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Spatial regularization based on dMRI to solve EEG/MEG inverse
problem

Brahim Belaouchg and Tleodore Papadopoulo

Abstract—In this paper, we present a new approach to estimate (SWMNE). The proposed method is tested using
reconstruct dipole magnit_udes of a distributed source model fOI_’ synthetic data and is compared to some of the reconstruction
magnetoencephalographic (MEG) and electroencephalographic 444rithms that can be found in the literature. Also, real data

(EEG). This approach is based on the structural homogeneity -
of the cortical regions which are obtained using diffusion MRI was used to test the accuracy of the algorithm. The results

(dMRI). First, we parcellate the cortical surface into functional ~ were compared with the results of functional MRI (fMRI)
regions using structural information. Then, we use a weighting group analysis study with the same subjects performing the
matrix that relates the dipoles’ magnitudes of sources inside same tasks [11].
these functional regions. The weights are based on the region's
structural homogeneity. Results of the simulated and real MEG I
measurement are presented and compared to classical source
reconstruction methods. Structural and diffusion MRI data were taken from Wake-
man et al. [11]. The 1 mm isotropic resolution T1 weighted
images of size&56 256 192were acquired by a Siemens
EEG and MEG are two imaging modalities that pro3T. The 2 mm isotropic resolution diffusion weighted images
vide information about brain activity with high temporalof size 96 96 68 were collected by the same scanner
resolution. The sources of MEG/EEG are current sourcgg4 gradient directions ant-value = 1000 s/mm), with
that are modeled using dipoles which are distributed in thene b0 image (an image without diffusion gradient). The
cortical surface. Obtaining the distributed sources activatiogbrtical surface was extracted from T1, using Freesurfer [12],
from these measurements is an underdetermined problefid re-meshed to f0vertices (sources). The transformation
due to the small number of measurements with respegktween the anatomical and diffusion space was obtained by
to the number of distributed sources. To obtain a uniqugsing FSL [13].
solution, different constraints can be used [1]. They can MEG (102 magnetometers, 204 planar gradiometers) and
be divided into three different categories: spatial, temporakeG (70 electrodes) were measured simultaneously in a
and spatiotemporal constraints. In our work, we focus Omagnetically shielded room. The face stimuli contain three
spatial constraints. Minimum norm estimate (MNE) wassets of 450 gray scale photographs, one third of unfamiliar
introduced to obtain a unique source reconstruction [2, iﬁeome (unknown to the participants), one third of famous

MNE gives a linear solution which makes it a simple angyegple and the remaining are of scrambled faces. The reader
attractive approach. But it suffers from overestimation of thes referred to [11] for more details.

extents of the active regions. To address these limitations, | this work, we are interested in localizing face recog-
many MNE variants have been proposed by introducingition areas. For this reason, we use only the measurement
different weighting matrices [1]. But all neglect the Strucwrabcquired when using photos of famous people subtracted to
information which has been shown to be in relation to théhe ones obtained when using scrambled faces. Low pass
functional homogeneity of brain regions by several studieger of cut-off frequency 45 Hz was used to smooth the

[4]-[8]. In Philippe et al. [9], the authors used a weightingysta. The MEG/EEG forward problem, lead eld mati@
matrix as a penalty term which favour constant activation pgg optained using OpenMEEG [14, 15].

region (CP). In their work, they do not consider the possible
structural inhomogeneity. I1l. CORTICAL PARCELLATION

dMRI is the only non-invasive imaging modality that ) _
allows the access to the anatomical connectivity. That is why The mutual nearest neighbor (MNN) parcellation algo-
it has been used to parcellate the cortical surface [7, 10]. [{hm divides the cortical surface di points into regions
this work, we present another variant of the weighted min%ith the highest homogeneity according to a similarity
imum norm in which the elements of the weighting matrixneasure [10]. MNN uses connectivity pro les of sources
depend on the structural homogeneity of the regions obtain&® Parcellate the cortex substrate. Connectivity pro le of a

from dMRI. We call it structural weighted minimum norm SOurce is a_lvector conFaining the probability of the existence
of anatomical connections between the source and the other
This work received funding from ERC under the European Uniondmage voxels. This probability is obtained by running a
Horizon 2020 research and innovation program (ERC Advanced Grasf.‘frobabilistic tractography using FSL [13]_ MNN depends
agreement No 694665 : CoBCoM) and French ANR contract Vibrations. .
Both authors are with the UniversitCote d'Azur, Inria, Nice, France (e- on one parametes, that controls the resultlng number of

mail: brahim.belaoucha@inria.fr, theodore.papadopoulo@inria.fr). regions. We useTanimoto [16] measure to quantify the

. DATA ACQUISITION AND PROCESSING

I. INTRODUCTION



similarity between the connectivity pro les. Th&nimoto 0
similarity measure between sourcandi is: 7 |\ /\
{

Xi X ‘Bl
Xi X+ kX X k;
where X; and X; is the vector form of the connectivity = * \ / *
prole of sourcei and | respectively. TheTanimoto is 0 \/ . \
symmetric and has values between 0 and 1. The MNN ceé  w w = o w vom om w e o
result to small regions due to the structural inhomogeneity. e e
The small regions, regions with less thgn sources, were @ (b)

merged with valid regions in a way that give the highestig 1. simulated data used to activate one region (a) and
mean similarity value. two regions (b).

dij =

Magnitude (unit)
Magpnitude (unit)
g/ B

IV. MEG/EEGINVERSE PROBLEM

In a distributed source model witin sources anch sen- 5 vector containing the label of each source. The weighting
sors, the EEG/MEG measurement is related to the sourcgitrix. W . for this case is:

magnitudes by the following linear relation:
whereM 2 R" T is the measuremen® (number of time W=PBpdus pds 4 1 0 0
samples)G 2 R" ™ is the lead eld matrix that contains dids dzds % L das
the contribution of sources to each sensor &2 R™ T 0 0 0 1 g 4 P
is a matrix that contain the sources' magnitudes. Finally, 0 0 =
the measurement is corrupted by an additive Gaussian no"aﬁls K. is. minimum when:
of a zero mean,. The minimum norm estimates sources' 2 1§ O e‘ﬁ]'T q "
magnitudes by optimizing the following functional: 2= gdu Ja= G Ja= s
) ) If sourcei andj are in the same regiok\WS k, constraing
U(S)= kM  GSk; + kSk; () andj tp have activations related by the following relationship
wherek k is I norm and ( 0) is the trade-off parameter S d—"Si. The solution of Eq (4) is:
between the prior and the data t term. The solution of Eq o . Lt
(2)is; Sswmne —(GG+ W'W + |) G'M (7)
Sme =(G'G + 1) 'G'M (3)  Each block ofW corresponds to a Laplacian weighted by
where Xt is the transpose of matriX andl ism m the si_milari_ty measure values of each region. The method
identity matrix. Let's de ne the following functional: explained in Philippe et al. [9], that we call CP, can be

5 , 5 obtained from our method by replacing all tlg; 's by
U(S)= kM GSk;+ KWSK;+ kSk; (4) 1. The regularization parameters are obtained using cross-

whereW is a weighting matrix and ( 0) is a regulariza- validation [17].

tion parameter. We propose to use a weighted matrix whose V. RESULTS AND DISCUSSION
elements are de ned by similarity values of the connectivi%\
pro le vectors (see section Ill). We considéf to be a block

matrix in which each block corresponds to a cortical region ! >
between sWMNE, MNE and CP, we generated a simulation

. Simulation setup
For reasonable fast computation time and comparison

de ned by: ) : S .
8 with 20 sensors and 500 points distributed equally into 50
31 § ifi=]j regions i.e. 10 points in each region. For each regiynwe
S 2Ry! W(ij)= pddlid if Sy 2R, (5) 9enerate randomly, from normal distributid(100; 200),
i4j

_ ) the mean structural connectivity vectar ) of length equal
0 if S ZRp to 10°. We give to a source point, that belongs tdR;, the

whereS; and R, are, respectively, thé" source ancpt"  following connectivity pro le vector:
cortical region.d;; is the similarity value between the =T+ (8)

connectivity pro le vector of sourceé andj. .
where the elements of the vectgr are obtained randomly

_ Rl from N (50; 100), values lower than 100 were set to zero.
di = _ i ®)  The elements of the weighting matrix are obtained by com-
puting theTanimotosimilarity measure between the sources'
wherejR,j is the number of sources in tE' region. connectivity vectors that belong to the same regions. The
To have an idea about the effect of this weighting matrixiorward modelG, gain matrix, is drawn from a (0; 1).
let's assume that we have ve sourcd®.=[1;1;1;2;2]is We consider two test con gurations:



Fig. 3: Top raw: reconstruction errde, of the different
algorithms. Bottom, the number of sources that Haweorm

25% of the highest energy in the source space. The results
are obtained for different noise levels. GT, in red, refers to
ground truth.

when activating one and two regions. To test the accuracy
of the reconstructions, we compute the source reconstruction
error E,):

where Sy and S, are, respectively, the simulated (ground
truth) and reconstructed sources, see the upper part of Figure
3. Also, we test the focality of the three methods by counting
the number of sources that have activations higher than 25%
of the highest activation, see the lower part of Figure 3. A
degree of activation of a sour¢és computed as the norm
of the reconstructed time course iof

The MNE smears the activation which makes it hard to

Fig. 2: Mean (over 100 runs) reconstruction using MNE, cpocalize spatially the active regions, see Figure 2. In the CP
and SWMNE at different noise levels (SNR = 15, 10, 5 dB)gind SWMNE, we can distinguish from the reconstructions,
Left panel: Results of thest test con guration. Right panel: S€€ Figure 2, which regions are more active. SWMNE is
results of the  test con guration. We show in color, blue More exible than CP by allowing magnitude variation due

or/and green, the reconstructed magnitudes of the simulatij@ difference of the structural connectivity between sources
region(s) and in black the remaining sources. of the same region. SWMNE does not show signi cant

improvement in terms of, , see Figure 3, with compared to
CP but the number of active sources obtained from sWMNE

. ) ) is closer to the ground truth.
One active region (see Figure 1 (a)).

Two active regions (see Figure 1 (b)). B. Real data

In the rst test con guration, we activate 20 random regions. We tested SWMNE using real MEG data obtained from
For each active region, we run the reconstruction algorithni$1] which was presented briey in section Il. In this
100 times at three different noise levels (Signal-to-Noispaper, we show only the results of one subject due to page
ration (SNR) =f 15;10;5g dB). In the second, we activate limitation. In Figure 4, we show the normalizdd norm

20 random pairs of regions. For each pair of regions, we rusf the source reconstructed intensities using SWMNE (left)
the reconstruction algorithms 100 times at the same noised MNE (right) between tim¢ = 0, the onset, and =
levels mentioned earlier. Figure 2 shows an average, one @6s thresholded at 15%. In the contrary to MNE, SWMNE
the 20 randomly activated regions in both test con gurationgyrovides more focal reconstruction.

the reconstructed sources using MNE, CP and sSWMNE. The In the sSWMNE, we can distinguish fusiform and occipital
left and right panels correspond, respectively, to the resuléstivation in both hemispheres. Also in all the eleven subjects



Fig. 4: Thel;-norm of the reconstructed sources, from MEG [11], of Subject 1 displayed on the in ated surface. We show

only values above 15% of the highdstnorm. Thes parameter of MNN was set to 800.

in [11], anterior temporal lobe and inferior pre-frontal were [3]
found to be active. Orbitofrontal cortex was found to be
more active in subject 4, 9 and 11. The right temporal pole[4]
of subject 1 and 2 were found to be more active than the
left one. These regions coincide with what was reported irf°]
Wakeman et al. [11] in which they used the same paradigm
and participants to acquire fMRI. The study whether some ofe]
these regions are dedicated to human faces [18] or intervene
in other visual stimuli [19] is outside the scope of this work. 7]
SWMNE shows better results, in terms of reconstruction
error and focality, with compared to MNE. We observed nol8l
signi cant difference in the reconstruction error between CP
and sSWMNE but the latter gives a better approximation off9]
the activation extent.
VI. CONCLUSION (10]
This paper presented a method to use information from
dMRI to solve the EEG/MEG inverse problem. A weight-
ing matrix whose elements are obtained from computingai]
the similarity between the connectivity vector pairs inside
each region is used to regularize the inverse problem. Thi
matrix allows sources to differ according to their structural
homogeneity. Finally, the source reconstruction and cortic&i3l
surface parcellation depend on the similarity measure used
to quantify the structural homogeneity between the different
connectivity pro les. Other similarity measures can be usett4
and their effect on the reconstruction should be investigated.
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