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Abstract. We study the optimal parameters to minimize the cheating
probability and communication complexity in protocols for two party
computation secure against malicious adversaries. In cut-and-choose pro-
tocols for two party computation, we analyze the optimal parameters to
keep the probability of undetected cheating minimum. We first study
this for a constant number of circuits, and then generalize it to the case
of constant bandwidth. More generally, the communication cost of open-
ing a circuit is different from retaining the circuit for evaluation and we
analyze the optimal parameters in this case, by fixing the total bits of
communication. In the second part of our analysis, we minimize the com-
munication complexity for a given probability of undetected cheating. We
study, what should be the parameters to achieve a given cheating prob-
ability in minimum amount of communication in a given cut-and-choose
protocol. While still keeping the security guarantees, that is, the cheating
probability negligible, we achieve a concrete improvement in communica-
tion complexity by using optimal parameters in existing cut-and-choose
protocols.
Keywords: secure computation, malicious adversaries, cheating proba-
bility, communication complexity.

1 Introduction

Secure two party computation. Secure two-party computation allows two par-
ties with respective private inputs x and y to jointly compute a functionality
f(x, y) = (f1(x, y), f2(x, y)), such that the first party receives f1(x, y) and the
second party receives f2(x, y). The security requirements are privacy and cor-
rectness, that is, nothing should be learned from the protocol other than the
output, and that the output should be distributed according to the prescribed
functionality. The formal definition blends both the requirements and follows
the simulation paradigm [2]. Security must be guaranteed even when one of the
parties is adversarial. An adversary may be semi-honest, in which case it follows
the specification of the protocol, but attempts to learn additional information by
analyzing the transcript of messages of the protocol execution. In contrast, the
adversary may even be malicious, in which case it can arbitrarily deviate from



the specifications of the protocol. Yao [11] presented the first general solutions
for the problem of secure computation, with security against semi-honest adver-
saries for the two-party case, and Goldreich, Micali and Wigderson [1] gave the
solution for the multi-party case with security even against malicious adversaries.

Yao’s Protocol. Yao gave a constant-round protocol for the secure computation
of any functionality in the presence of semi-honest adversaries. Let f be the func-
tionality that the two parties agree to compute, and let x,y be their respective
inputs. (for simplicity, assume that both parties wish to receive f(x, y)). In Yao’s
protocol, party P1 first generates an encrypted (called “garbled”) circuit com-
puting f(x, ·) and then sends it to P2. The circuit is such that it reveals nothing
in its garbled form and therefore reveals nothing to P2. P2 can, however, obtain
the intended output f(x, y) by “decrypting” the circuit. This decryption must
ensure that it reveals nothing more than f(x, y) to P2. That is, P2 should learn
the value on the circuit output wire without learning the values on any of the
internal wires. This is accomplished by P2 obtaining a series of keys correspond-
ing to its input y, such that given the garbled circuit and these keys, the output
value f(x, y), and only this value, may be obtained. Now, P2 must somehow
receive these keys from P1 while making sure not to reveal anything about y to
P1. This is accomplished by running secure 1-out-of-2 Oblivious Transfer (OT)
protocol [8]. A detailed description of Yao’s protocol, and a proof of security
can be found in [5]. Yao’s generic protocol is known to be efficient, and even
practical, for functionalities that have relatively small circuits.

Malicious behavior and cut-and-choose. Yao’s protocol is secure only in the pres-
ence of relatively weak semi-honest adversaries. Goldreich, Micali and Wigderson
gave the first positive results for general secure computation against malicious
adversaries. The compiler of GMW [1] converts any protocol that is secure for
semi-honest adversaries into one that is secure for malicious adversaries. The
compiler, however, is based on reducing the statement that needs to be proved
(the honesty of the parties’ behavior in this case) to an NP-complete problem,
and using generic zero-knowledge proofs to prove the statement. The secure pro-
tocol resulting from the compiler runs in polynomial time but is rather inefficient.

Lindell and Pinkas gave an efficient protocol secure against malicious ad-
versaries, based on cut-and-choose methodology in [4]. Let us consider what
happens when P1 is malicious. It can construct a garbled circuit that computes
a function which is different than the one P1 and P2 jointly agreed to compute.
The “cut-and-choose” technique is a solution to this problem. P1 first constructs
many garbled circuits and sends them to P2. Then, P2 randomly chooses half of
them and asks P1 to “open” the chosen half, that is, reveal the decryption keys
corresponding to the chosen circuits. P1 opens the chosen half, and P2 checks
that they were constructed correctly. If they were indeed correct, then P2 eval-
uates the remaining circuits and computes the output. The opened and checked
circuits are called check circuits, and the rest are evaluation circuits. The idea
behind the cut-and-choose methodology is that if a malicious P1 constructs the
circuits incorrectly, then it will be caught by P2 with high probability. This so-



lution solves the problem of P1 constructing the circuit incorrectly. Now, since
the parties evaluate a number of circuits, some mechanism must be employed to
force the parties to use the same input when evaluating each circuit; otherwise,
an adversarial party could learn more information than allowed. This, and other
requirements that are not met by just applying the cut-and-choose technique
are handled by the protocol implementation given in [4], where the authors give
a cut-and-choose based solution, and a simulation based proof of security.

Motivation. In a cut-and-choose protocol for two party computation, half of
the total number of garbled circuits are check circuits in all protocols in liter-
ature. We ask, what should be the number of check circuits, so as to minimize
the probability of undetected cheating by P1? We study this question in two set-
tings: same cost circuits, and cheaper check circuits. Then, we ask, what should
be the number of check circuits to achieve a given cheating probability in min-
imum amount of communication? With increasing interest from both within
and outside the cryptographic community in secure protocols that are efficient
enough to be implemented in practice, efficiency issues are an important con-
sideration. Communication complexity of interactive protocols is one of their
most important complexity measures. Bandwidth optimization is interesting in
settings where communication is expensive, e.g, for a mobile roaming user. This
is the motivation of our work in this paper.

Our Results. We study the optimal parameters for cut-and-choose protocols for
general secure computation. Consider a cut-and-choose protocol: the total num-
ber of garbled circuits constructed by P1, the number of circuits opened out of
the total (these are called check circuits and the rest are evaluation circuits)
are the parameters of the protocol, and the protocol achieves some (negligible)
probability of undetected cheating incurring a certain communication complex-
ity. Each garbled circuit has a communication cost associated, which is the num-
ber of bits that needs to be communicated in order to send the circuit to the
other party. In general, the communication cost of a check circuit need not be
the same as the cost of an evaluation circuit. In this paper, we analyze the op-
timal parameters to achieve minimum probability of undetected cheating and
minimum communication complexity. We first study the optimal fraction of the
total number of circuits that should be check circuits, so as to minimize the
probability of undetected cheating by P1. We then generalize this to the case
when the communication cost of a check circuit is cheaper than the cost of an
evaluation circuit (as in [3]). We show the optimal number of check circuits to
minimize the cheating probability in this setting.

Further, we minimize the communication complexity of a cut-and-choose pro-
tocol, while still keeping the probability of undetected cheating by P1 negligible.
We study the optimal number of check circuits to minimize the communication
complexity while achieving a given cheating probability. Our analysis yields pa-
rameters which can be used in any of the existing cut-and-choose protocols and
get a concrete improvement in the communication complexity.



Related work. Efficient protocols for secure two party computation based on the
cut-and-choose technique have been studied in [7], [4], [10] and [6]. The optimiza-
tion of parameters for secure computation protocols has been done earlier only in
[9]. Our results are more general, we use a different technique to arrive at optimal
parameters for minimum probability of undetected cheating, and our techniques
further extend to a more general case of cheaper check circuits. Furthermore, we
study the optimal parameters for minimum communication complexity, while
achieving a given cheating probability.

2 Background

2.1 Cut-and-Choose Protocol

Lindell and Pinkas gave an efficient two party protocol secure against mali-
cious adversaries [4]. Their construction is based on applying cut-and-choose
techniques to the original Yao’s circuit and inputs. Security is proved in the
ideal/real simulation paradigm.

A malicious P1 is forced to construct the garbled circuit correctly so that it
indeed computes the desired function. P1 constructs many independent copies
of the garbled circuit and sends them to P2. Party P2 randomly chooses half
of them, and asks P1 to open the chosen circuits. Now, P2 checks that the
opened circuits are constructed correctly. If they are, then P2 is convinced that
most of the remaining garbled circuits are also constructed correctly. If there are
many circuits that are incorrectly constructed, then with high probability, one of
those circuits will be in the set that P2 challenges P1 to open. The parties then
evaluate the remaining circuits as in the original Yao’s protocol for semi-honest
adversaries, and take the majority output. The protocol also has to force both
P1 and P2 to use the same inputs in each circuit. Such consistency checks are
necessary, because if the parties were allowed to use different inputs to different
copies of the circuit, then they can learn information that is more than just the
desired output of the function. P2 can do so, since it observes the outputs of all
circuits, but in fact even P1, who only gets to see the majority output, can learn
additional information: For example, if the protocol computes n invocations of
a circuit computing the inner-product between n bit inputs. A malicious P2

could provide the inputs 〈10 · · · 0〉, 〈010 · · · 0〉, · · · , 〈0 · · · 01〉 to the n different
garbled circuits, and learn P1’s input completely. If P1 is malicious, it could
also provide the inputs 〈10 · · · 0〉, 〈010 · · · 0〉, · · · , 〈0 · · · 01〉. P2 now sends P1 the
majority output value, which is equal to the majority value of P2’s input bits.
A malicious P1 could thus get additional information about P2’s input. The
protocol enforces consistency checks by having P1 commit to the garbled circuits
and also to the garbled values corresponding to the input wires of the circuits.
We give a high-level overview of the protocol here.

Parties P1 and P2 have respective inputs x and y, and wish to compute the
agreed function f(x, y).

1. The parties first decide on a circuit C that computes f . This circuit is then
changed by replacing each input wire of P2 by a gate whose input consists of



s new input wires of P2 and whose output is the exclusive-or of these wires.
The number of input wires of P2 increases by a factor of s.

P2’s input is encoded in this way to prevent the following attack by P1: A
malicious P1 may provide corrupt input to one of possible inputs of P2 in
an OT protocol. In case P2 chooses to learn this input it will not be able
to decrypt the garbled tables which use this value, and will have to abort.
If on the other hand, P2 chooses to learn the other input associated with
this wire then it will never know that the first input is corrupt. P1 can thus
learn P2’s input by observing whether or not P2 aborts. Checking that the
circuit is correctly constructed will not help in preventing this attack, since
the attack is based on changing P1’s input to the OT protocol. The attack
is prevented by replacing the input bits of P2 with s new input bits whose
exclusive-or is used instead of the original input. P2 can now encode a 0
input in 2s−1 ways, and encode a 1 in 2s−1 way. Given its input, P2 chooses
an encoding with uniform probability. The protocol is then executed with
the new circuit, and P2 uses oblivious transfer to learn the garbled values of
its new inputs. As is shown in [4], if P1 supplies incorrect values as garbled
values that are associated with P2’s input, the probability of P2 detecting
this cheating is almost independent of P2’s actual input.

2. P1 commits to s different garbled circuits, all of them computing f , where
s is a statistical security parameter. Additionally, P1 also commits to the
garbled values corresponding to the input wires of the circuits.

P1 can prove consistency of its inputs the following way. The proof is based
on a cut-and-choose test for the consistency of the commitment sets com-
bined with the cut-and-choose test for the correctness of the construction of
circuits. P1 constructs s pairs of sets of commitments, for each of its input
wires. One set in every pair contains commitments to the 0 values of this
wire in all circuits, and the other set is the same with respect to value 1. The
protocol now randomly chooses a subset of these pairs, and a subset of the
circuits, and checks that these sets give consistent inputs for these circuits.
The protocol then evaluates the remaining circuits, and asks P1 to open, in
each of the remaining pairs, and only in one set in each pair, its garbled
values for all evaluated circuits. This way, nothing is revealed to P2 about
whether these garbled values correspond to a 0 or to a 1. For the committed
sets and circuits to pass P2’s checks, there must be large subsets C and S, of
the circuits and commitment sets, respectively, such that every choice of a
circuit from C and a commitment set from S results in a circuit and garbled
values which correctly compute f . P2 accepts the verification stage only if
all the circuits and sets it chooses to check are from the subsets C and S,
respectively. If P2 does not abort, then circuits which are not from C are in
a minority of the evaluated circuits with high probability, and similarly for
S. Therefore the majority result of the evaluation stage is correct.

3. Parties P1 and P2 run a 1-out-of-2 oblivious transfer protocol for every input
bit of P2 in which P2 learns the garbled values of input wires corresponding
to its input.



4. P1 sends to P2 the garbled circuits, as well as all the commitments that it
prepared above.

5. P1 and P2 run a coin-tossing protocol to choose a random string. The result-
ing string defines which garbled circuits and commitments will be opened.

6. P1 opens the garbled circuits and commitments which are chosen in the
previous step. P2 verifies that the opened circuits are correct and runs the
consistency checks on the input values.
P2 checks the correctness of the check circuits. It verifies that each check
circuit is a garbled version of the circuit C. The input tables are constructed
by checking that the decommitments in the above step are valid, and asso-
ciating the first value with the garbled value for 0 and the second value with
1. P2 next checks the decommitments to P1’s inputs. Finally, given all the
garbled values to the input wires and their associated binary values, P2 now
decrypts the garbled circuit and compares it to the circuit C. If any of the
checks fail, P2 aborts.

7. P1 sends the garbled values corresponding to P1’s input wires in the un-
opened garbled circuits (evaluation circuits), P2 runs consistency checks on
these values, that is, for every evaluation circuit, all of the commitments that
P1 opened in evaluation sets commit to the same garbled value.

8. If all the checks pass, P2 evaluates the unopened circuits, and takes the
majority value as output.

2.2 Efficient two party computation protocols - Cheaper Check
circuits

In [3], the authors design an efficient multi party computation protocol in the
covert adversary model. The techniques used in the two party case generalize to
the case of two party computation protocols secure against standard malicious
adversaries. To achieve an improvement in communication complexity, they take
a different approach to constructing the garbled circuit. To construct a garbled
circuit and commitments for the input keys, P1 first generates a short random
seed and feeds it to a pseudorandom generator. This generates the necessary
randomness. P1 then uses this randomness to construct the garbled circuit and
the commitments. When the protocol begins, P1 sends only a hash of each gar-
bled circuit using a collision-resistant hash function to P2. P2 chooses half of the
circuits at random. In order to expose the secrets of each of the chosen circuit
later, P1 sends the seeds corresponding to the circuit, and not the whole opened
circuit. P2 uses the pseudorandom generator to generate the randomness from
the sent seed and constructs the check circuits, and checks that they are indeed
garbled versions of the agreed circuit. Once the checks go through, P1 sends the
remaining circuits, called the evaluation circuits to P2. The communication cost
of a check circuit is therefore, not the whole circuit but only a hash as opposed
to the cost of an evaluation circuit.

We briefly give the garbling procedure of [3]. Let G be the description of
a pseudorandom generator, seed a seed of suitable length, C be the descrip-
tion of the circuit that computes the agreed function, which is to be garbled.



Garble(G, seed, C, 1s) denotes the garbling procedure where s is the security pa-
rameter. The randomness required for constructing the garbled circuits includes,
the random keys corresponding to the circuit wires, the random permutation cho-
sen for the garbled entries of each gate table, and the random string chosen for
each encryption. A random string of length O(s|C|) is sufficient for garbling. A
pseudorandom generator G : {0, 1}n1 → {0, 1}n2 , where n1 is polynomial in s
and n2 = O(s|C|) is used. The algorithm Garble runs G on seed to generate the
randomness required for the circuit, and then computes the garbled circuit for
C as described in [5].

3 Optimal number of check circuits

In the cut-and-choose protocol described in Section 2.1, we have the flexibility of
choosing the number of check circuits. This is the subject of this section; we study
what is the optimal number of circuits that should be check circuits to minimize
the probability of undetected cheating by Party P1. In Section 3.1, we keep the
total number of garbled circuits a constant, and minimize the cheating proba-
bility. In the next subsection, we generalize this to the case where a constant
amount of communication bits is allowed (but the total number of circuits is not
fixed). We minimize the cheating probability in these settings by choosing the
optimal number of check circuits, c. In [9], the authors show the optimal number
of check circuits, but our techniques to get an approximation for the expression
of cheating probability makes the analysis extendible to the more general case
of cheaper check circuits. We discuss both the cases, of same cost circuits and
cheaper check circuits as the latter is an extension of the computations done for
the former case.

3.1 Same-cost circuits

We consider the case where both check circuits and evaluation circuits have the
same communication cost. Let n be the number of garbled circuits constructed
by P1, and let c be the number of circuits checked.
Assume that i out of n circuits are constructed incorrectly by a cheating P1. P1’s
cheating is not caught if all the check circuits are constructed correctly, and P2

does not abort after evaluation of the remaining circuits.
Now, the probability of P1’s cheating not caught is given by(

n−i
c

)(
n
c

)
If i <

n− c
2

, then the majority output is correct, and if i > n− c, corrupt P1 is

caught in one of the check circuits.



Therefore, the cheating probability is,

P = max
i
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c

)(
n
c

)
=

1(
n
c

) max
i

(
n− i
c

)
The above is maximum for i =
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2

. Thus,
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2
c
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By Stirling’s approximation,

n! ≈
√

2πn
(n
e

)n
P ≈ (n+ c)

n+c+1
2 (n− c)n−c

2

2c nn+
1
2

(1)

To minimize P for a given n, we differentiate partially with respect to c and set
the resulting expression to 0.

Taking logarithm of (1), we get,

logP =

(
n+ c+ 1

2

)
log(n+ c) +

n− c
2

log(n− c)− c log 2−
(
n+

1

2

)
log n

Now differentiating,

dP

dc
=
P

2

(
log

n+ c

4(n− c)
− n− c
n− c

+
n+ c+ 1

n+ c

)
We now have,

dP

dc
= 0

log
n+ c

4(n− c)
− n− c
n− c

+
n+ c+ 1

n+ c
= 0

n+c+1
n+c ≈ 1, Therefore, we have,

log
n+ c

4(n− c)
= 0



n+ c

4(n− c)
= 1

This yields,

c =
3n

5

Therefore, for a given number of total circuits, n, minimum cheating probability
is achieved when the number of check circuits is 3/5th of n.

Theorem 1. For a given total number of garbled circuits n, constructed and sent

by P1 in the cut-and-choose protocol, P2 should ask
3

5
th of them to be opened, to

minimize the probability of undetected cheating by P1.

Thus, challenging P1 to open 3/5 of the circuits is better for P2 than challeng-
ing half as is done in existing cut-and-choose strategies. Independent of us, the
above result is also obtained in [9], by counting the number of bad circuits that
optimizes the cheating probability. They do not derive an explicit expression for
the cheating probability as we do above, which we use in the generalization to
cheaper check circuits which is the subject of the next section.

3.2 Cheaper check circuits

In this section, we consider the more general case of cheaper check circuits. A
given number of communication bits does not fix the total number of circuits
when the costs of a check circuit and an evaluation circuit are different. Consider
the protocol of [3], i.e applying the ideas of [3] to the protocol of the previous
section. In this protocol, P1 uses a short seed and a pseudorandom generator
to generate the required randomness for construction of the garbled circuits. A
hash of the n garbled circuits are sent to P2. P2 asks for a random half of them
to be opened, and P1 sends only the short seeds of the selected half. P2 verifies
that they are constructed correctly. The evaluation circuits are now sent by P1.
The cost of a check circuit is therefore, less than the cost of an evaluation circuit;
once the hashes of all n circuits are sent, only a short seed is communicated in
case of a check circuit, whereas the whole garbled circuit is the communication
cost for an evaluation circuit. In this case, we analyze the optimal number of
check circuits for minimum cheating probability. In the previous case when the
costs of a check circuit and an evaluation circuit are the same, fixing the com-
munication bits k, also fixes the total number of circuits n. We now study the
general case when a check circuit is cheaper than an evaluation circuit. Given
a constant amount of communication bits, we minimize the cheating probabil-
ity. Our analysis yields the total number of circuits to be constructed and the
number of circuits to be challenged so as to achieve minimum probability of
undetected cheating in a given amount of communication bandwidth.



Let k be the number of bits of communication allowed. Let c be the number
of check circuits, e the number of evaluation circuits and n the total number of
circuits.

Then,

c · Costcheck + e · Costeval = k

Let q be the ratio of the cost of check circuits to the cost of evaluation circuits.

cq + e = s

where,

q =
Costcheck
Costeval

, s =
k

Costeval

Using n = c+ e and e = s− cq in the cheating probability, we have,

P ≈ (n+ c)
n+c+1

2 (n− c)n−c
2

2c nn+
1
2

=
(2c+ e)

2c+e+1
2 e

e
2

2c (e+ c)e+c+
1
2

=
(2c+ s− cq)

2c+s−cq+1
2 (s− cq)

s−cq
2

2c (s− cq + c)s−cq+c+
1
2

(2)

We now differentiate with respect to c and equate the resulting expression to
zero.

Taking logarithm of (2) we get,

logP =
(2− q)c+ s+ 1

2
log ((2− q)c+ s)+

s− cq
2

log (s− cq)−c log 2−
(
c(1− q) + s+

1

2

)
log (c(1− q) + s)

Differentiating with respect to c we have,

1

P

dP

dc
=

2− q
2

log ((2− q)c+ s)− q
2

log(s− qc)− log 2− (1− q) log ((1− q)c+ s)

Now setting the derivative to zero,

dP

dc
= 0

log

(
((2− q)c+ s)

2−q
2

2(s− qc) q
2 ((1− q)c+ s)

1−q

)
= 0



((2− q)c+ s)
2−q
2

2(s− qc) q
2 ((1− q)c+ s)

1−q = 1

This implies,

((2− q)c+ s)
2−q
2 = 2(s− qc)

q
2 ((1− q)c+ s)

1−q
(3)

(2c+ e)1−
q
2 = 2 e

q
2 (c+ e)1−q

(n+ c)1−
q
2 = 2 (n− c)

q
2 n1−q(

1 +
c

n

)2−q
= 4

(
1− c

n

)q
(4)

Let r be the fraction of the circuits which are check circuits. i.e

r =
c

n

Using this in (4) yields,

(1 + r)
2−q

= 4 (1− r)q

(1 + r)
2

= 4
(
1− r2

)q
(5)

Given q, the ratio of costs, we can solve the above equation for r.

The total number of circuits to be sent n is then given by,

n =
k

(1− r)Costeval + r Costcheck

Given that we are allowed a constant k bits of communication, the total number
of circuits, and the number of check circuits can be set as in the above analysis
to minimize the cheating probability by P1. If the cost of check circuit is the
same as the cost of the evaluation circuit,
i.e when,

Costcheck = Costeval, q = 1

Setting q = 1 in equation (5) yields,

r =
3

5
and this agrees with our earlier conclusion when the costs are same.

Theorem 2. Let q be the ratio of the communication cost of a check circuit to
the cost of an evaluation circuit in a two party cut-and-choose protocol, and k,
a constant amount of communication bits allowed. Then, probability of cheating
by P1 is minimized if the ratio of the number of check circuits to the number of
evaluation circuits, r is as given by, (1 + r)

2
= 4

(
1− r2

)q
, and the total number

of circuits, n =
k

(1− r)Costeval + r Costcheck
.



4 Communication Complexity

In this section, we minimize the number of communication bits for a given cheat-
ing probability. We show how to achieve a given negligible probability of unde-
tected cheating in minimum communication. We show that, for our choice of
parameters, the communication complexity of existing cut-and-choose protocols
can be improved. The communication complexity of existing protocols are stated
in the following theorems.

Theorem 3. ([10]) Let n be the number of circuits, and g the number of gates
in the circuit. The protocol of [10] is secure in the malicious model with in-
verse exponential (in n) probability of undetected cheating. The communication
complexity is O(ng).

Theorem 4. ([7]) The equality-checker protocol of [7] is secure in the malicious
model with probability of undetected cheating ε. If g is the number of gates the
circuit, and I the number of input bits, the communication complexity of the

scheme is O(ln
(
1
ε

)
g + ln

(
1
ε

)2
I).

4.1 Minimize Communication Complexity

We now formulate the problem as minimizing the communication complexity
which is a function of two variables, given a cheating probability. Given a cheat-
ing probability p, for what relation between the check circuits and the total
number of circuits, is p achieved in minimum number of communication bits?
Minimize the function,

f(c, n) = c · Costcheck + (n− c) · Costeval
That is, minimize,

k = c+ (n− c)Q
subject to the constraint that,

p =
1

2c
(n+ c)

n+c+1
2 (n− c)n−c

2

nn+
1
2

where,

Q =
Costeval
Costcheck

Since the constraint equation is exponential, we go back to the expression of
cheating probability and try to get a more friendly approximation.

p ≈
(n+c

2
c

)(
n
c

)
We know that, (

x

y

)
≥
(
x

y

)y



(
x

y

)
≤ xy

y!
≤ xy

2y−1

Therefore,

p ≥
(n+c2c )c

nc

2c−1

=

(
n+ c

cn

)c
2c−1

2c

p ≥ 1

2

(
1

c
+

1

n

)c
(2p)

1
c ≥ 1

c
+

1

n

1

n
≤ (2p)

1
c − 1

c

n ≥ c

c (2p)
1
c − 1

Since we do not get a closed form for c in terms of n and p, we investigate, of
what order c should be in, so that k is minimized while keeping p negligible.

Let n− c = nε, and, ε =
log log n

log n
For this value of ε, nε = log n, and n− nε = c = n− log n.

For the case when check circuits are cheap as opposed to evaluation circuits,
the total communication is dominated by the number of evaluation circuits. For
the above value of c, p is still negligible. We now show that the cheating proba-
bility p is negligible when c = n− log n.

p =
1

2c
(n+ c)

n+c+1
2 (n− c)

n−c
2

nn+
1
2

For c = n− log n,

p =
1

2n−logn

(2n− log n)
2n−log n+1

2 (log n)
log n

2

nn+
1
2

For large n, and c = n− nε, p is still negligible. That is, p ≈ 1

n
1
2+

log n
2

.

We observe that, the cheating probability p remains negligible, for ε =
log logn

log n
,

giving communication cost dominated by the cost of evaluation circuits. There-
fore, we get constant factor improvement on the communication complexity by
the new choice of parameters; by choosing the number of check circuits to be,
c = n− log n. Thus, the communication cost of existing cut-and-choose protocols
can be improved, while still retaining the security guarantees, i.e. keeping the



cheating probability negligible. The communication complexity and the cheat-
ing probability achieved by the above optimal parameters in a cut-and-choose
protocol are stated in the following theorem.

Theorem 5. The number of check circuits to achieve near optimal communi-
cation cost is given by c = n − log n, where n is the total number of circuits.
The communication complexity is dominated by O(C log n), and the probability

of undetected cheating is p ≈ 1

n
1
2+

log n
2

, where C is the communication cost of an

evaluation circuit.

The improvement by using the above parameters in the setting of cheaper
check circuits [3], is discussed in the following section. Using the above choice of
parameters for ε, the number of check circuits c and the technique of [3] as applied
to cut-and-choose protocol for general secure two party computation, we get an
improvement in the communication complexity in concrete terms compared to
the protocols of [7], [10], [6].

4.2 Comparison of communication cost

In the previous section, we analyzed in detail the parameter values such as the
number of circuits to be challenged and arrived at optimal values to achieve
minimum communication complexity. We now show how the use of these opti-
mal parameters in existing protocols significantly improve the communication
complexity. In particular, we sketch how our optimal parameters along with the
technique of [3], improve the efficiency of existing cut-and-choose constructions.
Informally, in the setting of [3], P1 sends only a hash of the check circuits, and
the entire garbled circuit is sent only for an evaluation circuit. Check circuits are
therefore cheaper than evaluation circuits. Let the total number of circuits be n.
From the analysis of Section 4.1, we choose the number of evaluation circuits to
be optimal for minimum communication cost which is log n. We summarize our
results below.

Let the size of a garbled circuit be, |GC| = 4g|E|, where |E| is the size of
the ciphertext of the encryption scheme, g the number of gates in the circuit
and I the input size. Let |E| also be the output size of the commitment scheme.
If t is the number of garbled circuits in [7], the number of bits communicated
is t|GC| + t2I|E| = 4tg|E| + t2I|E| (Theorem 4). The same protocol, by using
the parameters of our analysis communicates, roughly, 4g|E| log n+ (log n)2I|E|
bits, where n is the total number of circuits (Theorem 5). Consider a circuit
with 32 gates and input wires, g = I = 32. The cheating probability and the
communication complexity achieved by [7] and by incorporating the optimal
choice from our analysis in [7] is shown in the table below.

For the purpose of our comparison, we fix the cheating probability. Setting
the number of circuits t and n, in the two variants such that, the cheating
probability is the same, say, 2−50, we get t = 196 and log n = 10. Substituting
the values of t and n in the number of communication bits shown above, we see
that the communication bits using our optimal parameters is around 20 times



Table 1.

Scheme Communication Complexity Cheating Probability

[7] 128t|E| + 32t2|E| 2. (1/2)t/4

This paper 128|E| logn + 32(logn)2|E| 1/n
1
2
+ log n

2

less than the communication bits of [7]. It is also important to note that this
factor of improvement increases as the number of gates and input wires in the
circuit increase.

We now consider the protocol of [10]. If t is the number of garbled circuits in
[10], the number of bits communicated is roughly 4tg|E|+2tI|E|+tg+tI|E|. The
number of bits communicated by using our techniques is, roughly, 4g|E| log n+
3 log nI|E| (Theorem 5), where n is the total number of circuits. If we consider a
circuit with 32 gates and input wires, g = I = 32, and set the parameters t and n

such that the cheating probability is the same, then, t =
log n

2
+

(log n)2

2
. Now,

for a cheating probability of 2−50, we get t = 50 and log n = 10. Substituting
the values of t and n in the number of communication bits shown above, we see
that the communication bits using our optimal parameters is a factor of 9 less
than the scheme of [10].

More recently, in [6], Lindell and Pinkas presented a protocol using the cut-
and-choose methodology relying on DDH assumption, and significantly improved
the efficiency. We give the improvement in communication cost by using opti-
mal parameters in [6]. The communication complexity of [6] is the exchange of
5tI+14I+7t+5 group elements and t copies of the garbled circuit. The cheating
probability is 1/2t/4. The communication cost is dominated by the garbled cir-
cuits. Using the techniques in this paper, the communication cost of sending the

garbled circuits is 4 log ng|E|, for a cheating probability of
1

n
1
2+

log n
2

. To achieve

Table 2.

Scheme Cheating Probability

[6] 1/2t/4

This paper 1/n
1
2
+ log n

2

the same cheating probability, say 2−50 we set 1/2t/4 = 2−50 and compute the
number of GC’s required as t = 200. We now set 1

n
1
2
+

log n
2

= 2−50, and solve the

quadratic equation to get log n = 10. This gives a factor of 20 improvement in
the communication cost. Thus, for the same cheating probability, our techniques
lead to a factor of 20 less communication between the parties in the protocol of
[6]. We also remark that the increase in computational complexity is feasible.
log n = 10⇒ n = 210 implies that the total number of GC’s the parties need is
1024.



5 Conclusion

In this paper we gave an analysis for optimal parameters in cut-and-choose
protocols to achieve: (a) minimum probability of undetected cheating for same-
cost circuits and cheaper check circuits, and (b) minimum communication bits in
which a given cheating probability can be achieved. It would be interesting from
a practical point of view, to carry out such optimization as part of an actual
implementation of a specific protocol.
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