
analyze and compare five existing deployment tools used
to deploy OpenStack in production (i.e., Kolla, Enos,
Juju, Kubernetes and TripleO). The conclusions of this
survey paper are that each of the five studied tools have
their own pros and cons. While Kolla, Enos and Juju are
designed to be easy to operate, Kubernetes and TripleO
are the most sophisticated tools in terms of deployment
features. Finally, we considered OpenStack since it is
a complex modular application, but our model can be
applied on any distributed software.

ACKNOWLEDGMENTS

Supported by the Inria Project Lab program Dis-
covery: an Open-Science Initiative aiming at imple-
menting a fully decentralized IaaS manager: http://
beyondtheclouds.github.io.

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, 2nd. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 2002, ISBN: 0201745720.

[2] M. van Steen, G. Pierre, and S. Voulgaris, “Challenges in very
large distributed systems,” Journal of Internet Services and
Applications, vol. 3, no. 1, pp. 59–66, 2012, ISSN: 1869-0238.

[3] Deployment and Configuration of Component-based Distributed
Applications Specification, http://www.omg.org/spec/DEPL/4.
0/PDF, Object Management Group, Inc., Apr. 2006.

[4] OpenStack, https://www.openstack.org/.
[5] T. Bell, B. Bompastor, S. Bukowiec, et al., “Scaling the CERN

OpenStack Cloud,” Journal of Physics: Conference Series,
vol. 664, no. 2, 2015.

[6] F. Hermenier and S. Demassey, “BtrPlace: Flexible VM Man-
agement in Data Centers,” in Conference on Optimization &
Practices in Industry, PGMO-COPI’14, France, Oct. 2014.

[7] P. Silva, C. Pérez, and F. Desprez, “Efficient Heuristics for Plac-
ing Large-Scale Distributed Applications on Multiple Clouds,”
in 16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid’16), Colombia, May 2016.

[8] Kolla, https://github.com/openstack/kolla.
[9] Ansible, https://www.ansible.com/.

[10] Jinja2, http://jinja.pocoo.org/.
[11] R.-A. Cherrueau, A. Lebre, D. Pertin, et al., “ENOS: a Holistic

Framework for Conducting Scientific Evaluations of Open-
Stack,” Inria, Nantes, Technical Report RT-485, Nov. 2016.

[12] D. Balouek, A. Carpen Amarie, G. Charrier, et al., “Adding
Virtualization Capabilities to the Grid’5000 Testbed,” in Cloud
Computing and Services Science, vol. 367, Springer Interna-
tional Publishing, 2013, pp. 3–20, ISBN: 978-3-319-04518-4.

[13] Juju, https://jujucharms.com/.
[14] Kubernetes, http://kubernetes.io/.
[15] M. Chinkov, Why databases are not for containers? https : / /

myopsblog.wordpress.com/2017/02/06/why-databases- is-not-
for-containers/, Jan. 2017.

[16] A. Bergmayr, M. Wimmer, G. Kappel, et al., “Cloud modeling
languages by example,” in 7th IEEE International Conference
on Service-Oriented Computing and Applications, SOCA 2014,
Matsue, Japan, November 17-19, 2014, 2014, pp. 137–146.

[17] Topology and Orchestration Specification for Cloud Applica-
tions Version 1.0, http://docs.oasis-open.org/tosca/TOSCA/v1.
0/os/TOSCA-v1.0-os.html, 2013.

[18] N. Bhavani and S. Guruprasad, “Resource provisioning tech-
niques in Cloud computing environment - a survey,” IJRCCT,
vol. 3, 2014, ISSN: 2278-5841.

[19] M. Gahlawat and P. Sharma, “Survey of virtual machine place-
ment in federated Clouds,” in 2014 IEEE International Advance
Computing Conference (IACC), Feb. 2014, pp. 735–738.

[20] V. P. Anuradha and D. Sumathi, “A survey on resource allo-
cation strategies in Cloud computing,” in International Confer-
ence on Information Communication and Embedded Systems
(ICICES2014), Feb. 2014, pp. 1–7.

[21] T. Delaet, W. Joosen, and B. Vanbrabant, “A survey of sys-
tem configuration tools,” in Proceedings of the 24th Interna-
tional Conference on Large Installation System Administration,
ser. LISA’10, San Jose, CA: USENIX Association, 2010, pp. 1–
8.

[22] G. Aceto, A. Botta, W. de Donato, et al., “Cloud monitoring:
A survey,” Computer Networks, vol. 57, no. 9, pp. 2093–2115,
2013, ISSN: 1389-1286.

[23] K. Fatema, V. C. Emeakaroha, P. D. Healy, et al., “A survey of
Cloud monitoring tools: Taxonomy, capabilities and objectives,”
Journal of Parallel and Distributed Computing, vol. 74, no. 10,
pp. 2918–2933, 2014, ISSN: 0743-7315.

[24] A. Lebre, J. Pastor, A. Simonet, et al., “Revising OpenStack to
Operate Fog/Edge Computing infrastructures,” in IEEE Inter-
national Conference on Cloud Engineering, Vancouver, France,

Apr. 2017.

http://beyondtheclouds.github.io
http://beyondtheclouds.github.io
http://www.omg.org/spec/DEPL/4.0/PDF
http://www.omg.org/spec/DEPL/4.0/PDF
https://www.openstack.org/
https://github.com/openstack/kolla
https://www.ansible.com/
http://jinja.pocoo.org/
https://jujucharms.com/
http://kubernetes.io/
https://myopsblog.wordpress.com/2017/02/06/why-databases-is-not-for-containers/
https://myopsblog.wordpress.com/2017/02/06/why-databases-is-not-for-containers/
https://myopsblog.wordpress.com/2017/02/06/why-databases-is-not-for-containers/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

