Approximate Privacy-Preserving Data Mining on Vertically Partitioned Data

Abstract : In today’s ever-increasingly digital world, the concept of data privacy has become more and more important. Researchers have developed many privacy-preserving technologies, particularly in the area of data mining and data sharing. These technologies can compute exact data mining models from private data without revealing private data, but are generally slow. We therefore present a framework for implementing efficient privacy-preserving secure approximations of data mining tasks. In particular, we implement two sketching protocols for the scalar (dot) product of two vectors which can be used as sub-protocols in larger data mining tasks. These protocols can lead to approximations which have high accuracy, low data leakage, and one to two orders of magnitude improvement in efficiency. We show these accuracy and efficiency results through extensive experimentation. We also analyze the security properties of these approximations under a security definition which, in contrast to previous definitions, allows for very efficient approximation protocols.
Type de document :
Communication dans un congrès
Nora Cuppens-Boulahia; Frédéric Cuppens; Joaquin Garcia-Alfaro. 26th Conference on Data and Applications Security and Privacy (DBSec), Jul 2012, Paris, France. Springer, Lecture Notes in Computer Science, LNCS-7371, pp.129-144, 2012, Data and Applications Security and Privacy XXVI. 〈10.1007/978-3-642-31540-4_11〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01534761
Contributeur : Hal Ifip <>
Soumis le : jeudi 8 juin 2017 - 11:06:26
Dernière modification le : dimanche 31 décembre 2017 - 16:58:02
Document(s) archivé(s) le : samedi 9 septembre 2017 - 12:58:12

Fichier

978-3-642-31540-4_11_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Robert Nix, Murat Kantarcioglu, Keesook Han. Approximate Privacy-Preserving Data Mining on Vertically Partitioned Data. Nora Cuppens-Boulahia; Frédéric Cuppens; Joaquin Garcia-Alfaro. 26th Conference on Data and Applications Security and Privacy (DBSec), Jul 2012, Paris, France. Springer, Lecture Notes in Computer Science, LNCS-7371, pp.129-144, 2012, Data and Applications Security and Privacy XXVI. 〈10.1007/978-3-642-31540-4_11〉. 〈hal-01534761〉

Partager

Métriques

Consultations de la notice

51

Téléchargements de fichiers

43