HTTP Botnet Detection Using Adaptive Learning Rate Multilayer Feed-Forward Neural Network

Abstract : Botnets have become a rampant platform for malicious attacks, which poses a significant threat to internet security. The recent botnets have begun using common protocols such as HTTP which makes it even harder to distinguish their communication patterns. Most of the HTTP bot communications are based on TCP connections. In this work some TCP related features have been identified for the detection of HTTP botnets. With these features a Multi-Layer Feed Forward Neural Network training model using Bold Driver Back-propagation learning algorithm is created. The algorithm has the advantage of dynamically changing the learning rate parameter during weight updation process. Using this approach, Spyeye and Zeus botnets are efficiently identified. A comparison of the actively trained neural network model with a C4.5 Decision Tree, Random Forest and Radial Basis Function indicated that the actively learned neural network model has better identification accuracy with less false positives.
Type de document :
Communication dans un congrès
Ioannis Askoxylakis; Henrich C. Pöhls; Joachim Posegga. 6th International Workshop on Information Security Theory and Practice (WISTP), Jun 2012, Egham, United Kingdom. Springer, Lecture Notes in Computer Science, LNCS-7322, pp.38-48, 2012, Information Security Theory and Practice. Security, Privacy and Trust in Computing Systems and Ambient Intelligent Ecosystems. 〈10.1007/978-3-642-30955-7_5〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01534315
Contributeur : Hal Ifip <>
Soumis le : mercredi 7 juin 2017 - 15:03:46
Dernière modification le : mercredi 7 juin 2017 - 15:05:24
Document(s) archivé(s) le : vendredi 8 septembre 2017 - 12:56:21

Fichier

978-3-642-30955-7_5_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

G. Kirubavathi Venkatesh, R. Anitha Nadarajan. HTTP Botnet Detection Using Adaptive Learning Rate Multilayer Feed-Forward Neural Network. Ioannis Askoxylakis; Henrich C. Pöhls; Joachim Posegga. 6th International Workshop on Information Security Theory and Practice (WISTP), Jun 2012, Egham, United Kingdom. Springer, Lecture Notes in Computer Science, LNCS-7322, pp.38-48, 2012, Information Security Theory and Practice. Security, Privacy and Trust in Computing Systems and Ambient Intelligent Ecosystems. 〈10.1007/978-3-642-30955-7_5〉. 〈hal-01534315〉

Partager

Métriques

Consultations de la notice

223

Téléchargements de fichiers

104