
HAL Id: hal-01533708
https://inria.hal.science/hal-01533708

Submitted on 6 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic verification of privacy-type properties for
security protocols with XOR

David Baelde, Stéphanie Delaune, Ivan Gazeau, Steve Kremer

To cite this version:
David Baelde, Stéphanie Delaune, Ivan Gazeau, Steve Kremer. Symbolic verification of privacy-type
properties for security protocols with XOR. CSF 2017 - 30th IEEE Computer Security Foundations
Symposium, Aug 2017, Santa Barbara, United States. pp.15. �hal-01533708�

https://inria.hal.science/hal-01533708
https://hal.archives-ouvertes.fr

Symbolic verification of privacy-type properties
for security protocols with XOR

David Baelde∗, Stéphanie Delaune∗†, Ivan Gazeau∗‡, and Steve Kremer‡
∗LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France, France

†CNRS & IRISA, Rennes, France
‡LORIA, INRIA Nancy - Grand-Est, France

Abstract—In symbolic verification of security protocols, pro-
cess equivalences have recently been used extensively to model
strong secrecy, anonymity and unlinkability properties. However,
tool support for automated analysis of equivalence properties is
limited compared to trace properties, e.g., modeling authentica-
tion and weak notions of secrecy. In this paper, we present a
novel procedure for verifying equivalences on finite processes,
i.e., without replication, for protocols that rely on various
cryptographic primitives including exclusive or (xor). We have
implemented our procedure in the tool AKISS, and successfully
used it on several case studies that are outside the scope of
existing tools, e.g., unlinkability on various RFID protocols, and
resistance against guessing attacks on protocols that use xor.

I. INTRODUCTION

Protecting authenticity and confidentiality of transactions by
the use of cryptography has become standard practice. Security
protocols such as TLS, SSH, or Kerberos are nowadays widely
deployed. However, history has shown that designing secure
protocols is challenging, because of the concurrent execution
of protocols in an adversarial environment. Many attacks
exploit flaws in the protocol logic rather than, or sometimes
combined with, weaknesses in the underlying cryptographic
primitives, e.g., [14]. During the past two decades, several
efficient automated verification tools have been developed to
detect logical flaws, e.g., ProVerif [17], AVISPA [6], Maude-
NPA [29], Tamarin [39], and they have successfully discovered
many attacks in academic protocols [35], standards [11] and
deployed protocols [5].

Authentication and (weak forms of) confidentiality are mod-
elled as trace properties: they are checked by verifying that
each possible trace of the system satisfies some predicate. The
verification of such properties is nowadays well understood
and enjoys efficient tool support, as discussed above. However,
some properties such as resistance against guessing attacks,
strong secrecy, anonymity and unlinkability [25], [28], [4],
[18] are expressed in terms of indistinguishability, a form of
process equivalence [2], [1]. Automated verification of equiv-
alence properties is not yet as mature as for trace properties.
Several tools have recently been extended with the possibility
to verify a strong equivalence called diff-equivalence [16],

The research leading to these results has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreements No 645865-SPOOC and
No 714955-POPSTAR), as well as from the French National Research Agency
(ANR) under the project JCJC VIP no 11 JS02 006 01 and the project Sequoia.

[12], [38]. This equivalence can only relate processes that only
differ in the messages that they use, but not in their control
flow, which is too strong for some applications. Dedicated
tools for verifying process equivalences on security protocols,
in the case of a bounded number of sessions, have also
been developed. The SPEC tool [40] decides a symbolic
bisimulation, which implies trace equivalence, for protocols
that use a fixed set of standard cryptographic primitives. It
does not support protocols with else branches. The APTE
tool [20] decides trace equivalence for processes including else
branches, and a fixed set of standard primitives. The AKISS
tool [19] is able to check trace equivalence for processes
without else branches but supports various cryptographic prim-
itives, including most standard ones as well as, e.g., blind
signatures and trapdoor bit commitment.

Some protocols use cryptographic primitives that have al-
gebraic properties [26]. Exclusive or (xor) is such a primitive,
and protocols implemented on low-power devices, such as
RFID tags, often rely on it because of its computational effi-
ciency [42]. There exist many results for taking into account
algebraic properties for trace based properties, in particular
for the xor operator [24], [22], [34]. However, only a few
procedures for equivalence properties take algebraic properties
into account. Delaune et al. [27] have studied equivalence
of constraint systems, showing in particular that the theory
for xor is decidable in PTIME. However, they only consider
the case of pure group theories, not allowing any other
equations, e.g., those modelling encryption. When considering
an unbounded number of sessions, tools that can verify diff-
equivalence do not effectively support xor. The Tamarin tool
supports a theory for Diffie-Hellman exponentiations, but not
xor. The Maude-NPA tool supports xor in principle, but when
verifying equivalence properties it does not terminate even
on simple examples. For trace properties such as secrecy and
authentication, termination is achieved in practice on several
examples, e.g., a xor based variant of the NSL protocol, the
IBM CCA crypto API: sometimes, attacks are discovered
by bounding the search depth to avoid non-termination; the
analysis of CCA also relies on Never Patterns, a technique
that allows to prune the search space, but which requires an
external, protocol-dependent [33] justification.

AKISS in a nutshell: The procedure that we present in
this paper builds on previous work by Chadha et al. [19],

and its implementation in the AKISS tool. This tool checks
equivalences for protocols modelled as processes in a calculus
similar to the applied pi-calculus [1], but without else branches
nor replication. It actually checks for two equivalences which
over- and under-approximate the standard notion of trace
equivalence for cryptographic protocols, allowing one to either
prove or disprove trace equivalence. The coarser equivalence
also coincides with trace equivalence on the large class of
determinate processes.

The AKISS tool supports cryptographic primitives that can
be expressed through a convergent rewrite system enjoying
the finite variant property [23]. Termination is guaranteed for
the subclass of subterm convergent rewrite theories, but also
achieved in practice on several examples outside this class.

The procedure is based on a fully abstract modelling of
symbolic traces of the protocols into first-order Horn clauses.
Each symbolic trace is translated into a set of clauses called
seed statements, and a dedicated resolution procedure is ap-
plied to this set to construct a set of statements that have a
simple form, called solved statements. It is shown that these
solved statements form a sound and complete representation
of the symbolic trace under study. Therefore, only the set
of solved statements is required to decide whether a given
symbolic trace is included in some process. To decide trace
equivalence between processes P and Q, the procedure checks
whether each symbolic trace of P is included in Q as described
above, and vice versa.

Contributions: We design a new procedure for verifying
trace equivalence of protocols that use the xor operator,
extending the work by Chadha et al. [19]. Our procedure
follows the general structure of the original one, modelling
protocols as processes in (a variant of the) applied pi-calculus
(Section II) and translating symbolic traces into Horn clauses
(Section III). The xor operator is not supported in AKISS
because it cannot be modelled by a convergent rewrite system.
Our approach consists in first orienting the equations of
xor into a convergent rewrite system modulo associativity
and commutativity (AC), then generalizing the procedure of
Chadha et al. to reason modulo AC (Section IV). A direct
generalisation would be sound and complete, but would not
terminate even on very simple examples. We therefore com-
pletely redesign the resolution procedure, using a new strategy
to forbid certain steps that would yield non-termination. Show-
ing that these steps are indeed unnecessary requires essential
changes to the completeness proof. The modified procedure
yields an effective algorithm for checking trace equivalence
(Section V). Although termination is not guaranteed, we have
implemented our procedure as an extension of AKISS and
demonstrated its effectiveness on several examples, including
unlinkability for various RFID protocols [42] and resistance
against guessing attacks for password based protocols [31],
[32]. To the best of our knowledge, our tool is the first that
can effectively verify equivalence properties for protocols that
use xor. As with all of the above-mentionned tools, our results
are restricted to the (symbolic) model under consideration:

when our algorithm concludes that there is no attack, it is
only meaningful in that model. A proof in the computational
model would be stronger, but would still bear some limitations.
A natural question is whether our symbolic model could be
computationally sound. Note that the impossibily result of [41]
does not apply here, since we only consider bounded runs.
Nevertheless, we do not claim computational soundness, and
argue instead that symbolic security proofs are already useful
information.

Outline: In Section II, we introduce our formalism for
modelling protocols, a variant of the replication-free fragment
of the applied pi calculus. In Section III, we provide a fully
abstract representation in Horn clauses of protocols expressed
in our calculus. Next, we present our saturation procedure
based on Horn clause resolution in Section IV. We present the
algorithm for checking trace equivalence, its implementation,
and our case studies in Section V. Full proofs are available in
the long version of this paper [8].

II. PROCESS CALCULUS

We introduce the process calculus and the notion of equiva-
lence that we use to model protocols and indistinguishability.
Our calculus has similarities with the applied pi-calculus [1]
which has been extensively used to specify security protocols.
Participants in a protocol are modeled as processes, and
the communication between them is modeled by means of
message passing.

A. Term algebra

As usual in symbolic models we model messages as terms.
We consider several sets of atomic terms:
• N is a set of names, partitioned into the disjoint sets Nprv

and Npub of private and public names;
• X is the set of message variables, denoted x, y, etc.;
• W = {w1,w2, . . .} is the set of parameters.
Intuitively, private names in Nprv represent nonces or keys

generated by honest participants, while public names in Npub

represent identifiers available both to the attacker and to honest
participants, and attacker nonces. Parameters are used by the
attacker as pointers to refer to messages that were previously
output by the protocol participants.

Given a signature Σ (i.e., a finite set of function symbols
together with their arity) and a set of atoms A we denote
by T (Σ,A) the set of terms, defined as the smallest set that
contains A and that is closed under application of function
symbols in Σ. We denote by vars(t) the set of variables oc-
curring in a term t. As usual, a substitution is a function from
variables to terms, that is lifted to terms homomorphically. The
application of a substitution σ to a term u is written uσ, and we
denote dom(σ) its domain, i.e. dom(σ) = {x | σ(x) 6= x}.
The identity substitution, of empty domain, is noted ∅. The
positions of a term are defined as usual.

We associate an equational theory E to the signature Σ.
It consists of a finite set of equations of the form M = N
where M,N ∈ T (Σ,X), and induces an equivalence relation

2

over terms: =E is the smallest congruence on terms, which
contains all equations M = N in E, and that is closed under
substitution of terms for variables. To model protocols that
only rely on the xor operator, we consider Σxor = {⊕, 0}, and
the equational theory Exor below:

x⊕ x = 0 x⊕ (y ⊕ z) = (x⊕ y)⊕ z
x⊕ 0 = x x⊕ y = y ⊕ x

We denote by AC the equational theory defined by the
two equations on the right. We may also want to consider
additional primitives, e.g. pairs, symmetric and asymmetric
encryptions, signatures, hashes, etc. This can be done by
extending the signature as well as the equational theory.

Example 1: Let Σ+
xor = Σxor] {〈·, ·〉, proj1, proj2, h}, and

consider the equational theory E+
xor extending Exor with the

equations proj1(〈x, y〉) = x, and proj2(〈x, y〉) = y. The
symbol 〈·, ·〉 models pairs; the proji symbols model projec-
tions; the unary symbol h models a hash function. Take id ∈
Npub to model the identity of a participant, and r1, r2, k ∈ Nprv

to represent two random numbers and a key, a priori unknown
to the attacker. Let t0 = 〈id ⊕ r2, h(〈r1, k〉) ⊕ r2〉. We have
that (proj1(t0)⊕ id)⊕ proj2(t0) =E+

xor
h(〈r1, k〉).

In this paper we consider a signature Σ such that Σxor ⊆ Σ,
together with an equational theory generated by a set of
equations of the form

E = Exor ∪ {M = N | M,N ∈ T (Σ r Σxor,X)}.

Hence, E models xor in combination with any other equational
theory that is disjoint from Exor.

B. Finite variant property

A rewrite system R is a set of rewrite rules of the form
`→ r where `, r ∈ T (Σ,X), and vars(r) ⊆ vars(`). A
term t can be rewritten in one step (modulo AC) to u,
denoted t→R,AC u, if there exists a position p in term t, a
rule ` → r in R and a substitution σ such that t|p =AC `σ
and u = t[rσ]p, i.e., the term at position p in t is equal to
`σ modulo AC and u is the term obtained by replacing, in
t, the subterm t|p with rσ. The relation →∗R,AC denotes the
transitive and reflexive closure of →R,AC.

A rewrite system R is AC-convergent if the relation→∗R,AC
is confluent and strongly terminating. We denote by t↓R,AC (or
simply t↓) the normal form of a term t. In the following we
only consider equational theories E that can be represented by
a rewrite system R which is AC-convergent, i.e., such that

u =E v ⇔ u↓R,AC =AC v↓R,AC.

Example 2: The equational theory E+
xor of Example 1 can

be represented by the following AC-convergent system:

R+
xor =

 x⊕ (x⊕ y)→ y
x⊕ 0→ x
x⊕ x→ 0

proj1(〈x, y〉)→ x
proj2(〈x, y〉)→ y

Let t0 = 〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉. We have that:

proj1(t0)⊕ proj2(t0)
→R+

xor,AC
(id ⊕ r2)⊕ proj2(t0)

→R+
xor,AC

(id ⊕ r2)⊕ (h(〈r1, k〉)⊕ r2)

→R+
xor,AC

id ⊕ h(〈r1, k〉)

Note that the first rule in R+
xor is essential in last rewriting

step above, and more generally for R+
xor to represent Exor.

Given an AC-convergent rewrite system R, we define com-
plete sets of variants, first introduced in [23].

Definition 1: Consider a rewrite system R that is AC-
convergent, and a set of terms T . A set of substitutions
variantsR,AC(T) is called a complete set of variants for
the set of terms T , if for any substitution ω there exist
σ ∈ variantsR,AC(T), and a substitution τ such that:

• xω↓ =AC xσ↓τ for any x ∈ vars(T), and
• (tω)↓ =AC (tσ)↓τ for any t ∈ T .

The set of variants of t represents a pre-computation such
that the normal form of any instance of t is equal (mod-
ulo AC) to an instance of tσ↓ for some σ in the set of
variants, without the need to apply further rewrite steps. A
rewrite system has the finite variant property if for any set
of terms one can compute a finite complete set of vari-
ants. We will often write variantsR,AC(t1, . . . , tn) instead of
variantsR,AC({t1, . . . , tn}).

Example 3: Considering the equational theory E+
xor in-

troduced in Example 1, and the rewrite system defined
in Example 2. We have σ = {x 7→ 〈x1, x2〉} ∈
variantsR,AC(proj1(x)). Actually, σ together with the identity
substitution form a complete set of variants for proj1(x).

The following substitutions, together with the identity sub-
stitution, form a complete set of variants for x⊕ y:

• σ1 = {x 7→ y ⊕ z}, σ′1 = {y 7→ x⊕ z},
• σ2 = {x 7→ x′ ⊕ z, y 7→ y′ ⊕ z},
• σ3 = {y 7→ x}, and
• σ4 = {x 7→ 0}, σ′4 = {y 7→ 0}.

This finite variant property is satisfied by many equational
theories of interest, e.g., symmetric and asymmetric encryp-
tions, signatures, blind signatures, zero-knowledge proofs.
Moreover, such a property plays an important role regarding
equational unification. It implies the existence of a complete
set of unifiers, and gives us a way to compute it effec-
tively [30].

Definition 2: Consider an AC-convergent R and a set
of equations Γ = {u1 = v1, . . . , uk = vk}. A set of
substitutions S is a complete set of R,AC-unifiers for Γ if:

1) for each σ ∈ S and i ∈ {1, . . . , k}, uiσ↓ =AC viσ↓;
2) for each θ such that uiθ↓ =AC viθ↓ for all i ∈ {1, . . . , k},

there exists σ ∈ S and a substitution τ such that xθ↓ =AC

xστ↓ for any x ∈ vars(Γ).

Such a set is denoted csuR,AC(Γ), or csuAC(Γ) when R = ∅.

3

READER

k, id

TAG

k, id

nonce r1 r1

nonce r2
〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉

id ⊕ (id ⊕ r2)⊕ (h(〈r1, k〉)⊕ r2)
?
= h(〈r1, k〉)

Fig. 1: The KCL protocol

C. Process calculus

Let Ch be a set of public channels. A protocol is modeled by
a finite set of processes generated by the following grammar:

P, P ′, P1, P2 ::= 0 null process
in(c, x).P input
out(c, t).P output
[s = t].P test

where x ∈ X , s, t ∈ T (Σ,N ∪ X), and c ∈ Ch.

As usual, a receive action in(c, x) acts as a binding construct
for the variable x. We assume the usual definitions of free
and bound variables for processes. We also assume that each
variable is bound at most once. A process is ground if it does
not contain any free variables. For sake of conciseness, we
sometimes omit the null process at the end of a process.

Following [19], we only consider a minimalistic core calcu-
lus that does not include parallel composition. Given that we
only consider a bounded number of sessions (i.e., a process
calculus without replication) and that we aim at verifying trace
equivalence, parallel composition can be added as syntactic
sugar to denote the set of all interleavings [19]. Therefore, in
this paper, a protocol is simply a finite set of ground processes.

Example 4: Following a description given in [42], we
consider the RFID protocol depicted in Figure 1. The reader
and the tag id share the secret key k. The reader starts by
sending a nonce r1. The tag generates a nonce r2 and computes
the message t0 = 〈id ⊕ r2, h(〈r1, k〉) ⊕ r2〉 introduced in
Example 1. When receiving such a message, the reader will
be able to retrieve r2 from the first component, and by xoring
it with the second component, he obtains h(〈r1, k〉).

Using our formalism, we can model the two roles of this
protocol with the following ground processes:

Ptag = in(c, x). out(c, 〈id ⊕ r2, h(〈x, k〉)⊕ r2〉). 0

Preader = out(c, r1). in(c, y).
[(proj1(y)⊕ id)⊕ proj2(y) = h(〈r1, k〉)]. 0

where r1, r2, k ∈ Nprv, id ∈ Npub, and x, y ∈ X . The protocol
itself corresponds to the set of ground processes obtained by
interleaving these two roles.

The aim of this protocol is not only to authenticate the tag
but also to ensure its unlinkability. An attacker should not
be able to observe whether he has seen the same tag twice
or two different tags. We will formalize this later on, relying
on a notion of trace equivalence, and we will show that this
protocol fails to achieve this unlinkability property.

To define the semantics of our calculus, we introduce the
notion of deducibility. At a particular point in time, after
some interaction with a protocol, an attacker may know a
sequence of messages t1, . . . , t` ∈ T (Σ,N). Such a sequence
is organised into a frame ϕ = {w1 7→ t1, . . . ,w` 7→ t`} that
is a substitution of size |ϕ| = `.

Definition 3: Let ϕ be a frame, t ∈ T (Σ,N) and R ∈
T (Σ,Npub ∪ dom(ϕ)). We say that t is deducible from ϕ
using R, written ϕ `R t, when Rϕ↓ =AC t↓.

Intuitively, an attacker is able to deduce new messages by
applying function symbols in Σ to names in Npub and terms
stored in ϕ. The term R is called a recipe.

Example 5: Continuing Example 4, consider the frame

ϕ = {w1 7→ r1, w2 7→ 〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉}.

We have that h(〈r1, k〉) is deducible from ϕ using the recipe
R = (proj1(w2)⊕ proj2(w2))⊕ id .

We now define the semantics of our process calculus by
means of a labelled transition relation on configurations. A
configuration is a pair (P,ϕ) where P is a ground process,
and ϕ is a frame used to record the messages that the
participants have sent previously.

The relation `−→ where ` is either an input, an output, or an
unobservable action test is defined as follows:

RECV (in(c, x).P, ϕ)
in(c,R)−−−−→ (P{x 7→ t↓}, ϕ) if ϕ `R t

SEND (out(c, t).P, ϕ)
out(c)−−−→ (P,ϕ ∪ {w|ϕ|+1 7→ t↓})

TEST ([s = t].P, ϕ)
test−−→ (P,ϕ) if s↓ =AC t↓

The label in(c,R) indicates the input of a message sent by
the attacker over the channel c where R is the recipe that
the attacker uses to construct this message. The label out(c)
indicates a message sent over channel c, and transition rule
SEND records the message sent in the frame. Finally, the rule
TEST checks equality of s and t in the equational theory and
is labelled by the unobservable action test.

Example 6: Consider the ground process Pdiff that models
an execution of the tag id (who shares the key k with the
reader) followed by an execution of the tag id ′ (who shares
the key k′ with the reader), i.e., Pdiff = Ptag.P

′
tag where:

Ptag = in(c, x).out(c, 〈id ⊕ r2, h(〈x, k〉)⊕ r2〉)

P ′tag = in(c, x′).out(c, 〈id ′ ⊕ r′2, h(〈x′, k′〉)⊕ r′2〉)

4

(Pdiff, ∅)
in(c,r1)−−−−→ (out(c, 〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉).P ′tag, ∅)
out(c)−−−→ (P ′tag, {w1 7→ 〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉})

in(c,r1)−−−−→ (out(c, 〈id ′ ⊕ r′2, h(〈r1, k′〉)⊕ r′2〉).0, {w1 7→ 〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉})
out(c)−−−→ (0, {w1 7→ 〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉, w2 7→ 〈id ′ ⊕ r′2, h(〈r1, k′〉)⊕ r′2〉})

(Psame, ∅)
in(c,r1),out(c),in(c,r1),out(c)−−−−−−−−−−−−−−−−−→ (0, {w1 7→ 〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉, w2 7→ 〈id ⊕ r′2, h(〈r1, k〉)⊕ r′2〉})

Fig. 2: Some derivations (see Example 6)

We also consider the ground process Psame obtained from Pdiff
by replacing the occurrence of id ′ (resp. k′) by id (resp. k)
(but keeping the nonce r′2). This process models an execution
of two instances of the protocol by the same tag id (who shares
the key k with the reader). Following our semantics, we have
the derivations described in Figure 2 where r1 ∈ Npub, i.e. r1
is a public name known by the attacker.

When ` 6= test we define `
=⇒ to be test−−→

∗ `−→ test−−→
∗

and we
lift `−→ and `

=⇒ to sequences of actions. Given a protocol P ,
we write (P, ϕ)

`1,...,`n−−−−−→ (P ′, ϕ′) if there exists P ∈ P such
that (P,ϕ)

`1,...,`n−−−−−→ (P ′, ϕ′), and similarly for `
=⇒.

D. Process equivalence

In order to define our notion of equivalence, we first define
what it means for a test to hold on a frame.

Definition 4: Let ϕ be a frame and R1, R2 be two terms in
T (Σ,Npub ∪ dom(ϕ)). The test R1

?
= R2 holds on frame ϕ,

written (R1 = R2)ϕ, if R1ϕ↓ =AC R2ϕ↓.
Example 7: Consider the frames ϕdiff = {w1 7→ t,w2 7→ t′}

and ϕsame = {w1 7→ t,w2 7→ t′′} where the terms t, t′, and
t′′ are as follows:
• t = 〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉,
• t′ = 〈id ′ ⊕ r′2, h(〈r1, k′〉)⊕ r′2〉,
• t′′ = 〈id ⊕ r′2, h(〈r1, k〉)⊕ r′2〉.
They correspond to the frames obtained at the end of the

executions considered in Example 6. The test

proj1(w1)⊕ proj2(w1)
?
= proj1(w2)⊕ proj2(w2)

holds in ϕsame but not in ϕdiff. An attacker can xor the
two components of each message and check whether this
computation yields an equality or not.

Definition 5: A protocol P is trace included in a protocol
Q, denoted P v Q, if whenever (P, ∅) `1,...,`n

=====⇒ (P,ϕ) and
(R1 = R2)ϕ, then there exists a configuration (Q′, ϕ′) such
that (Q, ∅) `1,...,`n

=====⇒ (Q′, ϕ′) and (R1 = R2)ϕ′. We say that P
and Q are equivalent, written P ≈ Q, if P v Q and Q v P .

This notion of equivalence does not coincide with the usual
notion of trace equivalence as defined e.g. in [21]. It is actually
coarser and is therefore sound for finding attacks. Moreover,
it has been shown that the two notions coincide for the class
of determinate processes [19].

Definition 6: We say that a protocol P is determinate if
whenever (P, ∅) `1,...,`n

=====⇒ (P,ϕ), and (P, ∅) `1,...,`n
=====⇒ (P ′, ϕ′),

then for any test R1
?
= R2, we have that: (R1 = R2)ϕ if, and

only if (R1 = R2)ϕ′.
In general, checking determinacy is as difficult as checking

equivalence. However, it is typically ensured easily in practice:
for instance, any protocol whose roles have a deterministic
behaviour can be modeled as a determinate process using
a different channel for each role. In case processes are not
determinate, the above relation can be used to disprove trace
equivalence, i.e., find attacks. It is also possible to check a
more fine-grained notion of trace equivalence which implies
the usual notion of trace equivalence. This fine-grained notion
can be verified straightforwardly by using the algorithm for
verifying the above defined (coarse-grained) trace equivalence
in a black-box manner, cf. [19] for details.

Example 8: Going back to our running example, we
have that Psame = {Psame} and Pdiff = {Pdiff} are not
in equivalence according to our definition (as well as the
usual notion of trace equivalence since these two protocols
are determinate). More precisely, we have that Psame 6v Pdiff.
Indeed, we have shown that:

• (Psame, ∅)
in(c,r1),out(c),in(c,r1),out(c)−−−−−−−−−−−−−−−−−→ (0, ϕsame); and

• (proj1(w1)⊕ proj2(w1)=proj1(w2)⊕ proj2(w2))ϕsame.
However, the only extended trace (P ′, ϕ′) such that

(Pdiff, ∅)
in(c,r1),out(c),in(c,r1),out(c)−−−−−−−−−−−−−−−−−→ (P ′, ϕ′)

is (0, ϕdiff) and we have seen that proj1(w1) ⊕ proj2(w1)
?
=

proj1(w2)⊕ proj2(w2) does not hold in ϕdiff (see Example 7).
However, we have that Pdiff v Psame. This is a non trivial

inclusion that has been checked using our tool.

III. MODELLING USING HORN CLAUSES

Our procedure is based on a fully abstract modelling of a
process in first-order Horn clauses.

A. Predicates

We define symbolic runs, denoted u, v, w, as finite se-
quences of symbolic labels

` ∈ {in(c, t), out(c), test | t ∈ T (Σ,N ∪ X), c ∈ Ch}.

The empty sequence is denoted ε. Intuitively, a symbolic run
stands for a set of possible runs of the protocol. We denote
u vAC v when u is a prefix (modulo AC) of v.

5

(P0, ϕ0) |= r`1,...,`n if (P0, ϕ0)
L1−−→ (P1, ϕ1) . . .

Ln−−→ (Pn, ϕn) such that `i↓ =AC Liϕi−1↓ for all 1 ≤ i ≤ n

(P0, ϕ0) |= k`1,...,`n(R, t) if when (P0, ϕ0)
L1−−→ (P1, ϕ1)

L2−−→ . . .
Ln−−→ (Pn, ϕn)

such that `i↓ =AC Liϕi−1↓ for all 1 ≤ i ≤ n, then ϕn `R t

(P0, ϕ0) |= i`1,...,`n(R,R′) if there exists t such that (P0, ϕ0) |= k`1,...,`n(R, t) and (P0, ϕ0) |= k`1,...,`n(R′, t)

(P0, ϕ0) |= ri`1,...,`n(R,R′) if (P0, ϕ0) |= r`1,...,`n and (P0, ϕ0) |= i`1,...,`n(R,R′)

Fig. 3: Semantics of atomic formulas

We assume a set Y of recipe variables disjoint from X ,
and we use capital letters X,Y, Z to range over Y . We
assume that such variables may only be substituted by terms
in T (Σ,Npub∪W∪Y). Our logic is based on four predicates,
whose semantics is given in Figure 3, where w denotes a
symbolic run, R,R′ are terms in T (Σ,Npub ∪W ∪Y), and t
is a term in T (Σ,N ∪ X). Intuitively:
• reachability predicate: rw holds when the run represented

by w is executable;
• intruder knowledge predicate: kw(R, t) holds if whenever

the run represented by w is executable, the message t can
be constructed by the intruder using the recipe R;

• identity predicate: iw(R,R′) holds if whenever the run w
is executable, R and R′ are recipes for the same term;
and

• reachable identity predicate: riw(R,R′) is a shortcut for
rw ∧ iw(R,R′).

A (ground) atomic formula is interpreted over a pair con-
sisting of a process P and a frame ϕ, and we write (P,ϕ) |= f
when the atomic formula f holds for (P,ϕ) or simply P |= f
when ϕ is the empty frame. We consider first-order formulas
built from the above atomic formulas using conjunction,
implication and universal quantification. The semantics is as
expected, but the domain of quantified variables depends on
their type: variables in X may be mapped to any term in
T (Σ,N), while recipe variables in Y are mapped to recipes,
i.e. terms in T (Σ,Npub ∪W).

Example 9: Continuing our running example, let w =
in(c, r1), out(c), in(c, r1), out(c), t0 = id ⊕ h(〈r1, k〉), and
Ri = proj1(wi)⊕ proj2(wi) with i ∈ {1, 2}. We have that:

(Psame, ∅) |= rw ∧ kw(R1, t0) ∧ kw(R2, t0) ∧ riw(R1, R2).

Consider t = 〈id ⊕ r2, h(〈x, k〉)⊕ r2〉 and the formulas
• f1 = ∀X,x. rin(c,x),out(c) ⇐ kε(X,x);
• f2 = ∀X,x. kin(c,x),out(c)(w1, t)⇐ kε(X,x).

We have that Psame |= f1 and Psame |= f2.

B. Seed statements

We shall be mainly concerned with particular forms of Horn
clauses which we call statements.

Definition 7: A statement is a Horn clause of the form
H ⇐ ku1

(X1, t1), . . . , kun
(Xn, tn) where:

• H ∈ {ru0
, ku0

(R, t), iu0
(R,R′), riu0

(R,R′)};

• u0, u1, . . . , un are symbolic runs such that ui vAC u0 for
any i ∈ {1, . . . , n};

• t, t1, . . . , tn ∈ T (Σ,N ∪ X);
• R,R′ ∈ T (Σ,Npub ∪W ∪ Y); and
• X1, . . . , Xn are distinct variables from Y .

Lastly, vars(t) ⊆ vars(t1, . . . , tn) when H = ku0(R, t).

In the above definition, we implicitly assume that all vari-
ables are universally quantified, i.e., all statements are ground.
By abuse of language we sometimes call σ a grounding
substitution for a statement H ⇐ B1, . . . , Bn when σ is
grounding for each of the atomic formulas H,B1, . . . , Bn. The
skeleton of a statement f , denoted skel(f), is the statement
where recipes are removed.

r`1στ↓,...,`mστ↓ ⇐ {k`1στ↓,...,`j−1στ↓(Xj , xjστ↓)}j∈R(m)

for all 0 ≤ m ≤ n
for all σ ∈ csuR,AC({sk = tk}k∈T (m))
for all τ ∈ variantsR,AC(`1σ, . . . , `mσ)

k`1στ↓,...,`mστ↓(w|S(m)|, tmστ↓)⇐
{k`1στ↓,...,`j−1στ↓(Xj , xjστ↓)}j∈R(m)

for all m ∈ S(n)
for all σ ∈ csuR,AC({sk = tk}k∈T (m))
for all τ ∈ variantsR,AC(`1σ, . . . , `mσ, tmσ)

kε(c, c)⇐
for all public names c ∈ N 0

pub

k`1,...,`m(f(Y1, . . . , Yk), f(y1, . . . , yk)τ↓)⇐
{k`1,...,`m(Yj , yjτ↓)}j∈{1,...,k}

for all 0 ≤ m ≤ n
for all function symbols f of arity k
for all τ ∈ variantsR,AC(f(y1, . . . , yk)).

Fig. 4: Seed statements

As mentioned earlier, our decision procedure is based on
a fully abstract modelling of a process in first-order Horn
clauses. In this section, given a ground process P we will
give a set of statements seed(P) which will serve as a starting
point for the modelling. We shall also establish that the set
of statements seed(P) is a sound and (partially) complete
abstraction of the ground process P . In order to formally
define seed(P), we start by fixing some conventions.

6

f+0 : kw(X1 ⊕X2, x1 ⊕ x2)⇐ kw(X1, x1), kw(X2, x2)

f+1 : kw(X1 ⊕X2, x1)⇐ kw(X1, x1 ⊕ x2), kw(X2, x2)

f+2 : kw(X1 ⊕X2, x1 ⊕ x2)⇐
kw(X1, x1 ⊕ x3), kw(X2, x2 ⊕ x3)

f+3 : kw(X1 ⊕X2, 0)⇐ kw(X1, x), kw(X2, x)

f+4 : kw(X1 ⊕X2, x)⇐ kw(X1, x), kw(X2, 0)

where w = `1, . . . , `m is as defined in Section III-B.

Fig. 5: Definition of f+0 and its variants.

Let P = a1.a2.an be a ground process. We assume
w.l.o.g. the following naming conventions:

1) if ai is a receive action then ai = `i = in(ci, xi);
2) if ai is a send action then ai = out(ci, ti), `i = out(ci);
3) if ai is a test actions then ai = [si = ti], and `i = test.

Moreover, we assume that xi 6= xj for any i 6= j.
For each 0 ≤ m ≤ n, let the sets R(m), S(m) and T (m)

respectively denote the set of indices of the receive, send and
test actions amongst a1, . . . , am. Moreover, we denote by |S|
the number of elements in such a set. Formally,
• R(m) = { i | 1 ≤ i ≤ m and ai = in(ci, xi) };
• S(m) = { i | 1 ≤ i ≤ m and ai = out(ci, ti) };
• T (m) = { i | 1 ≤ i ≤ m and ai = [si = ti] }.
Given a set of public names N 0

pub ⊆ Npub, the set of seed
statements associated to P and N 0

pub, denoted seed(P,N 0
pub),

is defined in Figure 4. We may note that while constructing
the set of seed statements, we compute a complete set of
unifiers modulo the whole equational theory E w.r.t. all tests.
In addition, we also apply finite variants. This allows us to get
rid of the rewriting theory in the remainder of our procedure.

The first kind of seed statement models the fact that the run
represented by `1στ↓, . . . , `mστ↓ is executable as soon as the
attacker is able to feed each input with terms that will allow
one to successfully pass all the tests. Following the same idea,
under the same hypotheses, the attacker will be able to learn
the output term. The two last families of statements model
the deduction capabilities of the attacker who knows all the
public names, and is able to apply a function symbol on top of
terms that he already knows. These abilities can be used at any
stage. However, since we will give the attacker the abilities to
transfer his knowledge, we only have to express the fact that
he knows public names initially.

If N 0
pub = Npub, then seed(P,Npub) is said to be the set

of seed statements associated to P and in this case we write
seed(P) as a shortcut for seed(P,Npub).

Example 10: Continuing our running example, let
• u = in(c, x).out(c), v = in(c, x′).out(c);
• t = 〈id ⊕ r2, h(〈x, k〉)⊕ r2〉;
• t′ = 〈id ⊕ r2, h(〈x′, k〉)⊕ r2〉.

The following statements belong to seed(Psame):

ru ⇐ kε(X,x) ruv ⇐ kw(X ′, x′), kε(X,x)
ku(w1, t)⇐ kε(X,x) kuv(w2, t

′)⇐ kw(X ′, x′), kε(X,x)

When considering the last kind of statements in Figure 4 with
f = proj1 and the empty run, we obtain:

kε(proj1(X), proj1(x)) ⇐ kε(X,x)
kε(proj1(X), x1) ⇐ kε(X, 〈x1, x2〉)

Figure 5 shows those obtained for f = ⊕ and an arbitrary w.

C. Soundness and completeness

We show that as far as reachability and intruder knowledge
predicates are concerned, the set seed(P) is a complete
abstraction of a process. However, we need one more definition
to state this fact.

Definition 8: Given a set K of statements, H(K) is the
smallest set of ground facts such that:

CONSEQ

f =
(
H ⇐ B1, . . . , Bn

)
∈ K

σ grounding for f with skel(fσ) in normal form
B1σ ∈ H(K), . . . , Bnσ ∈ H(K)

Hσ ∈ H(K)

EXTEND
ku(R, t) ∈ H(K)

kuv(R, t) ∈ H(K)

Theorem 1: Let P be a ground process.
• P |= f for any f ∈ seed(P) ∪H(seed(P));

• If (P, ∅) L1,...,Lm−−−−−−→ (Q,ϕ) for some (Q,ϕ), then
1) rL1ϕ↓,...,Lmϕ↓ ∈ H(seed(P)); and
2) if ϕ `R t then kL1ϕ↓,...,Lmϕ↓(R, t↓) ∈ H(seed(P)).

We will see that the completeness of seed(P) can be built
upon to achieve full abstraction, i.e., also including identities
of the process P and a procedure for checking equivalence.

IV. SATURATION

We shall now describe how to verify equivalence given
the protocol representation as Horn clauses introduced in the
previous section. Given a ground process P and a protocol Q,
we saturate the set of seed statements for P to construct a set
of simple statements which we will call solved statements. The
saturation procedure ensures that the set of solved statements
is a complete abstraction of P . Then, we use the resulting
solved statements to decide whether P is trace included in Q.
Repeating this procedure for all P ∈ P , and doing similarly
for processes in Q, we are then able to decide whether two
determinate protocols P and Q are in trace equivalence.

In this section we will describe the saturation procedure. It
manipulates a set of statements called a knowledge base.

Definition 9: Given a statement f = (H ⇐ B1, . . . , Bn),
• f is said to be solved if for all 1 ≤ i ≤ n, we have that
Bi = k`1,...,`ji (Xi, xi) for some xi ∈ X , and Xi ∈ Y .

• f is said to be well-formed if whenever it is solved and
H = k`1,...,`k(R, t), we have that t 6∈ X .

A set of well-formed statements is called a knowledge base.
If K is a knowledge base, Ksolved = {f ∈ K | f is solved }.

7

Given an initial knowledge base K, the saturation proce-
dure is a non-deterministic process which produces another
knowledge base. At each step of the saturation procedure, a
new statement is generated and the knowledge base is updated
with the new statement. This two-step process is repeated until
a fixed point is reached. We denote by sat(K) the set of
reachable fixed points starting from the initial set K.

Before describing these two steps in Section IV-B, we
explain in the following section why a naive adaptation of
the original AKISS procedure would not be effective.

A. Difficulties

In the original procedure [19], the saturated knowledge
base is obtained by applying (among others) the following
resolution rule based on most general unifiers (mgu):

f = (H ⇐ kuv(X, t), B1, . . . , Bn) ∈ K
g = (kw(R, t′)⇐ Bn+1, . . . , Bm) ∈ Ksolved

σ = mgu(ku(X, t), kw(R, t′)) t 6∈ X
K = K d h

where h =
(

(H ⇐ B1, . . . , Bn, Bn+1, . . . , Bm)σ
)

.

This rule is close to a standard resolution step, between
an unsolved statement f and a solved deduction statement g.
Note, however, that we do not impose the two symbolic runs
involved in this resolution step to be unifiable but we only
require that w is unifiable with a prefix of the other symbolic
run (namely u). Intuitively, this comes from the fact that the
knowledge of the attacker is monotone (the attacker never
forgets any data), and a term t′σ deducible in the run wσ
will remain deducible in any extension of this run.

For the sake of simplicity, we consider here that the update
operator d simply adds h to K. A naive approach to add
the xor operator consists in replacing the condition σ =
mgu(ku(X, t), kw(R, t′)) by σ ∈ csuAC(ku(X, t), kw(R, t′)),
i.e, performing unification modulo AC instead of simply
computing the mgu between these two terms. The obtained
procedure would be correct but would rarely terminate.

Example 11: Let P = in(c, z1).in(c, z2).[z2 = a⊕z1].0 and
w = in(c, z1), in(c, a⊕ z1). The set seed(P) contains (among
others) the following statements:

rw,test ⇐ kε(Z1, z1), kw(Z2, a⊕ z1)
kw(X ⊕ Y, x⊕ y) ⇐ kw(X,x), kw(Y, y)

The resolution rule can be applied on these two statements,
and one of the substitutions is

σ = {x 7→ a⊕ z11, y 7→ z12, z1 7→ z11 ⊕ z12}

resulting in the following statement:

rwσ ⇐ kε(Z1, z11 ⊕ z12), kwσ(X, a⊕ z11), kwσ(Y, z12).

This statement can again be resolved using the same statement
as before, yielding an infinite loop.

B. Saturation procedure

We now explain our saturation procedure which is inspired
from the one given in [19]. First, as expected, we perform
resolution modulo associativity and commutativity (AC) to
capture algebraic properties of xor. Second, in order to achieve
termination in practice, we constrained the resolution rules in
various ways while preserving completeness of our procedure.

1) Generating new statements: Given a knowledge base K,
new statements f are generated by applying the rules in
Figure 6. Each of these rules generates a new statement h.
Roughly, as already explained, the rule RESOLUTION applies
the standard rule of resolution from first-order logic between
an unsolved statement f and a solved deduction statement g
and allows us to propagate constraints imposed from a partial
execution of a trace to its possible extensions through the
unification of the symbolic runs u and w.

The rule RESOLUTION+ does essentially the same for the
statement g = f+0 but applies some special treatments to
avoid non-termination issues. The rule EQUATION allows us
to derive new identities on recipes that may be imposed by
the execution of the protocol. The rule TEST allows us to
conclude which identities necessarily hold in an execution of
the protocol. Once the statement h is generated, we update the
knowledge base K with h. This process is explained below.

More precisely, we restrict the use of the resolution rule
and we only apply it on a selected atom. To formalise this, we
assume a selection function sel which returns ⊥ when applied
on a solved statement, and an atom kw(X, t) with t 6∈ X
when applied on an unsolved statement. Resolution must be
performed on this selected atom.

In order to avoid the termination problem illustrated in the
previous section when considering equational theories that
include xor, we introduce a marking on atomic formulas in
the hypothesis of unsolved statements. The marking is used
to disallow resolution against a statement in f+0 . We denote
unsolved statements with their marking as

H ⇐ B1, . . . Bn ‖M

where M ⊆ {B1, . . . , Bn} is the set of hypotheses of the
statement which are marked. Marking will only be used for
unsolved statements, and we implicitly set an empty marking
on newly generated solved statements. Statements in f+1
and f+2 will be marked directly when constructing the initial
knowledge base. More precisely, we mark the two hypotheses
of any statement in f+1 ∪ f

+
2 (see Definition 14). Intuitively,

completeness is preserved as derivation trees in H(K) can
always be reorganised by pushing the use of CONSEQ rules
with statement in f+0 below those with statements in f+1
and f+2 . Other statements will be marked dynamically in rule
RESOLUTION+, i.e., when performing resolution against a
statement in f+0 : to decide which of the two new hypotheses
has to be marked we rely on the following notions.

Definition 10: Given a term t, we define factor(t) =
{t1, . . . , tn} when

⊕
i ti = t and none of the ti is itself a

8

sum. The function rigid(t) returns a term ti ∈ factor(t) such
that ti 6∈ X or ⊥ if no such ti exists.

When performing RESOLUTION+ with a selected atom for
which a rigid factor can be found, we mark the hypothesis of
the generated statements that contains the factor returned by
rigid. This factor has to be rigid in the sense that it cannot be
a variable. Again, we can show that we preserve completeness
when marking this hypothesis. When we need to derive a term
which is a sum, and we decide to split this sum in two parts, we
will assume that the chosen rigid factor has to be obtained in an
atomic way (it cannot be the result of a sum anymore). This
amounts to favour one arrangement among all the possible
ones up to associativity and commutativity of the xor operator.

Example 12: Going back to Example 11, we have that
RESOLUTION+ will be applied between these two statements,
and rigid(a⊕z1) necessarily returns a. Therefore, the resulting
statement becomes:

rwσ ⇐ kε(Z1, z11 ⊕ z12), kwσ(X, a⊕ z11), kwσ(Y, z12) ‖M

where M = {kwσ(X, a⊕ z11)}.
This forbids the use of RESOLUTION+ on kwσ(X, a⊕z11).

Provided that our function sel returns kwσ(X, a ⊕ z11), the
saturation procedure can now only do a RESOLUTION rule
on the next statement and therefore the non termination issue
mentioned in Example 11 is avoided.

Example 13: The marking of f+1 and f+2 is also important
to ensure termination in practice. Indeed, otherwise, it would
be possible to apply the RESOLUTION+ rule between f+1 (and
f+0) on the atom kw(X1, x1⊕x2). However, the term x1⊕x2
has no rigid factor, and among the resulting statements, we
will find the following one:

kwσ(X1 ⊕X2 ⊕X3, x11 ⊕ x12)⇐ kwσ(X1, x11 ⊕ x21),
kwσ(X2, x12 ⊕ x22),
kwσ(X3, x21 ⊕ x22) ‖ ∅

As no literal is marked, whatever is the selection function,
the RESOLUTION+ rule could be applied and the saturation
procedure would enter an infinite loop.

Finally, the RESOLUTION and RESOLUTION+ rules induce
a parent/child relationship between the unsolved statement
used in the rule and the generated statement, which will
eventually be added to the knowledge base after canonization
(see below). This relation allows us to define the ancestor
of any statement to be the parent of its parent etc. until we
reach an unsolved statement in the initial knowledge base. In
the following, we need to distinguish all deduction statements
whose oldest ancestor belongs to f+1 ∪f

+
2 (with marking). We

call these statements VIP statement, and they will deserve a
privileged treatment in the update.

2) Update: We will now define the update operator d
which adds statements generated by the rules of Figure 6
to the knowledge base. We first need to introduce the set of
consequences of a knowledge base.

Definition 11: Let K be a knowledge base, the set of
consequences, conseq(K), is the smallest set such that

AXIOM
kuv(R, t)⇐ ku(R, t), B1, . . . , Bm ∈ conseq(K)

RES

ku(R, t)⇐ B1, . . . , Bn ∈ K σ a substitution
Biσ ⇐ C1, . . . , Cm ∈ conseq(K) 1 ≤ i ≤ n

kuv(R, t)σ ⇐ C1, . . . , Cm ∈ conseq(K)

We shall see that a weak form of update is sufficient
when considering a deduction statement that is already a
consequence of the knowledge base up to a change of recipe.

Definition 12: The canonical form f⇓ of a statement

f =
(
H ⇐ B1, . . . , Bn ‖M

)
is the statement obtained by first normalizing all the recipes,
then applying the rule REMOVE as many times as possible,
and for solved deduction statement, applying the rule SHIFT
as many times as possible.

REMOVE

H ⇐ kuv(X, t), ku(Y, t), B1, . . . , Bn ‖M
with X 6∈ vars(H)

H ⇐ ku(Y, t), B1, . . . , Bn ‖M \ kuv(X, t)

SHIFT
kuv(R, t)⇐ ku(X,x), B1, . . . , Bn with x ∈ factor(t)

kuv(R⊕X, t⊕ x↓)⇐ ku(X,x), B1, . . . , Bn

Definition 13: Let K be a knowledge base, and f a
statement. The update of K by f , denoted K d f , is K
when skel(f) is not in normal form (the statement is dropped).
Otherwise, two options are possible:
• K d f = K ∪ {f⇓};
• K d f = K ∪{iw(R↓, R′↓)⇐ B1, . . . Bn} provided that

– f⇓ =
(
kw(R, t)⇐ B1, . . . Bn

)
, and

– f is a solved statement but not a VIP one, and
–
(
kw(R′, t)⇐ B1, . . . Bn

)
∈ conseq(Ksolved).

Note that the update is not a function because there may
be several R′ for which the second option can be chosen.
Even when such an R′ exists, we may still update the base by
choosing the first option. These choices are implementation
details, and our results hold regardless.

3) Initial knowledge base: We finally define on which
knowledge base we initiate the saturation procedure.

Definition 14: Let P be a ground process, and N 0
pub be a

set of names. We have that

seed(P,N 0
pub) = f+0] f

+
1] f

+
2] f

+
3] f

+
4] S

where fi (with 0 ≤ i ≤ 4) are defined as given in Figure 5,
and S are the remaining statements. Let K0 be the set of
statements which contains:

1) deduction statements in f+0 ∩ seed(P,N 0
pub);

9

RESOLUTION

f =
(
H ⇐ kuv(X, t), B1, . . . , Bn ‖M

)
∈ K such that kuv(X, t) = sel(f)

g =
(
kw(R, t′)⇐ Bn+1, . . . , Bm

)
∈ Ksolved r f+0

K = K d {hσ | σ ∈ csuAC(ku(X, t), kw(R, t′))}
where h =

(
H ⇐ B1, . . . , Bn, Bn+1, . . . , Bm ‖Mr {kuv(X, t)}

)

RESOLUTION+
f =

(
H ⇐ ku(X, t), B1, . . . , Bn ‖M

)
∈ K such that ku(X, t) = sel(f) and ku(X, t) 6∈ M

K = K d {hσ | σ ∈ csuAC(〈X, t〉, 〈X1 ⊕X2, x1 ⊕ x2〉)}
where h =

(
H ⇐ B1, . . . , Bn, ku(X1, x1), ku(X2, x2) ‖ M′

)
and M′ =M∪ {ku(Xi, xi) | rigid(t)σ ∈ factor(xiσ) and i ∈ {1, 2}}

EQUATION
f, g ∈ (Ksolved r f+0) f =

(
ku(R, t)⇐ B1, . . . , Bn

)
g =

(
ku′v′(R

′, t′)⇐ Bn+1, . . . , Bm

)
K = K d {hσ | σ ∈ csuAC(〈u, t〉, 〈u′, t′〉)} where h = (iu′v′(R,R

′)⇐ B1, . . . , Bm)

TEST
f, g ∈ Ksolved, f =

(
iu(R,R′)⇐ B1, . . . , Bn

)
g =

(
ru′v′ ⇐ Bn+1, . . . , Bm

)
K = K d {hσ | σ ∈ csuAC(u, u′)} where h = (riu′v′(R,R

′)⇐ B1, . . . , Bm)

Fig. 6: Saturation rules

2) deduction statements in (f+1 ∪ f
+
2)∩ seed(P,N 0

pub) with
their two hypotheses marked:

kw(X1 ⊕X2, t)⇐ B1, B2 ‖ {B1, B2}.

The initial knowledge base associated to seed(P,N 0
pub),

denoted Kinit(seed(P,N 0
pub)), is defined to be K0 updated by

the set S, i.e.,

Kinit(seed(P,N 0
pub)) = (((K0 d g1) d g2) . . . gk)

where g1, . . . , gk is an enumeration of the statements in S. We
sometimes write Kinit(P) for Kinit(seed(P,N 0

pub)).

When building the initial knowledge base we first add some
of the variants related to ⊕. Note in particular that we mark all
hypotheses of the variants in f+1 and f+2 (Figure 5), and we
do not add statements in f+3 and f+4 . All other seed statements
are simply added using the update operator.

Please observe that Kinit(P) depends on the order in which
statements in seed(P) are updated. The exact order, however,
is not important and our results shall hold regardless of the
chosen order. The saturation procedure takes Kinit(P) as an
input and produces a knowledge base Ksat ∈ sat(Kinit(P)).
The reason for choosing Kinit(P) instead of seed(P) as the
starting point of the saturation procedure is that seed(P) may
not be a knowledge base (recall that a knowledge base is a set
of well-formed statements). The fact that the set Kinit(P) is,
however, a knowledge base follows directly from the fact that
we apply our SHIFT rule (through the canonization process)
before adding a deduction statement to the current set.

REFL
iw(R,R) ∈ He(K)

EXT
iu(R,R′) ∈ He(K)

iuv(R,R
′) ∈ He(K)

CONG
iw(R1, R

′
1), . . . , iw(Rn, R

′
n) ∈ He(K) f ∈ Σ

iw(f(R1, . . . Rn), f(R′1, . . . R
′
n)) ∈ He(K)

MOD-I
iw(R1, R2) ∈ He(K) Ri↓ =AC R

′
i↓ i ∈ {1, 2}

iw(R′1, R
′
2) ∈ He(K)

MOD-RI
riw(R1, R2) ∈ He(K) Ri↓ =AC R

′
i↓ i ∈ {1, 2}

riw(R′1, R
′
2) ∈ He(K)

EQ. CONSEQ.
kw(R, t) ∈ H(K) iw(R,R′) ∈ He(K)

kw(R′, t) ∈ He(K)

Fig. 7: Rules of He(K)

C. Soundness and completeness

We shall show that the solved statements of any
K ∈ sat(Kinit(P)) form a complete abstraction of P , with
respect to some extension of H that we define next.

Definition 15: Let K be a set of statements. We define
He(K) to be the smallest set of ground facts containing H(K)
and that is closed under the rules of Figure 7.

Theorem 2: Let K ∈ sat(Kinit(P)) for some ground
process P . We have that P |= f for any f ∈ K ∪ He(K)

and, if (P, ∅) L1,...,Ln−−−−−−→ (Q,ϕ), then:
1) rL1ϕ↓,...,Lnϕ↓ ∈ He(Ksolved);
2) if ϕ `R t then kL1ϕ↓,...,Lnϕ↓(R, t↓) ∈ He(Ksolved);

10

3) if ϕ `R t and ϕ `R′ t, then iL1ϕ↓,...,Lnϕ↓(R,R
′) ∈

He(Ksolved).

The proof follows the same general outline as in the original
argument without xor [19]. However, some points that were
irrelevant or straightforward in the original proof require
special attention here.

As explained before, our marking discipline is justified by
means of rearrangements of CONSEQ rules with f+0 statements
in derivation trees of H(K). Due to these rearrangements,
inductions on derivation trees are not straightforward anymore.
We sometimes have to prove the existence of a derivation tree
which is smaller only for a complex measure, where in the
original proof a standard induction on the size of the derivation
tree or on the size of the recipe of the head was sufficient.
The existence of these other derivation trees themselves relies
on invariants of the saturation procedure that we enforce by
the canonization rules and the distinguished VIP statements.
This is in sharp contrast with the original proof where the
canonization rules only act as an optimization to terminate
faster.

We finally note that our saturation procedure also brings
new improvements that are not directly related to xor (e.g.,
removal of non normal terms, canonization for unsolved
statements) but which we had to introduce (and justify) to
obtain an effective procedure supporting xor. Discarding these
unnecessary statements could also improve the efficiency of
the original AKISS procedure.

V. ALGORITHM

In this section, we first discuss the effectiveness and termi-
nation of the saturation procedure, and describe our algorithm
to verify trace inclusion for determinate processes.

A. Effectiveness of the procedure

The termination of the procedure has been proved for the
original version of AKISS but only for subterm convergent
equational theories. It is shown, among others, that the initial
knowledge base only needs to be derived from finitely many
seed statements, and in particular it does not need to contains
all fresh nonces the attacker can generate. As stated below,
this result is also true in our setting.

Lemma 1: Let P be a ground process, NP
pub ⊆ Npub be the

finite set of public names occurring in P . We have that:

sat(Kinit(P)) ⊇
{K ∪ ext(K) | K ∈ sat(Kinit(seed(P,NP

pub)))}.

where ext(K) is the set containing the following statements:
• kε(n, n)⇐ for any n ∈ Npub rNP

pub;
• iε(n, n)⇐ for any n ∈ Npub rNP

pub;
• riu(n, n) ⇐ B1, . . . , Bn for any ru ⇐ B1, . . . , Bn ∈ K

in solved form, any n ∈ Npub rNP
pub.

Another issue is that, when computing the update operator,
we need to check whether there exists R such that the
statement kw(R, t) ⇐ B1, . . . Bn is a consequence of a set

of solved statements. This can be achieved using a simple
backward search, similar to the one in [19].

However, with the addition of the xor, the saturation pro-
cedure may itself not terminate even if the initial knowledge
base is finite and each saturation step is computable. A first
reason would be the use of an unsuitable selection function. In
order to avoid termination issues, we will consider a selection
function that selects in priority a marked literal when it exists,
a literal which is not a sum otherwise, and one that contains a
rigid factor as a last resort. In case there is no other choice than
selecting a literal containing a sum of variables the saturation
enters an infinite loop as illustrated by the following example.

Example 14: Consider the ground process:

P = in(c, x).in(c, y).in(c, z).[x = y ⊕ z].0.

Among others, the set of seed statements will contain:

rw ⇐ kw1(X, y ⊕ z), kw2(Y, y), kw3(Z, z) ‖ ∅

where w = in(c, y ⊕ z).in(c, y).in(c, z).test, and for some
w1, w2, and w3 that we do not specify since they are not
relevant here. The RESOLUTION+ rule will be applied on the
first hypothesis, and since there is no rigid factor in y⊕ z, no
hypothesis will be marked. We will therefore generate (among
others) a new statement of the following form:

r⇐ k(X1, y1 ⊕ z1), k(X2, y2 ⊕ z2),
k(Y, y1 ⊕ y2), k(Z, z1 ⊕ z2) ‖ ∅

on which the same RESOLUTION+ rule can be applied again,
entering an infinite loop.

Even though this example illustrates that termination is not
guaranteed, we were able to verify a large range of different
protocols, as illustrated in Section VI.

B. Description and correctness of the algorithm

Our procedure is described in Figure 8. Let P be a protocol,
i.e., a finite set of processes, and P be a ground process.
Let K0 ∈ sat(Kinit(seed(P,NP

pub))) be a saturation of P
where NP

pub is the set containing all public names occurring
in P . In our procedure the process P will be represented by
the set K0

solved of solved statements of K0.

The test REACH-IDENTITY(K0
solved,P) checks whether each

reachable identity ri`1,...,`n(R,R′) ⇐ B1, . . . , Bm in K0
solved

holds in P . To perform this check for a given reachable
identity, we first compute the recipes Ri that allow the
process P to execute the trace `1σ, . . . , `nσ. The substitution
σ replaces variables by fresh names in order to close the run.
Next we check whether the corresponding trace (M1, . . . ,Mn)
is executable in P and whether the test Rω ?

= R′ω holds
in the resulting frame ϕ, i.e., the frame reached by P after
performing M1, . . . ,Mn. If all the tests succeed, P is trace
included in P . If one test fails, the algorithm returns this test
as a witness of non equivalence.

11

REACH-IDENTITY(K0
solved,P)

For all ri`1,...,`n(R,R′)⇐ kw1
(X1, x1), . . . , kwm

(Xm, xm) ∈ K0
solved

let c1, . . . , ck be fresh public names such that σ : vars(`1, . . . , `n) ∪ {x1, . . . , xm} → {c1, . . . , ck} is a bijection
for all i such that `i = in(di, ti), let Ri be such that k`1σ,...,`i−1σ(Ri, tiσ) ∈ H(K0

solved ∪ {kε(ci, ci)⇐ | 1 ≤ i ≤ k})

let Mi =

{
`i if `i ∈ {test, out(c) | c ∈ Ch}
in(di, Ri) if `i = in(di, ti)

check that (P, ∅) M1,...,Mn
======⇒ (P,ϕ) and Rωϕ↓ =AC R

′ωϕ↓ where ω = {Xi 7→ xiσ}.
Fig. 8: Test for checking P v P

Theorem 3: Let P be a ground process, and NP
pub ⊆ Npub

be the finite set of public names occurring in P . Let P be a
protocol, and K0 ∈ sat(Kinit(seed(P,NP

pub))). We have that:
• if P v P then REACH-IDENTITY(K0

solved,P) holds;
• if P is determinate and REACH-IDENTITY(K0

solved,P)
holds then P v P .

Note that REACH-IDENTITY requires to compute, for each
input of the run, a recipe Ri. It necessarily exists (as the run
`1, . . . , `n is reachable) and its computation amounts to finding
R such that kw(R, t) ∈ H(K) given w, t,K. This can be
achieved using a simple recursive backward search, as in [19].

VI. IMPLEMENTATION AND CASE STUDIES

Given that our procedure may not terminate, our main goal
was to evaluate whether termination is achieved in practice.
We validate our approach by integrating our procedure in the
tool AKISS [3] and by testing it on various examples.

A. Integration in AKISS

Our implementation includes the marking strategy, a se-
lection function that returns in priority an hypothesis that is
marked and reasoning modulo AC. In general, it is difficult to
implement unification and computation of variants for theories
involving an AC operator. We leverage an existing tool, namely
Maude [36], which implements such algorithms efficiently. To
minimize the high cost of external calls to Maude, we also
implement a naive algorithm for AC unification that handles
most of the simple cases internally, and we only call Maude
for solving the difficult cases (∼ 3% of cases in practice).

To ease the specification of the protocols our tool supports
additional operators in the process calculus for parallel compo-
sition (P ‖ Q), non-deterministic choice (P ++Q), sequential
composition (P ::Q), and a phase operator (P >>Q). The
latter allows at any moment during the execution of P to
proceed to the execution of Q and will be used among others
to model resistance against guessing attacks as done e.g.
in the ProVerif tool [17]. All these operators are syntactic
sugar and can be translated to sets of (linear) processes in
a straightforward way.

To mitigate the potential exponential blowup caused by this
translation, partial order reduction techniques [9], [10] can be
used. We integrate some of these optimisations which notably
consist in automatically prioritising outputs when protocols are
determinate [10].

Note that for AKISS finding attacks or proving their absence
are equally difficult tasks, as for both it first completes
the saturation of the traces. However, for some equivalence
properties, one of the inclusions is trivially satisfied. In such a
case, we only check the inclusion that is not trivially satisfied
and therefore reduce by two the number of symbolic traces
to explore. Note that our procedure easily allows to check
inclusion instead of equivalence.

We now report on experimental results that have been
obtained by running our tool on a 20 core Intel(R) Xeon(R)
@ 3.10GHz with 300 GB of RAM.

B. Unlinkability of RFID protocols

We analyse an unlinkability property on various RFID
protocols that rely on the xor operator. A description of these
protocols can be found in [42], [37], [7], and one of them,
namely the KCL protocol, is detailed in Example 4.

We model unlinkability as an interaction between the reader
and either tag1 or tag2 assuming that the attacker has previ-
ously observed a session between the reader and tag1. We use
the process Ptag (Example 4) to model the tag. The processes
Ptag1

and Ptag2
are slightly different versions of Ptag. More

precisely, they are obtained from Ptag by replacing id and k
by id1 and k1 (resp. id2 and k2). Then, we consider a process
Pinit to model the outputs observed by an attacker during an
honest interaction between tag1 and the reader:

Pinit = out(c, r). out(c, 〈id1 ⊕ r′, h(〈r, k1〉)⊕ r′〉). 0

Using non-deterministic choice we model that the reader
may engage a session with tag1 (using id1 and key k1) or
tag2 (using id2 and key k2):

Preader = out(c, r1). in(c, y).
([(proj1(y)⊕ id)⊕ proj2(y) = h(〈r1, k1〉)]. 0)

++ ([(proj1(y)⊕ id)⊕ proj2(y) = h(〈r1, k2〉)]. 0)

Unlinkability can finally be expressed as the following
process equivalence:

Pinit :: (Ptag1
‖ Preader) ≈ Pinit :: (Ptag2

‖ Preader)

The (known) attack explained in Example 8 on a simplified
scenario (without the readers) is again found by the tool. A
possible fix would be to replace the message h(〈r1, k〉)⊕r2 by
h(〈r1, k⊕r2〉). Our tool is then able to establish unlinkability.

In total we modelled 7 RFID protocols: KCL, LD, LAK,
OTYT and YPL from [42]; MW from [37]; and AT from [7].

12

Note that one inclusion trivially holds: when considering two
different tags less equalities hold than in the case of two iden-
tical tags. We can therefore avoid unnecessary computations
and only check the other inclusion, i.e.:

Pinit :: (Ptag1
‖ Preader) v Pinit :: (Ptag2

‖ Preader)

On 4 of the 7 protocols we find (known) attacks which
violate unlinkability. The results are summarised in Figure 9
and confirm termination of the saturation procedure with our
resolution strategy when analysing unlinkability on various
RFID protocols. When there is no attack, we consider an
additional scenario where the attacker can abort its first
observation to start a new session:

Pinit ::
(
(Ptag1

‖ Preader)>> (Ptag1
‖ Preader)

)
≈ Pinit ::

(
(Ptag2

‖ Preader)>> (Ptag2
‖ Preader)

)
RFID Protocol # sessions # traces time result
KCL (Ex. 4) 1 1 1s 5

KCL 1 20 3s 5

KCL fixed 1 20 <1s 3

KCL fixed 2 980 1m47 3

LD 1 20 <1s 5

OTYT 1 20 <1s 5

YPL 1 20 <1s 5

LAK 1 20 <1s 3

LAK 2 980 30m 3

MW 1 40 7s 3

MW 2 4280 10h 3

AT 1 20 1s 3

AT 2 1040 33s 3

We note 3 when AKISS concludes that the property holds and 5
when it reports an attack.

Fig. 9: Summary for RFID protocols

C. Resistance against offline guessing attacks

We analyse resistance against offline guessing attacks on
various password based protocols that rely on the exclusive-or
operator from [32]. Protocols which rely on passwords are
often subject to off-line guessing attacks: an attacker may
observe, or even actively participate in an execution of the
protocol and then, in a second, offline phase, verify if a
guessed value is indeed the real password without further
interaction with the protocol. During this offline verification
phase, the attacker has to try all possible values for the
password and perform a test to check whether a guess is
the real password or not. This can be modelled relying on
trace equivalence by checking whether the attacker can make
a difference between a scenario where the real password is
revealed at the end, and another one where a wrong password
is revealed [25], [13].

We illustrate this encoding on the so-called direct authenti-
cation protocol [32] whose description is detailed below.
Direct authentication protocol. A and B initially share a
poorly chosen secret pw, and wish to establish a session key k.

To achieve this goal, A generates a public key pub and sends it
to B encrypted with pw together with a challenge ra. B replies
by computing a ciphertext that contains fresh nonces nb1,
nb2, and another one cb called a confounder. This ciphertext
also contains an encryption of the challenge ra with pw for
authentication purposes. Then, A generates a fresh key k, and
a challenge response mechanism is used to ensure that both
parties agree on the key.

A→ B : ra, {pub}pw
B → A : {B,A, nb1, nb2, cb, {ra}pw}pub
A→ B : {nb1, k ⊕ nb2}pw
B → A : {f1(ra), rb}k
A→ B : {f2(rb)}k

This protocol has been designed to be resistant against guess-
ing attacks. An attacker should not be able to perform an
off-line verification of whether a guess of the password is
successful or not. Actually, several examples of such protocols
are described in [32]. They try to achieve the same goal relying
on slightly different primitives or considering a different
environment (e.g. some of them rely on a trusted third party S).

We model resistance against guessing attacks by checking
an equivalence property between a scenario where the real
password is revealed at the end, and another where a wrong
password (modeled through a fresh name) is revealed [25],
[13]. For each protocol, we consider one session between
two honest agents A and B (and the trusted third party S
when needed). Resistance against guessing attacks is expressed
through the following equivalence:

(PA ‖ PB)>> out(c, pw) ≈ (PA ‖ PB)>> out(c, pw′)

where pw is the real password, and pw′ is the fresh name.

In total, we modelled 5 password-based protocols: the Toy,
Nonce, Secret Public Key, and Direct Authentication protocols
from [32], as well as a protocol by Gong [31]. For each
protocol we first verify resistance against guessing attacks in
the presence of a passive adversary, i.e. a pure eavesdropper.
Whenever this equivalence holds, we analyse the active case
for one session. Since one inclusion trivially holds, we only
check the other one, i.e.:

(PA ‖ PB)>> out(c, pw) v (PA ‖ PB)>> out(c, pw′)

The results are summarised in Figure 10 and illustrate that
our tool can also be effectively used to analyse resistance
against guessing attacks on various password-based protocols.
The Direct Auth protocol has been tested with two instances
of each role in parallel, the other protocols (Nonce and Sec
Pub Key) require more than 50Gb of memory and have not
been successfully tested.

D. Other case studies

We have also encoded some authentication properties as
equivalences for both RFID protocols that guarantee unlinka-
bility (the LAK and fixed KCL protocols) and for a xor-based
variant of the NSL protocol [22]. For both LAK and NSL-xor

13

passive case active case
time result #sessions # tr. time result

Toy <1s 3 1 5 <1s 5

Nonce <1s 3 1 90 4s 3

Sec PubKey <1s 3 1 90 4s 3

Direct Auth <1s 3
1 29 <1s 3

2 18k 9m 3

Gong 26s 5 not relevant

We note 3 when AKISS concludes that the property holds and 5
when it reports an attack.

Fig. 10: Summary for password-based protocols

we are able to find (known) attacks. The attack on NSL-xor is
a variant of Lowe’s classical man in the middle attack which
is prevented on NSL, but possible on NSL-xor. To find the
attack we analyse a scenario where A starts a session with the
attacker and B a session with A.

Finally, on the NSL-xor protocol we verified strong secrecy
of the nonces na and nb, as defined by Blanchet [15]: the
adversary initially provides two values and must be unable
to distinguish the situations where the first, respectively, the
second value is used as the secret. For instance strong secrecy
of the nonce na is modelled as follows.

in(c, x1).in(c, x2) :: NSL{x1/na}
≈

in(c, x1).in(c, x2) :: NSL{x2/na
}

We show that neither na nor nb are strongly secret, even
when we only consider one honest session among A and B.
The results are summarised in Figure 11.

Protocol # sessions # traces time result
LAK auth 1 1 <1s 5

KCL fixed auth 1 1 <1s 3

KCL fixed auth 2 36 3s 3

NSL xor
-auth 1 3 <1s 5

-strong secrecy na 1 6 9s 5

-strong secrecy nb 1 6 <1s 5

We note 3 when AKISS concludes that the property holds and 5
when it reports an attack.

Fig. 11: Summary for other protocols

VII. CONCLUSION

We presented what we believe is the first effective procedure
to verify equivalence properties for protocols that use xor.
The need for such verification techniques is among others
motivated by the unlinkability property in RFID protocols.
Our procedure builds on the theory underlying the AKISS tool
and presents a novel resolution strategy which we show to be
complete. Even though termination is not guaranteed the tool
did terminate on all practical examples that we have tested.

Directions for future work include adding new canonization
rules to extend the termination proof of AKISS [19] to theories

including the xor operator. Another direction is to consider
other AC operators such as Diffie-Hellman exponentiation
and bilinear pairings, which are supported by the Tamarin
tool [39].

REFERENCES

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure
communication. In 28th Symposium on Principles of Programming
Languages (POPL’01), pages 104–115. ACM, 2001.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Inf. Comput., 148(1):1–70, 1999.

[3] AKISS. https://github.com/akiss/akiss.
[4] M. Arapinis, T. Chothia, E. Ritter, and M. D. Ryan. Analysing

unlinkability and anonymity using the applied pi calculus. In 23rd
Computer Security Foundations Symposium (CSF’10), pages 107–121.
IEEE Comp. Soc., 2010.

[5] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. T. Abad.
Formal analysis of SAML 2.0 web browser single sign-on: Breaking
the SAML-based single sign-on for Google apps. In 6th Workshop on
Formal Methods in Security Engineering (FMSE’08), pages 1–10. ACM,
2008.

[6] A. Armando et al. The AVISPA tool for the automated validation
of internet security protocols and applications. In 17th International
Conference on Computer Aided Verification (CAV’05), LNCS, pages
281–285. Springer, 2005.

[7] M. Asadpour and M. Torabi Dashti. A privacy-friendly rfid protocol
using reusable anonymous tickets. In 10th International Conference on
Trust, Security and Privacy in Computing and Communications, pages
206–213. IEEE Comp. Soc., 2011.

[8] D. Baelde, S. Delaune, I. Gazeau, and S. Kremer. Symbolic verification
of privacy-type properties for security protocols with XOR (extended
version). Research report, Inria Nancy - Grand Est, 2017. https://hal.
inria.fr/hal-01533694.

[9] D. Baelde, S. Delaune, and L. Hirschi. A reduced semantics for
deciding trace equivalence using constraint systems. In 3rd International
Conference on Principles of Security and Trust (POST’14), volume 8414
of LNCS, pages 1–21. Springer, 2014.

[10] D. Baelde, S. Delaune, and L. Hirschi. Partial order reduction for
security protocols. In 26th International Conference on Concurrency
Theory (CONCUR’15), volume 42 of LIPICS, pages 497–510. Leibniz-
Zentrum für Informatik, 2015.

[11] D. A. Basin, C. Cremers, and S. Meier. Provably repairing the ISO/IEC
9798 standard for entity authentication. Journal of Computer Security,
21(6):817–846, 2013.

[12] D. A. Basin, J. Dreier, and R. Sasse. Automated symbolic proofs
of observational equivalence. In 22nd Conference on Computer and
Communications Security (CCS’15), pages 1144–1155. ACM, 2015.

[13] M. Baudet. Deciding security of protocols against off-line guessing
attacks. In 12th Conference on Computer and Communications Security
(CCS’05), pages 16–25. ACM, 2005.

[14] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P.-
Y. Strub. Triple handshakes and cookie cutters: Breaking and fixing
authentication over TLS. In 35th Symposium on Security and Privacy
(S&P’14), pages 98–113. IEEE Comp. Soc., 2014.

[15] B. Blanchet. Automatic proof of strong secrecy for security protocols.
In Symposium on Security and Privacy (S&P’04), pages 86–100. IEEE
Comp. Soc., 2004.

[16] B. Blanchet, M. Abadi, and C. Fournet. Automated Verification of
Selected Equivalences for Security Protocols. In Symposium on Logic in
Computer Science (LICS’05), pages 331–340. IEEE Comp. Soc., 2005.

[17] B. Blanchet, B. Smyth, and V. Cheval. Automatic Cryptographic
Protocol Verifier, User Manual and Tutorial, 2016.

[18] M. Bruso, K. Chatzikokolakis, and J. den Hartog. Analysing un-
linkability and anonymity using the applied pi calculus. In 23rd
Computer Security Foundations Symposium (CSF’10), pages 107–121.
IEEE Comp. Soc., 2010.

[19] R. Chadha, V. Cheval, Ş. Ciobâcă, and S. Kremer. Automated ver-
ification of equivalence properties of cryptographic protocol. ACM
Transactions on Computational Logic, 23(4), 2016.

[20] V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence
decision: Negative tests and non-determinism. In 18th Conference
on Computer and Communications Security (CCS’11), pages 321–330.
ACM, 2011.

14

https://github.com/akiss/akiss
https://hal.inria.fr/hal-01533694
https://hal.inria.fr/hal-01533694

[21] V. Cheval, V. Cortier, and S. Delaune. Deciding equivalence-based
properties using constraint solving. Theoretical Computer Science,
492:1–39, 2013.

[22] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP
decision procedure for protocol insecurity with XOR. In 18th Symposium
on Logic in Computer Science (LICS’03), pages 261–270. IEEE Comp.
Soc., 2003.

[23] H. Comon-Lundh and S. Delaune. The finite variant property: How
to get rid of some algebraic properties. In Proceedings of the 16th
International Conference on Rewriting Techniques and Applications
(RTA’05), volume 3467 of LNCS, pages 294–307. Springer, 2005.

[24] H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint
solving and insecurity decision in presence of exclusive or. In 18th
Symposium on Logic in Computer Science (LICS’03), pages 271–280.
IEEE Comp. Soc., 2003.

[25] R. Corin, J. Doumen, and S. Etalle. Analysing password protocol
security against off-line dictionary attacks. Electr. Notes Theor. Comput.
Sci., 121:47–63, 2005.

[26] V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic prop-
erties used in cryptographic protocols. Journal of Computer Security,
14(1):1–43, 2006.

[27] S. Delaune, S. Kremer, and D. Pasaila. Security protocols, constraint
systems, and group theories. In 6th International Joint Conference on
Automated Reasoning (IJCAR’12), volume 7364 of LNAI, pages 164–
178. Springer, 2012.

[28] S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type
properties of electronic voting protocols. Journal of Computer Security,
17(4):435–487, July 2009.

[29] S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic
protocol analysis modulo equational properties. In Foundations of
Security Analysis and Design V, volume 5705 of LNCS, pages 1–50.
Springer, 2009.

[30] S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and
optimal variant termination. J. Log. Algebr. Program., 81(7-8):898–928,
2012.

[31] L. Gong. Using one-way functions for authentication. Computer
Communication Review, 19:8–11, 1989.

[32] L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting
poorly chosen secrets from guessing attacks. IEEE Journal on Selected
Areas in Communications, 11(5):648–656, 1993.

[33] A. González-Burgueño, S. Santiago, S. Escobar, C. Meadows, and
J. Meseguer. Analysis of the ibm cca security api protocols in maude-
npa. In 1st International Conference on Security Standardisation
Research (SSR’14), volume 8893 of LNCS, pages 111–130. Springer,
2014.

[34] R. Küsters and T. Truderung. Reducing protocol analysis with XOR
to the xor-free case in the Horn theory based approach. J. Autom.
Reasoning, 46(3-4):325–352, 2011.

[35] G. Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’96), volume 1055 of LNCS, pages 147–166.
Springer-Verlag, 1996.

[36] The Maude system. http://maude.cs.illinois.edu/.
[37] D. Molnar and D. Wagner. Privacy and security in library rfid: Issues,

practices, and architectures. In 11th ACM Conference on Computer and
Communications Security (CCS’04), pages 210–219. ACM, 2004.

[38] S. Santiago, S. Escobar, C. Meadows, and J. Meseguer. A formal
definition of protocol indistinguishability and its verification using
Maude-NPA. In 10th International Workshop on Security and Trust
Management (STM’14), volume 8743, pages 162–177. Springer, 2014.

[39] B. Schmidt, S. Meier, C. Cremers, and D. Basin. The TAMARIN prover
for the symbolic analysis of security protocols. In 25th International
Conference on Computer Aided Verification (CAV’13), volume 8044 of
LNCS, pages 696–701. Springer, 2013.

[40] A. Tiu and J. Dawson. Automating open bisimulation checking for
the spi-calculus. In 23rd Computer Security Foundations Symposium
(CSF’10), pages 307–321. IEEE Comp. Soc., 2010.

[41] D. Unruh. The impossibility of computationally sound XOR. IACR
Cryptology ePrint Archive, 2010:389, 2010.

[42] T. van Deursen and S. Radomirovic. Attacks on RFID protocols. IACR
Cryptology ePrint Archive, 2008:310, 2008.

15

http://maude.cs.illinois.edu/

	Introduction
	Process calculus
	Term algebra
	Finite variant property
	Process calculus
	Process equivalence

	Modelling using Horn clauses
	Predicates
	Seed statements
	Soundness and completeness

	Saturation
	Difficulties
	Saturation procedure
	Generating new statements
	Update
	Initial knowledge base

	Soundness and completeness

	Algorithm
	Effectiveness of the procedure
	Description and correctness of the algorithm

	Implementation and case studies
	Integration in AKISS
	Unlinkability of RFID protocols
	Resistance against offline guessing attacks
	Other case studies

	Conclusion
	References

