R. and C. Lozoya, Radiofrequency ablation planning for cardiac arrhythmia treatment using modeling and machine learning approaches. Theses, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01206478

J. O. Campos, R. S. Oliveira, R. W. Santos, and B. M. Rocha, Lattice Boltzmann method for parallel simulations of cardiac electrophysiology using GPUs, {VIII} Pan-American Workshop in Applied and Computational Mathematics, pp.70-82, 2016.
DOI : 10.1016/j.cam.2015.02.008

R. Chabiniok and V. Y. Wang, Multiphysics and multiscale modelling, data???model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics, Interface Focus, vol.18, issue.2, p.20150083, 2016.
DOI : 10.1161/CIRCULATIONAHA.109.192278

URL : https://hal.archives-ouvertes.fr/hal-01277684

J. K. Chen, J. E. Beraun, and T. C. Carney, A corrective smoothed particle method for boundary value problems in heat conduction, International Journal for Numerical Methods in Engineering, vol.113, issue.2, pp.231-252, 1999.
DOI : 10.1002/(SICI)1097-0207(19990920)46:2<231::AID-NME672>3.0.CO;2-K

P. Chinchapatnam and K. Rhode, Voxel Based Adaptive Meshless Method for Cardiac Electrophysiology Simulation, In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, vol.212, issue.1, pp.182-190, 2009.
DOI : 10.1016/j.jcp.2005.05.030

T. Jankowiak and T. Lodygowski, Smoothed particle hydrodynamics versus finite element method for blast impact. Bulletin of polish academy of technical sciences, p.2013
DOI : 10.2478/bpasts-2013-0009

S. Marchesseau and H. Delingette, Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform, Biomechanics and Modeling in Mechanobiology, vol.4, issue.7, pp.815-831, 2013.
DOI : 10.1007/s10237-012-0446-z

URL : https://hal.archives-ouvertes.fr/hal-00813847

C. C. Mitchell and D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, vol.65, issue.5, pp.767-793, 2003.
DOI : 10.1016/S0092-8240(03)00041-7

J. J. Monaghan, Smoothed particle hydrodynamics. Reports on progress in physics, p.1703, 2005.

D. Nishiura, M. Furuichi, and H. Sakaguchi, Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing, Computer Physics Communications, vol.194, pp.18-32, 2013.
DOI : 10.1016/j.cpc.2015.04.006

N. Smith and . Vecchi, euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling, Interface Focus, vol.41, issue.10, pp.349-364, 2011.
DOI : 10.1016/j.jbiomech.2008.04.035

URL : https://hal.archives-ouvertes.fr/inria-00616189

D. Soto-iglesias and C. Butakoff, Integration of electro-anatomical and imaging data of the left ventricle: An evaluation framework, Medical Image Analysis, vol.32, pp.131-144, 2016.
DOI : 10.1016/j.media.2016.03.010

D. D. Streeter and H. M. Spotnitz, Fiber Orientation in the Canine Left Ventricle during Diastole and Systole, Circulation Research, vol.24, issue.3, pp.339-347, 1969.
DOI : 10.1161/01.RES.24.3.339

H. Talbot and S. Marchesseau, Towards an interactive electromechanical model of the heart, Interface Focus, vol.37, issue.11, p.2013
DOI : 10.1007/s10439-009-9774-2

URL : https://hal.archives-ouvertes.fr/hal-00797354

T. Yipintsoi and P. D. Scanlon, Density and Water Content of Dog Ventricular Myocardium, Experimental Biology and Medicine, vol.141, issue.3, pp.1411032-1411037, 1972.
DOI : 10.3181/00379727-141-36927

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2942798/pdf

H. Zhang, L. Wang, P. J. Hunter, and S. Pengcheng, Meshfree framework for imagederived modelling, 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1449-1452, 2008.