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Abstract—Information Flow Control at Operating System (OS)
level features interesting properties and have been an active
topic of research for years. However, no implementation can
work reliably if there does not exist a way to correctly and
precisely track all information flows occurring in the system.
The existing implementations for Linux are based on the Linux
Security Modules (LSM) framework which implements hooks
at specific points in code where any security mechanism may
interpose a security decision in the execution. However, previous
works on the verification of LSM only addressed access control
and no work has raised the question of the reliability of
information flow control systems built on LSM. In this work,
we present a compiler-assisted and reproducible static analysis
on the Linux kernel to verify that the LSM hooks are correctly
placed with respect to operations generating information flows so
that LSM-based information flow monitors can properly track
all information flows. Our results highlight flaws in LSM that we
propose to solve, thus improving the suitability of this framework
for the implementation of information flow monitors.
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I. INTRODUCTION

Information flow tracking is a security mechanism designed
to monitor how sensitive information spreads in a system.
Using this knowledge, information flow control can be applied
to put limits on the dissemination of a piece of sensitive data
once it is out of its container of information and let high
level policies such as “my banking information shall not be
sent to the Internet” or “information from accouting files from
2014 and 2015 shall not be mixed” be enforced easily. Another
very active application domain of the information flow control
(IFC) is the analysis of malwares [1], [2], [3] because, as
obfuscated as its binary code may be, the information flows
performed by a program always reveal its behavior.

We define an explicit information flow as the copy, usually
partial, of the content of one container of information to
another. The scope of this paper is the IFC at the Operating
System (OS) level. For an OS, a container of information can
be an active entity executing code (a process), a storage place
(a file) or a channel of communication between active entities
(a network socket, a shared memory segment, a pipe). For ex-
ample, a process writing the content of a buffer in memory to a
file generates an information flow from the process to the file.
Information flow tracking consists in attaching a piece of meta-
information on each container, called a label, that remembers

where the information it contains comes from. Each time there
is an information flow in the system, this should make the
information flow tracker update the destination label according
to the source label. Although mandatory access control models
can also enforce information flow policies, we focus here on
IFC performed with information flow tracking.

The flows are not usually performed directly by the pro-
cesses but by the OS privileged software, the kernel, for
security reasons. To write a file, or to start a new process,
for example, a process has to ask the kernel to perform the
desired task on its behalf by a system call, an entry point
function implemented in the kernel. The kernel can deny
any such request, if it lacks necessary resources or if the
process lacks the required clearance. Therefore, the system
call barrier is an ideal candidate to draw a clear boundary
between containers of information and to define the granularity
of the IFC. For instance, as all threads of execution in a single
process share a single memory space, and can freely exchange
information and work on the same data without requiring
intervention from the kernel, we ought to consider the entire
process, including all its threads, as a single container of
information. We restrict ourselves to explicit information flows
such as information storing or inter-process communications
through means designed for this purpose. We thus exclude
covert channels and information leakage due to some event or
operation not occurring in the system.

Several approaches have been proposed to implement in-
formation flow tracking in Linux-based OSes. For instance,
Blare [4], Laminar [5], and Weir [6] implement information
flow tracking inside the Linux kernel. They do so thanks to
the Linux Security Modules framework (LSM) [7], [8]. This
framework was designed to allow any security mechanism
be implemented efficiently and easily in the Linux kernel.
Before security-sensitive operations (such as writing to a file,
creating a new process, etc.), the kernel hands the execution
out to the installed security module to let it take a security
decision. The points in the code where security modules may
interpose itself in the execution are called hooks. Although
the formal validation of the position of the hooks has already
been explored in details [9], [10], [11], [12], these works have
not considered the information flow tracking use case. The
main difference is that access control only needs to deal with
granting or denying access to an object to a subject based on



a predetermined and mostly static policy and classification of
objects and subjects according to their sensitivity and need-
to-know. Information flow control takes into account the past
interactions of a subject or object before taking a security
decision. For example, it is possible for a top-secret subject
to write into a public file only if said subject has not read
secret information beforehand. The analysis of our results in
Section V gives more insight on why a correct placement of
hooks for the access control may not be correct for information
flow monitoring purpose. To the best of our knowledge, our
work is the first to formally assess the correctness of LSM
hooks positioning for information flow tracking purposes.

Our work aims at verifying a necessary condition on the
placement of hooks: that any execution path that generates
an information flow goes through a LSM hook before the
flow is performed. This is a necessary condition for the
implementation of correct information flow trackers. Our main
contributions are: (1) a formal model of the Linux code,
produced by the GCC compiler itself, (2) a reproducible static
analysis that for each system call, and each execution path
reaching a point where an information flow is done, verifies
that the path is either impossible or covered by a LSM hook
(3) a study of the flaws in the design of LSM exhibited by
our results and the corresponding patch to improve LSM’s
suitability for the implementation of information flow trackers.
As a side note, we also make a case for compiler-assisted static
analyses. Indeed, we are not able to define entirely the source
language (a dialect of C specific to the compiler which is used,
including parts written in assembly) but we can make working
hypotheses on it and rely on the compiler to provide us with
the knowledge that is hard to statically correctly decide such
as the aliasing information (the C language supports arbitrary
pointer arithmetic). Due to space restrictions, we do not expose
all the formalism but details and proofs are available on the
project website at https://kayrebt.gforge.inria.fr.

After giving in section II some background about our
research, we present our analysis in the remaining sections. In
Section III, we describe the formal model we use to represent
the system calls. We want to formally verify that all execution
paths which generate information flows but which do not
contain a LSM hook are impossible paths. To do so, we equip
the formal model with a semantics and design a static analysis
we prove sound in Section IV. In section V, we present the
GCC plugin we implemented to run our analysis and the
results of our experimentations. Along with these results, we
propose a revision of LSM with some hooks added, and some
existing hooks relocated, to better adapt it to the control flow
purpose. Finally, we discuss related work in section VI and
conclude in Section VII with the further work we envision.

II. BACKGROUND AND OBJECTIVES

A. Linux Security Modules

Since version 2.6, Linux supports a framework to imple-
ment security extensions for the kernel called Linux Security
Modules (LSM) [7]. This framework provides a set of hooks
strategically placed in the kernel code associated with fields

in internal data structures for exclusive use by security exten-
sions. The hooks are functions which can be used by security
extensions to (1), allocate, free, and maintain the security
state of various internal data structures having a dedicated
security field, and (2), implement security checks at specific
points of execution, based on the security state and a policy.
Security modules have a chance to apply security restrictions
anywhere a hook is present, but only at these places. LSM’s
original design is the access control and this has dictated
the placement of hooks in the code. It is thus necessary
to verify the correctness of this placement for the purpose
of information flow tracking to ensure that information flow
trackers such as Blare, Laminar and Weir can operate properly.

B. Complete Mediation Property

Our main goal is to verify the property we call “Complete
Mediation”. For any execution path in the kernel starting with a
system call and leading to an information flow, there is at least
one LSM hook in this path which is reached before the flow
is performed. The rationale here is that if a path generating
a flow but not going through any LSM hook exists, then a
malicious program can exploit it to perform illegal information
flows without triggering any alarm because the information
flow monitor can only react when one of the hooks is reached.
Identifying all the paths that lead to information flows requires
solving two common problems in static analysis. First of all,
the number of execution paths is infinite because of loops in
the code so we must identify a finite subset on which running
the analysis is sufficient to draw a conclusion for all paths.
Secondly, many execution paths that appear in the control flow
graph of a program cannot actually be taken. These paths
are often called infeasible paths in the litterature [13]. It is
important to identify them, otherwise we might declare that
the information flow monitor does not correctly detect some
possible flows while in fact, there is no way to perform them.

For our analysis, we consider the list of system calls
presented in Table I, which covers all the system calls moni-
tored by either Blare, Laminar or Weir. Flow control requires
knowing precisely when an information flow starts and when
it stops. Otherwise, it is unable to maintain a correct and
precise representation of all flows currently taking place in
the system at any given time. This can result in either (1)
wrong security decisions, compromising the confidentiality or
integrity of sensitive data, or (2) overly conservative ones,
making the system unusable. Access control on the other hand
typically requires monitoring only the beginning of the flow (it
would be inconsistent to authorize a process to gain access to
a container but to forbid it to lose that access). Since LSM was
designed with access control in mind, some hooks are missing
to perform information flow tracking. Section V explore these
points more in detail.

III. MODELING THE SYSTEM CALLS CAUSING FLOWS

A. Control Flow Graphs

The analysis we propose relies on the C compiler from the
Gnu Compilers Collection [14], used to compile the Linux



kernel. The model we designed to represent system calls
and their execution paths does not describe directly the C
source code but instead an internal representation created by
GCC in a language called GIMPLE [15]. Each system call is
represented by a control flow graph (CFG), where paths, as
defined by the classical graph theory, model execution paths
in the program [16]. Our analysis examines one system call
at a time. To produce a single graph for an entire system
call and all the functions it calls, we force the inlining of
the latter into the former. This does not change the semantics
of the code but reduces our analysis to the intra-procedural
case. In these CFGs, we mark two kinds of nodes: the nodes
corresponding to LSM hooks and the nodes corresponding
to operations generating flows. The former can be identified
automatically and we identified manually the latter in the
CFGs (cf. Section III-B).

In our CFGs, contrarily to most approaches, a node is not a
basic block but a single GIMPLE instruction. Edges can bear
guards, to indicate conditional jumps between instructions.
Our analysis does not need to deal with all expressions and
variables of the language. For example, we do not have to
handle floating-point values because their use is explicitly
prohibited in the Linux code. We chose not to handle variables
representing structures or unions when they involve pointer
arithmetic. Powerful static analysis are allowed by generic
framework such as Blast [17] but dealing with complex types
is not necessary for our specifics needs. We do not handle
global or volatile variables either since they can have an
arbitrary value at any point in the execution, regardless of
what is done in the function. Ignoring some variables does not
hinder the soundness of our approach: less impossible paths
might be detected as such but we never declare as impossible
a possible path. Our results show that the analysis is precise
enough to conclude in all cases.

To handle the pointer variables, we need to partition vari-
ables along two different criteria: (1) the set of pointers
Varsptr , i.e. variables whose value is the address of another
variable, versus the set of integer variables VarsZ; and (2)
the set of variables whose address is taken at one point in the
program Varsmem versus the variables that are not addressable
(not aliasable) and do not participate in side effects Varstemp

(i.e. their value can only be set by direct assignment). The
segregation between the variables is directly extracted from the
compiler, which maintains precise typing information about all
expressions in the code.

In addition to variables, several kinds of expressions have
to be handled: the integer constants Z, the pointers derefer-
enciations {∗p | p ∈ Varsptr}, the address-taking operations
{&v | v ∈ Varsmem}, and finally the expressions of unknown
value. As a matter of fact, all expressions leading to com-
putations fall into the latter category, as well as unanalyzed
variables. Finally, our analysis relies on the points-to oracle
maintained by GCC, which gives for any pointer the set of
variables it can possibly points to.

A path in the CFG is said to be impossible when any exe-
cution that would follow it would enter in an impossible state.

For example, a path including two conditional branchings with
incompatible conditions would require a boolean expression to
be both true and false at the same time.

B. Rationale and Discussion of our Approach

Using the compiler itself to extract the knowledge we need
from the kernel has several advantages. First of all, we have
the guarantee that the analysis is bound to the exact code that
is compiled in. Due to conditional compilation, the code of a
given function can vary greatly depending on the compilation
options. Moreover, it is important to note that GCC’s exten-
sions to the C language are explicitly permitted. Relying on
GCC is therefore not only useful but practically mandatory
to correctly capture the true semantics of the code. Finally,
even if the representation we extract during the compilation
process and use as a model of the code does not reflect what
the developpers intended to mean, it is anyway what the code
does mean when executed.

Another decision we made was declaring where information
flows are actually performed inside the system calls. This is not
trivial because the low-level data structures manipulated in the
kernel code sometimes only relates loosely to the abstractions
we call “files” or “sockets”. For instance, writing to a file on
disk actually means writing to a cache in memory, which is
periodically flushed to the disk by a dedicated kernel process.
It is natural to consider that when the writing process returns
from write system call, the information flow is done because
any process reading the file would find the information just
written there but in case of a power outage for example, the
information could be lost if it had not been flushed to disk
yet. We used several heuristics to decide objectively that the
flow was performed at some point in the code: the fact that all
checks were passed, the fact that all locks on structures were
taken, and finally the fact that the operation was “committed”
by the kernel by a log message for example.

IV. STATIC ANALYSIS ON PATHS

Our objective is, for any CFG representing a system call
generating an information flow, to enumerate all the paths of
this CFG reaching the point where the information flow is
done and for each one of these paths, to verify that it goes
through a LSM hook or that it is impossible. If there exists a
path which is possible but not covered by a LSM hook, then
this is a flaw in the placement of hooks. In this section, we
describe the main lines of the static analysis and the main
results we have proved onto it.

A. Verifying the Complete Mediation

We consider the set Paths of all paths in a CFG. Among
this paths, we distinguish two particular subsets: (1) the set
Pathsflows of paths starting at the initial node of the CFG and
ending at one node generating an information flow; and (2) the
set PathsLSM of paths having a node corresponding to a LSM
hook. The placement of the hooks would be obviously correct
if we could prove that Pathsflows ⊆ PathsLSM . However, as



we will see, this is not the case. Pf = Pathsflows \PathsLSM

represents the set of paths that may be problematic.
As explained earlier, some paths in Pathsflows are actually

impossible, and therefore even if there are no LSM hooks
in them, they are not actually problematic. Recall that an
impossible path is a path that does not correspond to a possible
execution. The objective of our analysis is thus to verify that
Pf ⊆ I where I ⊆ Paths is the set of impossible paths in
the CFG. However, due to the presence of loops, the set Pf

is infinite and we cannot run our analysis on all paths in Pf .
To tackle this problem, we define an equivalence relation on
paths in Pf : two paths are equivalent if they are identical up
to the cycles they contain. Our analysis run only on acyclic
paths (of which there is a finite number) and we prove that
our analysis is conservative, i.e. that it will not report a path
as impossible if at least one equivalent path is possible.

Of course, in any CFG there is a finite number of acyclic
paths, so it is possible (and sufficient) to verify them all. We
state the complete mediation property:

Property 1 (Complete Mediation):
Complete mediation holds iff: Pf ⊆ I, i.e. all the execution
paths that perform an information flow and are not controlled
by the information flow monitor since they do not contain a
LSM hook are impossible according to the static analysis.

Paths

PathsLSM

Pf

Pathsflows

Acyclic paths
in Pf

Figure 1. Sets involved in the anaysis

B. Configurations and Satisfiability

The analysis of a path requires maintaining an abstraction
of the possible state of the execution at each node. This
state, which we call an abstract configuration, is twofold:
the path configuration contains information about the path
followed so far by the execution in the graph and the variables
configuration contains constraints about the possible values of
variables. Our analysis is said to be path-sensitive because it
leverages the knowledge of the execution path taken. Actually,
due to the properties of the graphs and the needs of our
analysis, it is only necessary to remember the edge taken to
reach the last node with strictly more than one predecessor
node (i.e. the node at the beginning of the current basic block).

A variables configuration written (C,P ) is made up of a set
of constraints C on the integer variables and a mapping P for
the pointers. C is a set of tuples of the form (x,R, y) where x
is a variable, R ∈ {=, 6=, <,>,≤,≥} a relation operator, and
y either a variable or an integer constant. Such a constraint

(x,R, y) expresses the fact that the predicate x̄ R ȳ, where v̄
stands for the value of v, holds. The pointer mapping P records
the value of pointers, if known. We have P : Varsptr →
Varsmem ∪ {>}. With p ∈ Varsptr , if P (p) = v ∈ Varsmem

then we know that p points to v, otherwise, we have no
more information than the points-to oracle. Indeed, since our
analysis is path-sensitive, it has sometimes more information
about the value of a pointer than the path-insensitive points-to
analysis made by the compiler. The configurations are updated
by following the execution path: assignments add constraints
on variables or, on the contrary, remove some. For example,
when a variable is assigned the return value of a function,
the analysis remove all constraints about the variable since
the return value of a function is statically undecidable in the
general case. An edge always adds as a constraint the condition
it bears, if any.

Our problem of identifying impossible paths is thus re-
duced to a problem of satisfiability: if there does not exist
a valuation for the variables that satisfies all the constraints
simultaneously, then we consider that we have reached an
impossible state of execution. This corresponds to incompat-
ible constraints and means that the followed path does not
correspond to a possible execution. If the set of constraints
is satisfiable, or at least if the analysis cannot prove it is
unsatisfiable, then we declare the path possible.

C. Concrete Configurations

In order to prove the soundness of the static analysis, we
have to describe the concrete execution. We define the concrete
configuration as a valuation of the variables of the program,
at a given point in its execution. First of all, we consider
the memory as a set of memory cells, each one holding a
single value, which may be either an integer or the identifier of
another memory cell (an “address”). A concrete configuration
has three components: (1) a mapping from memory cells to
values, (2) a mapping from non-addressable variables to val-
ues, and (3) a mapping from addressable variables to memory
cells. The first mapping is the memory state of the program.
The second one is used to deal with the particular case of
non-addressable variables which might not live in memory.
Although they appear in the CFG built by the compiler, they
have a single value during their lifespan and are not susceptible
to be modified via an indirect assignment such as a pointer
for example, so it is not necessary to account for them in the
memory state. In fact, although they appear in the CFG built
by the compiler, they might very well be optimized out in the
resulting executable program.

D. Concrete and Abstract Semantics

We aim at proving the soundness of our static analysis:
if a path is declared as impossible by the static analysis,
then it is indeed impossible, although the analysis might not
detect all impossible paths. To prove this property, we suppose
the existence of a concrete semantics of the CFG, the one
computed by the compiler. Since the C language, and the
compiler’s internal representations, including the CFG, have



only informal semantics, we only make minimal, common hy-
potheses on the concrete semantics, necessary to our analysis,
without defining it entirely. This way, we eliminate the risk of
diverging from the compiler’s actual semantics. The concrete
semantics is a transition relation → ⊆ Θ× V × C ×Θ where
Θ is the set of concrete configurations, V the set of nodes and
C = (Vars × {=, 6=, <,>,≤,≥} × (Vars ∪ Z)) ∪ {true} is
the set of constraints on edges. true is a special constraint
which is always satisfied (to model unconditional edges).

We then proceed to completely define an abstract semantics.
The abstract configuration is a transition relation � ⊆ K ×
V × C ×K where K is the set of abstract configurations. The
entire definition can be found in the extended appendix of the
paper, available on the project’s website. We extend naturally
these relations over paths.

To express the soundness of our analysis, we define a satis-
fiability relation between concrete and abstract configurations.
We say that a concrete configuration satisfies an abstract one
if the valuation of the variables given by the concrete configu-
ration satisfies all the constraints in the abstract configuration.
Noting θ a concrete configuration, and k an abstract one, we
write θ  k when θ satisfies k and  k the fact that k is
satisfiable, i.e. there exists some θ such that θ  k.

The soundness of our analysis is stated as follows.
Proposition 1 (Soundness):

For each path p in a CFG, for all concrete configurations θ1
and θ2, and all abstract configurations k1 and k2 such that
θ1 →∗p θ2 and k1 �∗p k2, we have θ1  k1 =⇒ θ2  k2.

We define the set of executable paths as the set of all paths
p such that there exists two concrete configuration θ1 and θ2
such that θ1 →p θ2. Remember that a transition may not exist
from one configuration to another if, along the path p, there
is an edge bearing a condition which is not verified by the
memory state. The set of impossible paths is defined as the
set of paths p for which given any two abstract configurations
k1 and k2, if k1 �∗p k2, then 1 k2. In other words,
there is no satisfiable configuration that can result from the
analysis of path p. The following proposition is an immediate
consequence of the previous one.

Proposition 2 (Executable vs. impossible paths): The sets
of executable paths and impossible paths are disjoint.

E. Handling Loops

The static analysis, as presented so far, handles all paths of
finite length. However, in a CFG, there are an infinity of such
paths, because of the presence of loops. Fortunately, loops
have a special syntax in CFGs. Specifically, loops must start
with one join node with exactly two predecessors: one before
the loop, and one inside. Loops are also disambiguated by
the compiler: a unique node cannot be the begining of two
different loops. Furthermore, for any node, we can use the
compiler as an oracle to tell what is the most-outer loop it is
part of, if any, and whether it is the beginning of a loop. We
make the hypothesis that the number of iterations of each loop
is unbounded but finite, since it would actually be a bug for a
system call not to terminate. We deal with loops in our analysis

by computing a loop abstractor, i.e. a configuration such that
if it is unsatisfiable, then all abstract configurations that could
possibly result from the analysis of this loop are unsatisfiable.
In other words, we abstract in a single equivalence class all
the paths composed of a finite, albeit arbitrarily large, number
of iterations of the loop. Our analysis therefore trades off
precision for termination by reducing the analysis of any loop
to the computation of its abstractor.

V. IMPLEMENTATION AND RESULTS

The static analysis is run during the compilation itself. To
this effect, we developped a plugin for GCC version 4.8. This
plugin is inserted into the compilation process, when the code
is in GIMPLE form. We chose to place the plugin as late as
possible in the compilation process, just before GCC abandons
the graph intermediate representation, in order to benefit the
most from optimizations and to work on a code as simple as
possible. This allows us to do the assumptions we presented
in the previous sections, such as the particular properties of
loops. The representation we dump is broken down to very
elementary pieces. The code we handle is in three-addresses
mode, which has the effect that all complex boolean conditions
that could exist in the original code base are already broken
down in the appropriate number of binary decision nodes and
branchings. We also leverage as much as possible the compiler.
For example, we rely on it to identify the loops in the CFG,
to know the precise typing information of variables, and to
run the points-to analysis on pointers. The latter is already
implemented because it is used for several optimizations
passes by GCC. Finally, the careful use of inlining and the
fact that GCC applies some optimizations on the code actually
limits the path explosion. Our tools, including the plugin for
the static analysis and also a plugin able to dump CFGs, are
available at http://kayrebt.gforge.inria.fr.

Prior to running the analysis, we place a special annotation
on places in the code of system calls where information flows
are performed. When the analysis is run on a system call,
for each annotated places, a subgraph of the CFG built by
GCC is considered: the subgraph of paths starting from the
node representing the entry of the system call and going
to the information flow node that do not pass through any
LSM hook. These paths are the set Pf . For each path, we
start with an empty abstract configuration and we update the
configuration as we go along the path as per the transition
rules of the abstract semantics. The satisfiability of the abstract
configuration is tested by Yices [18], a SAT-solver equipped
with a decidable subset of the classic theory of integers. If the
constraint solver declares the set of constraints unsatisfiable
then we declare the path impossible.

We did our analysis on the Linux kernel version 4.3,
released on November 2nd 2015, compiled with the default
configuration options for architecture x86_64. However, the
same analysis can be reproduced with the same tools on
any version, any platform. Most of the code we analyze is
part of high-level submodules, which are not likely to change



greatly from one version to the next, and are not architecture-
dependent. Nonetheless, the list of available system calls
depends on the configuration options, therefore, the options
available for performing information flows can vary from
a Linux system to another. The results of our analysis are
presented in Table I, where system calls are grouped by the
LSM hooks they share. In a majority of cases, either no paths
evading the hooks are found or they are all impossible. In
these cases, LSM hooks are placed correctly to detect the
information flows generated by these system calls. In some
other cases, though, some system calls we have identified as
generating flows have no LSM hooks at all.

a) System calls vmsplice, splice, and tee: These
system calls take advantage of the implementation of the pipes
as memory buffers to perform efficient copies to or from pipes.
No hook is triggered when the flow occurs between two pipes.

b) mq_timedreceive, mq_timedsend: These sys-
tem calls are used to, respectively, receive and send a message
through a POSIX message queue. They behave the same
as msgrcv and msgsnd for System V message queues,
which do have hooks. We got some elements of explanations
on the LSM kernel development mailing-list from SELinux
developper Stephen Smalley [19]. First, these system calls
are more recent than LSM so they were not included in the
original LSM design. Secondly, the difference between the
two message queues APIs is that the POSIX one is based on
the virtual filesystem. For the purpose of access control, it
already benefits from the security hooks in the open system
call. However, and this also applies to splice, in the system
calls that do the actual information flow, there are no hooks
because pipes and message queues are not thought as being
subject to the same problem of policy change and access
control revalidation as regular files, and therefore it feels less
necessary to place a hook before each individual “read” and
“write” operation as for files. These considerations are valid
only when considering access control. Flow tracking requires
monitoring each individual information flow.

c) process_vm_readv, process_vm_writev: In
these system calls, two paths are possible. However, they are
designed as such and correspond to flows from a process to
itself (possibly from one thread to another). In our model, a
process as a whole is a container of information because flows
between threads are possible without system calls anyway.

d) recvmmsg, sendmmsg: The case of these system
calls illustrates why a framework built for access control might
be insufficient for flow control. The system call recvmmsg
allows a process to receive multiple messages from a socket
with a single system call. A process may use it to communicate
with another one. A LSM hook is present in this system call,
so that the communication is mediated. However, the hook is
positioned such that the security function is called only once,
before the first message is received. A malicious process could
exploit this fact to send sensitive information acquired (via
another thread) between the first and the subsequent messages.
This is a problem relevant only to flow control and not to
access control. With access control, the dynamic content of

a container of information has no influence over the security
decision, therefore it is sufficient to do the check only once
per system call.

VI. RELATED WORK

To the best of our knowledge, no previous work has aimed at
assessing the adequacy of LSM for information flow tracking.
However, several works have focused on the correctness of
the placement of the LSM hooks for its original purpose:
access control. Zhang et al. performed a static analysis with
CQUAL [20] to check if all accesses to internal data structures
are correctly intercepted by the appropriate LSM hooks. This
is different from our approach because we consider more
abstract structures, containers of information, whose link with
the real data structures of the kernel is not always direct.
This work was extended [9] with a consistency analysis
on the relationships between the security-sensitive operations
performed by the kernel and LSM hooks. In this work, Zhang
and Jaeger identified all the paths that can lead to an access
to a member of an internal data structure at a granularity finer
from that of system calls. For example, with their analysis,
they have been able to detect that the f_owner.pid member
of struct file can be modified via an operation which,
as a side-effect, resets this field to 0 without calling the hook
designed to protect this field before. Again, this approach is too
low-level for us because we deal with more abstract objects.
Nevertheless, our future work will adapt from this approach
the notion of consistency. In this current work, we have only
checked that any flow is monitored by some hook. Later works
by Ganapathy, Jaeger, and Jha [10] and Muthukumaran, Jaeger,
and Ganapathy [12] focused on automatic placement of hooks.
This approach is promising but not practical in our case since
we do not use the LSM framework for its primary purpose
but we want to modify it as little as possible nevertheless.
Bringing IFC in Linux through LSM is an active topic and
adding hooks or moving some of them has been necessary for
Blare and Laminar [4], [21], even if the placement of LSM
hooks have already been carefully analyzed. This encourages
us to verify the correctness of hooks placement for information
flow tracking purposes.

VII. PERSPECTIVES AND CONCLUSION

In this paper, we have presented an approach to verify
the suitability of LSM for the implementation of information
flow trackers. We have shown that the compilation process
can be leveraged to build a formal model of the source code
to run single-purpose static analysis. Indeed, the compiler
already needs to build a control flow graph, and maintains
precious knowledge such as a points-to analysis to compile
and optimize the code, and all this can be reused for more
static analysis on the code. The clearest advantage of this
method is the prevention of any risk of making errors in the
semantics of the code. We designed and proved a reproducible
static analysis on the position of the LSM hooks to track
information flows. This analysis is simple, specifically adapted
for its purpose and fast. We then examined the results and



Table I
PRESENCE OF PATHS ESCAPING ALL LSM HOOKS IN THE SYSTEM CALLS

read pread64
readv preadv
writev pwritev
write pwrite64
sendfile sendfile64
shmat
mmap

msgrcv
msgsnd
clone fork vfork
execve execveat
send sendto sendmsg
recv recvfrom recvmsg

(a) System calls in which all paths are mediated by at least one LSM hook

shmdt
vmsplice
tee
munmap
mq_timedsend
mq_timedreceive

(b) System calls producing information
flows but having no LSM hooks

process_vm_readv
process_vm_writev

two cases of possible paths:
a thread reading another thread’s memory in the same process and a thread reading its own memory

splice no hooks for the pipe to pipe information flow
no paths for the file to pipe information flow
no paths for the pipe to file information flow

sendmmsg (same hooks as send) the LSM hook is hit only once, for the first message, for the other messages sent with the same system
call to the same destination, the hook is not called again

recvmmsg (same hooks as recv) the LSM hook is hit only once, for the first message, for the other messages read with the same system
call, the hook is not called again

ptrace no paths for the attachment, but no hooks for the detachment

(c) System calls where not all paths are mediated

concluded that it was possible, after some modifications, to
use LSM to track individual information flows. Finally, we
have written a patch for the Linux kernel, version 4.3, to
place the LSM hooks where we suggest. We validated the
new placement by redoing the static analysis. The patch can be
found at http://kayrebt.gforge.inria.fr/pathexaminer.html. This
work validates the approach of developping information flow
trackers on top of LSM and provides a strong basis for the
formal assessment of their correctness.

We have shown that the LSM frameworks must be extended
to cover all execution paths generating information flows on
containers of information. This is a necessary condition to
correctly implement information flow control but we plan
also to consider further issues relative to the way the hooks
are used. For example, when simultaneous information flows
involving the same containers are considered, it is important
that the tags are propagated in the same order than the flows
are performed. These problems are already under investigation
by the authors.
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APPENDIX

A Control Flow Graph is a pair (V, E) where V is the set of nodes in the graph, each one representing one instruction in
the code, and E is the set of edges between nodes, representing the may-follow relation between instructions. The set of edges
E ⊆ V × C ×V is a relation between a source node and a destination node, labelled by a constraint. The constraint on a edge
gives a condition on the variables of the program that must be satisfied at this point for the control flow go from the source
node to the destination node. From all the edges going out from a given node, there is always exactly one constraint which is
true. The set of constraints C is defined as

C = {true}
∪ Vars × {=, 6=, <,>,≤,≥} × Vars
∪ Vars × {=, 6=, <,>,≤,≥} × Z

There are five kinds of nodes. V = Vassign ] Vmem ] V join ] Vϕ ] Vcall .
• Vassign is the set of direct assignment nodes: the left-hand side variable is assigned the value of the right-hand side

expression,
• Vmem is the set of assignment-through-pointer nodes: the value of the right-hand side expression is assigned to the memory

location identified by the value of the left-hand side pointer
• V join is the set of join nodes: not an assignment node but has the particularity of having several incoming edges,
• Vϕ is the set of phi nodes: the left-hand side variable is assigned the value of one of the right-hand side parameters,

depending on the edge taken to reach the last previous join node, this kind of nodes is generated by the compiler when
the value of a variable depends on the program control flow,

• Vcall is the set of function call nodes: a function is called and its result is assigned to the left-hand side variable, if any,
Assembly code nodes (representing a piece of assembly code written in the C source file) are represented as function call
nodes because they have similar properties in our semantics.

A. Definition of the Path Configuration

We define a path configuration as a pair (n, v) ∈ {m ∈ N | m ≥ 1} × V where n is the index of the edge taken to reach
the last join node visited and v is the last node visited. This is the information needed to interpret the Phi nodes. The path
configuration is updated by the relation ↪→ ⊆ (N×V)× (V ×C)× (N×V). We write: (n1, v1)

v,c
↪−→ (n2, v2) to actually mean

((n1, v1), (v, c), (n2, v2)) ∈ ↪→, which means that starting from a path configuration (n1, v1), and going through the node v
and then the edge following v bearing constraint c, we get the configuration (n2, v2). ↪→ is defined as:

(n1, v1)
v,c
↪−→ (n, v) if v ∈ V join and pred(v, n) = v1

(n1, v1)
v,c
↪−→ (n1, v) if v ∈ V \ V join

B. Properties Satisfied by the Concrete Semantics

1) Definition of the Valuation of an Expression:

∀x ∈ Vars θ(x) =

{
γ(x) if x ∈ Varstemp

σ(α(x)) if x ∈ Varsmem

JkKθ = k for all k ∈ Z JxKθ = θ(x) for all x ∈ Vars
J∗pKθ = σ(θ(p)) for all p ∈ Varsptr J&xKθ = α(x) for all x ∈ Varsmem

2) Rules: The concrete executions are assumed to respect a transition relation → ⊆ θ × θ between configurations. We
assume the following minimal set of rules:
Vassign θ = (γ, σ, α)

x=e,c−−−−→ (γ
[
x← JeKθ

]
, σ, α) x ∈ Varstemp

θ = (γ, σ, α)
x=e,c−−−−→ (γ, σ

[
α(x)← JeKθ

]
, α) x ∈ Varsmem

θ
x=e,c−−−−→ θ x ∈ Vars

Vmem θ = (γ, σ, α)
∗p=e,c−−−−→ (γ, σ

[
JpKθ ← JeKθ

]
, α)

Vϕ θ = (γ, σ, α)
x=PHI〈e1,...,en〉,c−−−−−−−−−−−→ (γ[x← Jenpath

Kθ], σ, α)

Vcall (γ1, σ1, α)
x=f(e1,...,en),c−−−−−−−−−−→ (γ2, σ2, α) with ∀z ∈ Vars \ {x} γ1(z) = γ2(z)

(γ1, σ1, α)
f(e1,...,en),c−−−−−−−−→ (γ2, σ2, α)

v ∈ V join ∪ {vinit} θ
v,c−−→ θ



3) Other Property Satisfied by the Concrete Semantics:

∀θ1, θ2 ∈ Θ ∀v ∈ V ∀c ∈ C θ1
v,c−−→ θ2 ⇒ θ2 � c (1)

4) Satisfiability of a Constraint: We write θ � c when a concrete configuration θ satisfies a constraint c ∈ C:

θ � c⇔

 c = true

∨c = (x,R, y) ∈ Vars ×Rel × Vars ∧ θ(x)R θ(y)

∨c = (x,R, k) ∈ Vars ×Rel × Z ∧ θ(x)R k

 (2)

where R stands for the usual interpretation of the relation symbols in Rel = {=, 6=,≤,≥, <,>}.

C. Definition of the Static Semantics

1) Definition of Function reset:

reset(C, x) = C \ {〈x, ·, ·〉, 〈·, ·, x〉}
reset(C,X) = C \ ({〈x, ·, ·〉 | x ∈ X} ∪ {〈·, ·, x〉 | x ∈ X})

2) Rules: The following tables gives the semantics of each type of node.
v ∈ Vassign

(C,P )
x=e,c
−−−−� (reset(C, x) ∪ {〈x,=, e〉, c}, P ) x ∈ VarsZ, e ∈ VarsZ ∪ Z

(C,P )
x=∗p,c
−−−−� (reset(C, x) ∪ {〈x,=, P (p)〉, c}, P ) x ∈ VarsZ, p ∈ Varsptr , P (p) 6= >

(C,P )
x=∗p,c
−−−−� (reset(C, x) ∪ {c}, P ) x ∈ VarsZ, p ∈ Varsptr , P (p) = >

(C,P )
x=e,c
−−−−� (reset(C, x) ∪ {c}, P ) x ∈ VarsZ, e ∈ ©?

(C,P )
x=e,c
−−−−� (reset(C, x) ∪ {〈x,=, e〉, c}, P [x← P (e)]) x ∈ Varsptr , e ∈ Varsptr

(C,P )
x=∗p,c
−−−−� (reset(C, x) ∪ {〈x,=, P (p)〉, c}, P [x← P (P (p))])

x ∈ Varsptr , p ∈ Varsptr , P (p) 6= >
(C,P )

x=∗p,c
−−−−� (reset(C, x) ∪ {c}, P [x← >]) x ∈ Varsptr , p ∈ Varsptr , P (p) = >

(C,P )
x=&y,c
−−−−−� (reset(C, x) ∪ {c}, P [x← y]) x ∈ Varsptr , y ∈ Varsmem

(C,P )
x=e,c
−−−−� (reset(C, x) ∪ {c}, P [x← >]) x ∈ Varsptr , e ∈ ©?

(C,P )
x=e,c
−−−−� (C ∪ {c}, P ) x ∈ Vars

v ∈ Vmem

(C,P )
∗p=e,c
−−−−� (reset(C,P (p)) ∪ {〈P (p),=, e〉, c}, P ) O(p) ⊆ VarsZ, e ∈ VarsZ ∪ Z, P (p) 6= >

(C,P )
∗p=e,c
−−−−� (reset(C,O(p)) ∪ {c}, P ) O(p) ⊆ VarsZ, e ∈ VarsZ ∪ Z, P (p) = >

(C,P )
∗p=e,c
−−−−� (reset(C,P (p)) ∪ {〈P (p),=, e〉, c}, P [P (p)← P (e)])

O(p) ⊆ Varsptr , e ∈ Varsptr , P (p) 6= >
(C,P )

∗p=e,c
−−−−� (reset(C,O(p)) ∪ {c}, P [q ← > | q ∈ O(p)]) O(p) ⊆ VarsZ, e ∈ VarsZ ∪ Z, P (p) = >

(C,P )
∗p=e,c
−−−−� (reset(C,P (p)) ∪ {c}, P ) O(p) ⊆ VarsZ, e ∈ ©? , P (p) 6= >

(C,P )
∗p=e,c
−−−−� (reset(C,O(p)) ∪ {c}, P ) O(p) ⊆ VarsZ, e ∈ ©? , P (p) = >

(C,P )
∗p=e,c
−−−−� (reset(C,P (p)) ∪ {c}, P [P (p)← >]) O(p) ⊆ Varsptr , e ∈ ©? , P (p) 6= >

(C,P )
∗p=e,c
−−−−� (reset(C,O(p)) ∪ {c}, P [q ← > | q ∈ O(p)]) O(p) ⊆ Varsptr , e ∈ ©? , P (p) = >

v ∈ Vϕ

(C,P )
x=PHI〈e1,...,en〉,c
−−−−−−−−−−−� (reset(C, x) ∪ {〈x,=, enpath

〉, c}, P ) x ∈ VarsZ, enpath
∈ Z ∪ VarsZ

(C,P )
x=PHI〈e1,...,en〉,c
−−−−−−−−−−−� (reset(C, x) ∪ {c}, P ) x ∈ VarsZ, enpath

∈ ©?
(C,P )

x=PHI〈e1,...,en〉,c
−−−−−−−−−−−� (reset(C, x) ∪ {〈x,=, enpath

〉, c}, P [x← P (enpath
)])

x ∈ Varsptr , enpath
∈ Varsptr

(C,P )
x=PHI〈e1,...,en〉,c
−−−−−−−−−−−� (reset(C, x) ∪ {c}, P [x← y]) x ∈ Varsptr , enpath

= &y, y ∈ Varsmem

(C,P )
x=PHI〈e1,...,en〉,c
−−−−−−−−−−−� (reset(C, x) ∪ {c}, P [x← >]) x ∈ Varsptr , enpath

∈ ©?



v ∈ Vcall

(C,P )
x=f(e1,...,en),c
−−−−−−−−−−� (reset(C, {x} ∪ Varsmem) ∪ {c}, P [q ← > | q ∈ Varsmem ∩ Varsptr ]) x ∈ VarsZ

(C,P )
x=f(e1,...,en),c
−−−−−−−−−−� (reset(C, {x} ∪ Varsmem) ∪ {c}, P [q ← > | q ∈ {x} ∪ (Varsmem ∩ Varsptr )])

x ∈ Varsptr

(C,P )
x=f(e1,...,en),c
−−−−−−−−−−� (reset(C,Varsmem) ∪ {c}, P [q ← > | q ∈ Varsmem ∩ Varsptr ]) x ∈ Vars

(C,P )
f(e1,...,en),c
−−−−−−−−� (reset(C,Varsmem) ∪ {c}, P [q ← > | q ∈ Varsmem ∩ Varsptr ])

v ∈ V join ∪ {vinit}
(C,P )

v,c
−−� (C ∪ {c}, P )

D. Satisfiability of an Abstract Configuration

Definition 1: Satisfiability of an abstract configuration A concrete configuration θ satisfies an abstract one k (written
θ  k), if, and only if:

∀θ = (γ, σ, α) ∈ Θ

∀k = (C,P ) ∈ K
θ  k ⇔

(
θ � C

∧∀x ∈ Varsptr P (x) 6= > ⇒ α(P (x)) = θ(x)

)
θ must satisfy every constraint and the values of the pointers known in k must be the same in the concrete configuration. The
satisfiability of an abstract configuration k ∈ K is written  k and is defined by: ∀k ∈ K ( k)⇔ (∃θ ∈ Θ θ  k).

1) Extensions of the Relations over Paths: The relations defined so far handle only individual components of paths. We
extend them naturally to entire paths.

Definition 2: Transitive closure of → and � Given a path in the CFG p = (v1, c1), . . . , (vn, cn) ∈ (V×C)×· · ·×(V×C),
we define the transitive closure of → (respectively �) along p noted →∗p (respectively �∗p) as follows.

• θ →∗p θ′ ⇔ ∃θ1, . . . , θn−1 θ
v1,c1−−−→ θ1

v2,c2−−−→ · · · vn−1,cn−1−−−−−−−→ θn−1
vn,cn−−−→ θ′

• k �∗p k
′ ⇔ ∃k1, . . . , kn−1 k

v1,c1−−−� k1
v2,c2−−−� · · ·

vn−1,cn−1

−−−−−−−� kn−1
vn,cn−−−� k′

where ∀k ∈ {k, k1, . . . , kn−1}  k

Note that we may have 1 k′, the last configuration may be impossible.

E. Proof that the � Relation is Left-total

First, we state formally the left-totalness:
Property 1 (Left-totalness of �):

∀v ∈ V ∀c ∈ C ∀k ∈ K ∃k′ ∈ K k
v,c
−−� k′

Proof: By case analysis, we prove easily that, for each kind of node, there is a corresponding definition of �.
For example, the assignment nodes are defined as:

x = e with x ∈ VarsZ and e ∈ Z ∪ VarsZ ∪ {∗p | p ∈ Varsptr ∧ O(p) ⊆ VarsZ} ∪©?
x = e with x ∈ Varsptr and e ∈ Varsptr ∪ {∗p | p ∈ Varsptr ∧ O(p) ⊆ Varsptr}

∪ {&y | y ∈ Varsmem} ∪©?
x = e with x ∈ Vars

Hence, there must be a rule for:
• x ∈ VarsZ, e ∈ Z ∪ VarsZ
• x ∈ VarsZ, e = ∗p with p ∈ Varsptr and O(p) ⊆ VarsZ

– P (p) = >
– or P (p) 6= >

• x ∈ VarsZ, e ∈ ©?
• x ∈ Varsptr , e ∈ Varsptr

• x ∈ Varsptr , e = ∗p with p ∈ Varsptr and O(p) ⊆ Varsptr

– P (p) = >
– or P (p) 6= >

• x ∈ Varsptr , e = &y with y ∈ Varsmem

• x ∈ Varsptr , e ∈ ©?



• x ∈ Vars
And the semantics gives precisely a rule for each one of these cases, in this order.

The proposition is stated as:
Proposition 1 (Soundness): Given a path p in the CFG, we claim:

∀θ1, θ2 ∈ Θ ∀k1, k2 ∈ K (θ1 →∗p θ2 ∧ k1 �∗p k2 ∧ θ1  k1)⇒ θ2  k2

We prove the following lemma first:
lemma 1 (One-step soundness): Given a path p in the CFG, we claim:
∀θ1, θ2 ∈ Θ ∀k1, k2 ∈ K ∀v ∈ V ∀c ∈ C (θ1

v,c−−→ θ2 ∧ k1
v,c
−−� k2 ∧ θ1  k1)⇒ θ2  k2

Proof: We assume the existence of θ1, θ2 ∈ Θ, k1, k2 ∈ K and v ∈ V, c ∈ C such that θ1
v,c−−→ θ2, k1

v,c
−−� k2, and θ1  k1.

We suppose that θ2 1 k2.
In the following, we suppose that:

θ1 = (γ1, σ1, α1) k1 = (C1, P1)

θ2 = (γ2, σ2, α2) k2 = (C2, P2)

Suppose that there exist v ∈ V and c ∈ C such that: 
θ1

v,c−−→ θ2

k1
v,c
−−� k2

θ1  k1

θ2 1 k2

We can thus deduce:
∃c′ ∈ C2 θ2 2 c′

∨∃p ∈ Varsptr P2(p) 6= > ∧ α2(P2(p)) 6= θ2(p)

We prove the lemma by case analysis on the relation k1
v,c
−−� k2, showing a contradiction in the hypotheses in all cases.

1. Case (C1, P1)
x=e,c
−−−−� (reset(C1, x) ∪ {〈x,=, e〉, c}, P1)

x ∈ VarsZ, e ∈ VarsZ ∪ Z.
In this case, we have

∀y ∈ Vars θ2(y) =

{
θ1(e) if x = y

θ1(y) otherwise
with α2 = α1

1.1. Case ∃c′ ∈ reset(C1, x) θ2 2 c′.
By case analysis on c′.

1.1.1. Case c′ = 〈a,R, b〉 with a ∈ Vars \ x, b ∈ (Vars ∪ Z) \ x,R ∈ Rel .
In this case, we have: 

θ2(a) = θ1(a)

θ2(b) = θ1(b)

θ1(a)R θ2(b)

from which we deduce θ2(a)R θ2(b), and thus θ2 � c′.

1.1.2. Case c′ = true.
In this case, we have θ2 � c′ by definition.

1.2. Case θ2 2 c.
By the property 1 p. 9, we have θ2 � c.

1.3. Case ∃p ∈ Varsptr P2(p) 6= > ∧ α2(P2(p)) 6= θ2(p).
We have α2(P2(p)) = α1(P1(p)) for all p because P2 = P1 and α2 = α1 as well θ2(p) = θ1(p) because p 6= x
(p ∈ Varsptr but x ∈ VarsZ = Vars \ Varsptr ). Hence, the hypothesis ∀p ∈ Varsptr P1(p) 6= > ⇒ α1(P1(p)) = θ1(p)
entails ∀p ∈ Varsptr P2(p) 6= > ⇒ α2(P2(p)) = θ2(p).

1.4. Case θ2 2 〈x,=, e〉.
We have θ2(x) = θ1(e) = θ2(e) by hypothesis, so θ2 � 〈x,=, e〉.



2. Case (C1, P1)
x=∗p,c
−−−−� (reset(C1, x) ∪ {〈x,=, P1(p)〉, c}, P1)

x ∈ VarsZ, p ∈ Varsptr , P1(p) 6= >.

In this case, we have

∀y ∈ Vars θ2(y) =

{
σ1(θ1(p)) if x = y

θ1(y) otherwise
and α2 = α1

2.1. Case ∃c′ ∈ reset(C1, x) θ2 2 c′.
As above

2.2. Case θ2 2 c.
As above

2.3. Case ∃p ∈ Varsptr P2(p) 6= > ∧ α2(P2(p)) 6= θ2(p).
As above

2.4. Case θ2 2 〈x,=, P1(p)〉.
We can deduce the following:

θ2(x) = σ1(θ1(p))

= σ1(α1(P1(p))) because θ1 � k1
= θ1(P1(p)) by definition of θ1
= θ2(P1(p)) by hypothesis if P1(p) 6= x,

trivially otherwise

and thus, θ2 � 〈x,=, P1(p)〉.

3. Case (C1, P1)
x=∗p,c
−−−−� (reset(C1, x) ∪ {c}, P1)

x ∈ VarsZ, p ∈ Varsptr , P1(p) = >.

In this case, we have

∀y ∈ Vars θ2(y) =

{
σ1(θ1(p)) if x = y

θ1(y) otherwise
and α2 = α1

3.1. Case ∃c′ ∈ reset(C1, x) θ2 2 c′.
As above

3.2. Case θ2 2 c.
As above

3.3. Case ∃p ∈ Varsptr P2(p) 6= > ∧ α2(P2(p)) 6= θ2(p).
As above

4. Case (C1, P1)
x=e,c
−−−−� (reset(C1, x) ∪ {c}, P1)

x ∈ VarsZ, e ∈ ©? .

In this case, we have
∀y ∈ Vars θ2(y) = θ1(y) if x 6= y and α2 = α1

4.1. Case ∃c′ ∈ reset(C1, x) θ2 2 c′.
As above

4.2. Case θ2 2 c.
As above

4.3. Case ∃p ∈ Varsptr P2(p) 6= > ∧ α2(P2(p)) 6= θ2(p).
As above



5. Case (C1, P1)
x=e,c
−−−−� (reset(C1, x) ∪ {〈x,=, e〉, c}, P1[x← P1(e)])

x ∈ Varsptr , e ∈ Varsptr .

In this case, we have

∀y ∈ Vars θ2(y) =

{
θ1(e) if x = y

θ1(y) otherwise
and α2 = α1

5.1. Case ∃c′ ∈ reset(C1, x) θ2 2 c′.
As above

5.2. Case θ2 2 c.
As above

5.3. Case ∃p ∈ Varsptr P2(p) 6= > ∧ α2(P2(p)) 6= θ2(p).
Let us suppose that such a p exists. There are two cases here, either p = x or p 6= x.

5.3.1. Case p = x.
In this case, P2(p) = P2(x) = P1(e). Assuming P1(e) 6= >, we have:

α2(P2(p)) = α2(P2(x)) = α1(P2(x))

= α1(P1(e)) by hypothesis
= θ1(e) because θ1  k1

= θ2(x) = θ2(p) by hypothesis

5.3.2. Case p 6= x.
In this case, we have:

α2(P2(p)) = α2(P1(p)) = α1(P1(p))

= θ1(p) because θ1  k1

= θ2(p) by hypothesis, because p 6= x

5.4. Case θ2 2 〈x,=, e〉.
We have θ2(x) = θ1(e) = θ2(e), so θ2 � 〈x,=, e〉.

6. Case (C1, P1)
x=∗p,c
−−−−� (reset(C1, x) ∪ {〈x,=, P1(p)〉, c}, P1[x← P1(P1(p))])

x ∈ Varsptr , p ∈ Varsptr , P1(p) 6= >.

In this case, we have

∀y ∈ Vars θ2(y) =

{
σ1(θ1(p)) if x = y

θ1(y) otherwise
and α2 = α1

6.1. Case ∃c′ ∈ reset(C1, x) θ2 2 c′.
As above

6.2. Case θ2 2 c.
As above

6.3. Case ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′).
Let us suppose that such a p′ exists. There are two cases here, either p′ = x or p′ 6= x.

6.3.1. Case p′ = x.



In this case, P2(p′) = P2(x) = P1(P1(p)). Assuming P1(P1(p)) 6= >, we have:

α2(P2(p′)) = α2(P2(x))

= α1(P2(x))

= α1(P1(P1(p))) by hypothesis
= θ1(P1(p)) because θ1  k1

θ2(p′) = θ2(x)

= σ1(θ1(p)) by hypothesis
= σ1(α1(P1(p))) because θ1  k1

= θ1(P1(p)) P1(p) ∈ Varsmem by definition

6.3.2. Case p 6= x.
In this case, we have:

α2(P2(p′)) = α2(P1(p′))

= α1(P1(p′))

= θ1(p′) because θ1  k1

= θ2(p′) by hypothesis, because p′ 6= x

6.4. Case θ2 2 〈x,=, P1(p)〉.
We have

θ2(x) = σ1(θ1(p))

= σ1(α1(P1(p)))

= θ1(P1(p))

= θ2(P1(p))

so θ2 � 〈x,=, P1(p)〉.

7. Case (C1, P1)
x=∗p,c
−−−−� (reset(C1, x) ∪ {c}, P1[x← >])

x ∈ Varsptr , p ∈ Varsptr , P1(p) = >.

In this case, we have:

∀y ∈ Vars θ2(y) =

{
σ1(θ1(p)) if x = y

θ1(y) otherwise
with α2 = α1

7.1. Case ∃c′ ∈ reset(C1, x) θ2 2 c′.
As above

7.2. Case θ2 2 c.
As above

7.3. Case ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′).
Let us suppose that such a p′ exists. There are two cases here, either p′ = x or p′ 6= x.

7.3.1. Case p′ = x.
We have P2(p) = P2(x) = >, in contradiction with the hypothesis.

7.3.2. Case p′ 6= x.
As above

8. Case (C1, P1)
x=&y,c
−−−−−� (reset(C1, x) ∪ {c}, P1[x← y])

x ∈ Varsptr , y ∈ Varsmem .

In this case, we have:

∀z ∈ Vars θ2(z) =

{
α1(y) if x = z

θ1(z) otherwise
with α2 = α1



8.1. Case ∃c′ ∈ reset(C1, x) θ2 2 c′.
As above

8.2. Case θ2 2 c.
As above

8.3. Case ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′).
Let us suppose that such a p′ exists. There are two cases here, either p′ = x or p′ 6= x.

8.3.1. Case p′ = x.
We have

α2(P2(p′)) = α1(P2(p′))

= α1(P2(x))

= α1(y)

θ2(p′) = θ2(x)

= α1(y)

so α2(P2(p′)) = θ2(p′).

8.3.2. Case p′ 6= x.
As above

9. Case (C1, P1)
x=e,c
−−−−� (reset(C1, x) ∪ {c}, P1[x← >])

x ∈ Varsptr , e ∈ ©? .
As case 7.

10. Case (C1, P1)
x=e,c
−−−−� (C1 ∪ {c}, P1)

x ∈ Vars .
In this case, we have θ2 = θ1. The only non-trivial case to prove false is θ2 2 c. It is indeed false by property 1 p. 9.

11. Case (C1, P1)
∗p=e,c
−−−−� (reset(C1, P1(p)) ∪ {〈P1(p),=, e〉, c}, P1)

O(p) ⊆ VarsZ, e ∈ VarsZ ∪ Z, P1(p) 6= > .

In this case, we have:

∀y ∈ Vars θ2(y) =

{
θ1(e) if y ∈ Varsmem and θ1(p) = α1(y)

θ1(y) otherwise
with α2 = α1

11.1. Case ∃c′ ∈ reset(C1, P1(p)) θ2 2 c′.
By case analysis on c′.

11.1.1. Case c′ = 〈a,R, b〉 with a ∈ Vars \ {P1(p)}, b ∈ (Vars ∪ Z) \ {P1(p)},
R ∈ Rel .
We know that ∀y ∈ Varsmem θ2(y) = θ1(y) if θ1(p) 6= α1(y). We alse know that θ1(p) = α1(P1(p)) since
θ1  k1 and P1(p) 6= >. Memory locations are unique (∀y1, y2 ∈ Varsmem α1(y1) = α1(y2)⇒ y1 = y2) so, since
a 6= P1(p) and b 6= P1(p), we have:

{
a /∈ Varsmem ∨ α1(a) 6= α1(P1(p))

b /∈ Varsmem ∨ α1(b) 6= α1(P1(p))
⇒


θ2(a) = θ1(a)

θ2(b) = θ1(b)

θ1(a)R θ2(b)

from which we deduce θ2(a)R θ2(b), and thus θ2 � c′.

11.1.2. Case c′ = true.
In this case, we have θ2 � c′ by definition.

11.2. Case θ2 2 c.
As above



11.3. Case ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′).
As above.

11.4. Case θ2 2 〈P1(p),=, e〉.
We have ∀y ∈ Vars θ2(y) = θ2(e) if θ1(p) = α1(y). But we know that θ1(p) = α1(P1(p)) since θ1  k1 and
P1(p) 6= >. So, we conclude that:

θ2(P1(p)) = θ2(e)

from which we conclude θ2 � 〈P1(p),=, e〉.

12. Case (C1, P1)
∗p=e,c
−−−−� (reset(C1,O(p)) ∪ {c}, P1)

O(p) ⊆ VarsZ, e ∈ VarsZ ∪ Z, P1(p) = > .

In this case, we have:

∀y ∈ Vars θ2(y) =

{
θ1(e) if y ∈ Varsmem and θ1(p) = α1(y)

θ1(y) otherwise
with α2 = α1

12.1. Case ∃c′ ∈ reset(C1,O(p)) θ2 2 c′.
By case analysis on c′.

12.1.1. Case c′ = 〈a,R, b〉 with a ∈ Vars \ O(p), b ∈ (Vars ∪ Z) \ O(p), R ∈ Rel .
In this case, we have θ2(a) = θ1(a) since ∀y ∈ Vars θ2(y) = θ1(y) if y ∈ O(p) and a /∈ O(p). Similarly we have
θ2(b) = θ1(b) and we also have by hypothesis θ1(a)R θ1(b). Thus, we deduce θ2(a)R θ2(b), and finally θ2 � c′.

12.1.2. Case c′ = true.
In this case, we have θ2 � c′ by definition.

12.2. Case θ2 2 c.
As above.

12.3. Case ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′).
As above.

13. Case (C1, P1)
∗p=e,c
−−−−�

(reset(C1, P1(p)) ∪ {〈P1(p),=, e〉, c}, P1[P1(p)← P1(e)])
O(p) ⊆ Varsptr , e ∈ Varsptr , P1(p) 6= >.

In this case, we have:

∀y ∈ Vars θ2(y) =

{
θ1(e) if y ∈ Varsmem and θ1(p) = α1(y)

θ1(y) otherwise

with α2 = α1

13.1. Case ∃c′ ∈ reset(C1, P1(p)) θ2 2 c′.
As above.

13.2. Case θ2 2 c.
As above.

13.3. Case ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′).
Two cases: p′ = P1(p) or p′ 6= P1(p).

13.3.1. Case p′ = P1(p).



α2(P2(p′)) = α1(P2(p′))

= α1(P2(P1(p)))

= α1(P1(e))

= θ1(e)

= θ2(P1(p))

= θ2(p′)

13.3.2. Case p′ 6= P1(p).

α2(P2(p′)) = α1(P2(p′))

= α1(P1(p′))

= θ1(p′)

= θ2(p′)

13.4. Case θ2 2 〈P1(p),=, e〉.
As in case 11.

14. Case (C1, P1)
∗p=e,c
−−−−� (reset(C1,O(p)) ∪ {c}, P1[q ← > | q ∈ O(p)])

O(p) ⊆ VarsZ, e ∈ VarsZ ∪ Z, P1(p) = >.

In this case, we have:

∀y ∈ Vars θ2(y) =

{
θ1(e) if y ∈ Varsmem and θ1(p) = α1(y)

θ1(y) otherwise

with α2 = α1

14.1. Case ∃c′ ∈ reset(C1,O(p)) θ2 2 c′.
As in case 12.

14.2. Case θ2 2 c.
As above.

14.3. Case ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′).
P2(p′) 6= > implies that p′ /∈ O(p), which implies in turn implies that θ1(p) 6= α1(p′). Hence, we have:

α2(P2(p′)) = α1(P2(p′))

= α1(P1(p′)) since p′ /∈ O(p)

= θ1(p′)

= θ2(p′) since θ1(p) 6= α1(p′)

15. Case (C1, P1)
∗p=e,c
−−−−� (reset(C1, P1(p)) ∪ {c}, P1)

O(p) ⊆ VarsZ, e ∈ ©? , P1(p) 6= >.

In this case, we have:

∀y ∈ Vars θ2(y) =

{
θ1(e) if y ∈ Varsmem and θ1(p) = α1(y)

θ1(y) otherwise

with α2 = α1

15.1. Case ∃c′ ∈ reset(C1,O(p)) θ2 2 c′.
As in case 11.

15.2. Case θ2 2 c.
As above.



15.3. Case ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′).
As in case 11.

16. Case (C1, P1)
∗p=e,c
−−−−� (reset(C1,O(p)) ∪ {c}, P1)

O(p) ⊆ VarsZ, e ∈ ©? , P1(p) = >.

In this case, we have:

∀y ∈ Vars θ2(y) =

{
θ1(e) if y ∈ Varsmem and θ1(p) = α1(y)

θ1(y) otherwise

with α2 = α1

16.1. Case ∃c′ ∈ reset(C1,O(p)) θ2 2 c′.
As in case 12.

16.2. Case θ2 2 c.
As above.

16.3. Case ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′).
As in case 11.

17. Case (C1, P1)
∗p=e,c
−−−−� (reset(C1, P1(p)) ∪ {c}, P1[P1(p)← >])

O(p) ⊆ Varsptr , e ∈ ©? , P1(p) 6= >.

In this case, we have:

∀y ∈ Vars θ2(y) =

{
θ1(e) if y ∈ Varsmem and θ1(p) = α1(y)

θ1(y) otherwise

with α2 = α1

17.1. Case ∃c′ ∈ reset(C1, P1(p)) θ2 2 c′.
As in case 11.

17.2. Case θ2 2 c.
As above.

17.3. Case ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′).
The only subcase is p′ 6= P1(p) since P2(p′) 6= > and P2(P1(p)) = >. This case is solved as case 13.3.2.

18. Case (C1, P1)
∗p=e,c
−−−−� (reset(C1,O(p)) ∪ {c}, P1[q ← > | q ∈ O(p)])

O(p) ⊆ Varsptr , e ∈ ©? , P1(p) = >.

In this case, we have:

∀y ∈ Vars θ2(y) =

{
θ1(e) if y ∈ Varsmem and θ1(p) = α1(y)

θ1(y) otherwise

with α2 = α1

18.1. Case ∃c′ ∈ reset(C1,O(p)) θ2 2 c′.
As in case 11.

18.2. Case θ2 2 c.
As above.

18.3. Case ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′).
As in case 14.3.

19. Case (C1, P1)
x=PHI〈e1,...,en〉,c
−−−−−−−−−−−� (reset(C1, x) ∪ {〈x,=, enpath

〉, c}, P1)

x ∈ VarsZ, enpath
∈ Z ∪ VarsZ.



This case is identical to case 1. with e = enpath
.

20. Case (C1, P1)
x=PHI〈e1,...,en〉,c
−−−−−−−−−−−� (reset(C1, x) ∪ {c}, P1)

x ∈ VarsZ, enpath
∈ ©? .

This case is identical to case 4. with e = enpath
.

21. Case (C1, P1)
x=PHI〈e1,...,en〉,c
−−−−−−−−−−−�

(reset(C0, x) ∪ {〈x,=, enpath
〉, c}, P1[x← P1(enpath

)])
x ∈ Varsptr , enpath

∈ Varsptr .

This case is identical to case 5. with e = enpath
.

22. Case (C1, P1)
x=PHI〈e1,...,en〉,c
−−−−−−−−−−−� (reset(C1, x) ∪ {c}, P1[x← y])

x ∈ Varsptr , enpath
= &y, y ∈ Varsmem .

This case is identical to case 8. with e = enpath
.

23. Case (C1, P1)
x=PHI〈e1,...,en〉,c
−−−−−−−−−−−� (reset(C1, x) ∪ {c}, P1[x← >])

x ∈ Varsptr , enpath
∈ ©? .

This case is identical to case 9. with e = enpath
.

24. Case (C1, P1)
x=f(e1,...,en),c
−−−−−−−−−−� (reset(C1, {x} ∪ Varsmem) ∪ {c}, P1[q ← > | q ∈ Varsmem ∩ Varsptr ])

x ∈ VarsZ.

In this case, we have:
∀y ∈ Varstemp \ {x} θ2(y) = θ1(y) and α2 = α1

We have the following cases.
24.1. Case ∃c′ ∈ reset(C1, {x} ∪ Varsmem θ2 � c′.

By case analysis on c′.
24.1.1. Case c′ = 〈a,R, b〉 with a ∈ Vars \ ({x} ∪ Varsmem), b ∈ (Vars ∪ Z) \ ({x} ∪ Varsmem), R ∈ Rel .

In this case, we have θ2(a) = θ1(a) since ∀y ∈ Vars θ2(y) = θ1(y) if y ∈ Varstemp \ {x} and a /∈ Varsmem

and a 6= x. Similarly we have θ2(b) = θ1(b) and we also have by hypothesis θ1(a) R θ1(b). Thus, we deduce
θ2(a)R θ2(b), and finally θ2 � c′.

24.1.2. Case c′ = true.
In this case, we have θ2 � c′ by definition.

24.2. Case θ2 2 c.
As above.

24.3. Case ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′).
We have p′ ∈ Varstemp since P1(q) = > for all q ∈ Varsmem ∩ Varsptr . We also have p′ 6= x since x /∈ Varsptr . So
finally, we have:

α2(P2(p′)) = α1(P2(p′))

= α1(P1(p′))

= θ1(p′) = θ2(p′)

25. Case (C1, P1)
x=f(e1,...,en),c
−−−−−−−−−−� (reset(C1, {x} ∪ Varsmem) ∪ {c}, P1[q ← > | q ∈ {x} ∪ (Varsmem ∩ Varsptr )])

x ∈ Varsptr .



As case 24. with the difference that for the subcase ∃p′ ∈ Varsptr P2(p′) 6= > ∧ α2(P2(p′)) 6= θ2(p′), we have p′ 6= x
by hypothesis directly.

26. Case (C1, P1)
x=f(e1,...,en),c
−−−−−−−−−−� (reset(C1,Varsmem) ∪ {c}, P1[q ← > | q ∈ Varsmem ∩ Varsptr ])

x ∈ Vars .

As case 24. with the difference that for the subcase ∃c′ ∈ reset(C1,Varsmem θ2 � c′, in the subsubcase c′ = 〈a,R, b〉,
we have a 6= x and b 6= x by hypothesis since a ∈ Vars and b ∈ Vars .

27. Case (C1, P1)
f(e1,...,en),c
−−−−−−−−� (reset(C1,Varsmem) ∪ {c}, P1[q ← > | q ∈ Varsmem ∩ Varsptr ]).

As case 26. with the difference that ∀y ∈ Varstemp θ2(y) = θ1(y), which actually makes the proof slightly simpler.

28. Case (C1, P1)
v∈V join∪{vinit},c
−−−−−−−−−−−� (C1, P1).

In this case, we have ∀y ∈ Vars θ2(y) = θ1(y). So, trivially, as θ2 = θ1 and k2 = k1, we have θ1  k1 ⇒ θ2  k2.
Finally, we have proven that it was impossible to exhibit a constraint c′ ∈ k2 such that θ2 2 c′ or a pointer p′ ∈ Varsptr

such that P2(p′) 6= > and α2(P2(p′)) 6= θ2(p′). We thus conclude that:

∀v ∈ V ∀c ∈ C; (k1
v,c
−−� k2 ∧ θ1

v,c−−→ θ2 ∧ θ1  k1)⇒ θ2  k2

F. Proof of the proposition

We now prove the proposition:

∀p ∈ ((V × C)× · · · × (V × C)) a path of finite length
∀k1, k2 ∈ K ∀θ1, θ2 ∈ Θ

(k1 �∗p k2 ∧ θ1 →∗p θ2 ∧ θ1  k1)⇒ θ2  k2

Proof: By induction on the length of the path p.
1. Case Length of 1.

In this case, there exists v ∈ V and c ∈ C such that p = ((v, c)) and we are left with proving that

(k1
v,c
−−� k2 ∧ θ1

v,c−−→ θ2 ∧ θ1  k1)⇒ θ2  k2

which is exactly the result of the previous lemma.

2. Case We assume the result true for a length of n.

3. Case Length of n+ 1.
In this case, we can write the path p as a path p′ of length n followed by a last pair (v, c) ∈ V ×C. We must thus prove:
∀k′ ∈ K ∀θ ∈ Θ (k1 �∗p k

′ v,c−−� k2 ∧ θ1 →∗p θ′
v,c−−→ θ2 ∧ θ1  k1)⇒ θ2  k2

By the induction hypothesis, we have that θ′  k′, and by the lemma, we have thus θ2  k2.

The proposition is stated as follows:
Proposition 2 (No execution paths match impossible paths): Given P the set of paths in some CFG:

Impossib(P) ∩ Exec(P) = ∅

Proof: Suppose there exists p ∈ Unsatisf(P) ∩ Exec(P). Since p ∈ Exec(P), there exists θ1, θ2 ∈ Θ such that
p ∈ Exec(P) and θ1 →∗p θ2. Let k1 ∈ K be an abstract configuration such that θ1  k1 (such a configuration always exists
since it suffices to consider (C,P ) where C = {true} and P = x 7→ � which clearly satisfies this property). Since � is a
left-total relation, there exists an abstract configuration k2 ∈ K such that k1 �∗p k2 and therefore, by soundness property, we
get θ2  k2. However, since p ∈ Impossib(P) we have 6 k2, which leads to a contradiction.

The proposition is stated as follows:



Proposition 3 (Correctness of the loop abstractor): We consider a loop l = (Vl, vl, Tl). We call p a path in l from vl to vl
(so, a finite number of iterations of the loop). We claim:

∀k ∈ K (∃kp ∈ K k �∗p kp ∧ kp)⇒ kl

To prove it, we first introduce an order relation on abstract configuration and the property that this order is compatible with
the satisfiability:

Definition 3: Order relation � on abstract configurations We define an order relation � ⊆ K × K on abstract
configurations by:

(C,P ) � (C ′, P ′)⇔ C ⊆ C ′ ∧ (∀p ∈ Varsptr P (p) = > ∨ P (p) = P ′(p))

Proposition 4 (� vs. ):
∀θ ∈ Θ ∀k, k′ ∈ K k � k′ ⇒ (θ  k′ ⇒ θ  k)

Proof: Suppose that we have k � k′, θ  k′ but θ 1 k. Then, assuming θ = (γ, σ, α), k = (C,P ) and k′ = (C ′, P ′), we
know that

(∃c ∈ C θ 2 c) ∨ (∃p ∈ Varsptr P (p) 6= > ∧ α(p) 6= θ(p))

By case analysis:
• ∃c ∈ C θ 2 c. If c ∈ C, then c ∈ C ′ since C ⊆ C ′ by hypothesis. But we know that θ  C ′, so θ � c, hence a

contradiction.
• ∃p ∈ Varsptr P (p) 6= > ∧ α(x) 6= θ(p). If P (p) 6= > then P ′(p) = P (p) by hypothesis. But we know that ∀p ∈
Varsptr P ′(p) 6= > ⇒ α(p) = θ(p), so we have P (p) 6= > ∧ α(p) = θ(p), a contradiction with the hypotheses.

To prove the proposition, we consider, without loss of generality, a loop l = (Vl, vl, Tl). We now introduce a technical
lemma on the abstract configurations reachable inside the loop.

lemma 2 (The loop abstractor is smaller than any reachable configuration):

∀(v, c, v′) ∈ Tl ∀k, k′ ∈ K k
v,c
−−� k′ ⇒ kl � k′

Proof: We suppose that k = (C,P ), kl = (Cl, P l) and k′ = (C ′, P ′). We must prove:
1) Cl ⊆ C ′
2) ∀p ∈ Varsptr P l(p) = > ∨ P l(p) = P ′(p)

1) C ⊆ C ′. By case analysis on the nodes v, and by the definition of the semantic rules, it is clear that the only constraints
in C and not in C ′ are constraints removed by reset and these are only constraints concerning the left-hand side variable
in an assignment, the variable equal to P (p) or O(p) in case of an assignment through a pointer p, or Varsmem in case of
a function call. Furthermore, we note that P (p) ∈ Varsmem and O(p) ⊆ Varsmem when p ∈ Varsptr . By the definition
of Cl, these constraints in C do not appear in Cl. As Cl ⊆ C, we conclude therefore that Cl ⊆ C ′.

2) ∀p ∈ Varsptr P l(p) = > ∨ P l(p) = P ′(p) All pointers p such that P (p) 6= > ∧ P ′(p) 6= P (p) are pointers assigned
directly or pointers in Varsmem assigned through a pointer. But in that case, by definition, we have P l(p) = > so we
can conclude that ∀p ∈ Varsptr P l(p) = > ∨ P l(p) = P ′(p).

We can now prove a generalized version of the proposition.
lemma 3: Let p a path in Tl. We claim:

∀k, k′ ∈ K ∀θ ∈ Θ (k �∗p k
′ ∧ θ  k′)⇒ θ  kl

Proof: Since � is a relation order, it is transitive and by induction on the length of path p, we can conclude from lemma 2
that k �∗p k

′ ⇒ kl � k′. From there, by proposition 4, we have ∀θ ∈ Θ θ  k′ ⇒ θ  kl.
This final lemma leads trivially to the proposition as stated.

G. Proof that ≡ Is an Equivalence Relation
For all p1, p2 two paths, we have p1 ≡ p2 ⇔ p↑1 = p↑2. Since the equality is reflexive, transitive and symmetric, so is the

loop-equivalence ≡.

H. Existence and Unicity of the Normal Form
Suppose that Pvflow,VLSM is not empty. Then, let us consider (without loss of generality) S, a loop-equivalence class in

Pvflow,VLSM . S is non-empty by construction.
Existence Let p ∈ S. We have p↑ ∈ S by definition, and (p↑)↑ = p↑ by definition of •↑. Thus, the normal form p↑ exists in

S.
Uniqueness Let p1, p2 ∈ S such that p↑1 = p1 and p↑2 = p2. By definition of S, we have p↑1 = p↑2 and thus, p1 = p2.



I. Proof that Analyzing the Normal Forms is Sufficient

Let us consider S ∈ P
vflow,VLSM

\≡ a loop-equivalence class and p ∈ S a path of S. We want to prove that [S] ∈ Impossib(P)

implies p ∈ Impossib(P).
We first prove that the abstract semantics’ rules preserve the order on abstract configurations.
lemma 4 (Preservation of the Order on Abstract Configurations):

∀k1, k′1, k2, k′2 ∈ K ∀v ∈ V ∀c ∈ C

({
k1

v,c
−−� k2

k′1
v,c
−−� k′2

∧ k′1 � k1

)
⇒ k′2 � k2

Proof: We suppose that k1 = (C1, P1), k2 = (C2, P2), k′1 = (C ′1, P
′
1), k′2 = (C ′2, P

′
2), and k′1 � k1.

Let q ∈ Varsptr a pointer. By the definition of the semantic rules, at least one of the four following cases applies.

1. Case

{
P ′2(q) = P ′1(q)

P2(q) = P1(q)
.

This is the case when the transition (v, c) does not change the information about which variable q points to. Since k′1 � k′1,
we have P ′1(q) = > or P ′1(q) = P1(q), which yields to P ′2(q) = > or P ′2(q) = P2(q).

2. Case

{
P ′2(q) = >
P2(q) = >

.

This is the case when the transition (v, c) changes the information about the variable q to >. In this case, we trivially
have P ′2(q) = > or P ′2(q) = P2(q).

3. Case ∃q′ ∈ Varsptr

{
P ′2(q) = P ′1(q′)

P2(q) = P1(q′)
.

This is the case when the transition (v, c) changes the information about which variable q points to to the destination of
another pointer q′. Since k′1 � k′1, we have P ′1(q′) = > or P ′1(q′) = P1(q′), which yields to P ′2(q) = > or P ′2(q) = P2(q).

4. Case ∃v ∈ Varsmem

{
P ′2(q) = v

P2(q) = v
.

This is the case when the transition (v, c) changes the information about which variables q points to to a variable v. In
this case, we trivially have P ′2(q) = > or P ′2(q) = P2(q) = v.

Let Cr, Ca ⊆ C the set of constraints respectively substracted and added to C1 and C ′1 by the transition (v, c) (depending

on the definition of the corresponding semantic rule). We have

{
C2 = (C1 \ Cr) ∪ Ca
C ′2 = (C ′1 \ Cr) ∪ Ca

. We have therefore C ′1 ⊆ C ′2 =⇒

C1 ⊆ C2.
We have proven that C ′2 ⊆ C2 and ∀q ∈ Varsptr (P ′2(q) = > ∨ P ′2(q) = P2(q)), which means k′2 � k2.
We extend the previous lemma to paths of finite length.
lemma 5 (Preservation of the Order on Abstract Configurations Along a Path ):

∀k1, k′1, k2, k′2 ∈ K ∀p ∈ P

({
k1 �∗p k2
k′1 �∗p k

′
2

∧ k′1 � k1

)
⇒ k′2 � k2

Proof: By induction on the length of p (a path of length n+ 1 is a path of length n followed by a last transition (v, c)),
noting that since � is an order relation, it is transitive.

The lemma 2, p. 21 gives a similar result about loops.
Proposition 5 (Analyzing the normal form in each class is sufficient): Given S ⊆ Pvflow,Vlsm one loop-equivalence class

of Pvflow,Vlsm and [s] ∈ S the normal form of S, we have [s] ∈ Impossib(P)⇒ S ⊆ Impossib(P).
Proof: Let us consider a path p ∈ S. We have by definition p↑ = [s]. Suppose that [s] ∈ Impossib(P) but p /∈ Impossib(P).

We can therefore suppose it exists k1, k2 ∈ K k1 �∗p k2 such that  k2. p is a succession of subpaths, some being cycles.
By definition, [s] is the same path, without the cycles. By induction on the length of the sequence of subpaths in p and per
lemma 5 for subpaths which are not loops, and per lemma 2 for subpaths which are loops, and by transitivity of �, there
exists k′2 ∈ K such that k1 �∗[s] k

′
2 and k′2 � k2. By proposition 4, it follows that  [s], a contradiction with the hypotheses.


