B. Ahn and J. Kim, Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations, Medical Image Analysis, vol.14, issue.2, pp.138-148, 2010.
DOI : 10.1016/j.media.2009.10.006

E. M. Arruda and M. C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, Journal of the Mechanics and Physics of Solids, vol.41, issue.2, pp.389-412, 1993.
DOI : 10.1016/0022-5096(93)90013-6

URL : https://hal.archives-ouvertes.fr/hal-01390807

J. Bano, A. Hostettler, S. Nicolau, S. Cotin, C. Doignon et al., Simulation of Pneumoperitoneum for Laparoscopic Surgery Planning, Medical Image Computing and Computer- Assisted Intervention -MICCAI 2012 -15th International Conference Proceedings, Part I, pp.91-98, 2012.
DOI : 10.1007/978-3-642-33415-3_12

J. Barbi? and D. L. James, Real-time subspace integration for St. Venant-Kirchhoff deformable models, pp.982-990, 2005.

J. D. Brown, J. Rosen, Y. S. Kim, L. Chang, M. N. Sinanan et al., In-vivo and in-situ compressive properties of porcine abdominal soft tissues, Studies in Health Technology and Informatics, pp.26-32, 2003.

A. Brunon, K. Bruyere-garnier, and M. Coret, Mechanical characterization of liver capsule through uniaxial quasi-static tensile tests until failure, Journal of Biomechanics, vol.43, issue.11, pp.432221-2227, 2010.
DOI : 10.1016/j.jbiomech.2010.03.038

URL : https://hal.archives-ouvertes.fr/hal-00552837

A. Brunon, K. Bruyere-garnier, and M. Coret, Characterization of the nonlinear behaviour and the failure of human liver capsule through inflation tests, Journal of the Mechanical Behavior of Biomedical Materials, vol.4, issue.8, pp.1572-1581, 2011.
DOI : 10.1016/j.jmbbm.2010.12.016

URL : https://hal.archives-ouvertes.fr/hal-00938298

F. J. Carter, T. G. Frank, P. J. Davies, D. Mclean, and A. Cuschieri, Measurements and modelling of the compliance of human and porcine organs, Medical Image Analysis, vol.5, issue.4, pp.231-236, 2001.
DOI : 10.1016/S1361-8415(01)00048-2

L. Castéra, J. Vergniol, J. Foucher, B. L. Bail, E. Chanteloup et al., Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C, Gastroenterology, vol.128, issue.2, pp.343-350, 2005.
DOI : 10.1053/j.gastro.2004.11.018

S. Chatelin, J. Oudry, N. Périchon, L. Sandrin, P. Allemann et al., In vivo liver tissue mechanical properties by transient elastography: Comparison with dynamic mechanical analysis, Biorheology, issue.2, pp.4875-88, 2011.

C. Chui, E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma, Combined compression and elongation experiments and non-linear modelling of liver tissue for surgical simulation, Medical & Biological Engineering & Computing, vol.123, issue.6, pp.42787-798, 2004.
DOI : 10.1007/BF02345212

C. Chui, E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma, Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling, Medical & Biological Engineering & Computing, vol.20, issue.1, pp.99-106, 2007.
DOI : 10.1007/s11517-006-0137-y

K. D. Costa, J. W. Holmes, and A. D. Mcculloch, Modelling cardiac mechanical properties in three dimensions, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.359, issue.1783, pp.3591233-1250, 1783.
DOI : 10.1098/rsta.2001.0828

S. Cotin, H. Delingette, and N. Ayache, A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. The Visual Computer, pp.16437-452, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00615820

H. Courtecuisse, H. Jung, J. Allard, C. Duriez, D. Y. Lee et al., GPU-based real-time soft tissue deformation with cutting and haptic feedback, Progress in Biophysics and Molecular Biology, vol.103, issue.2-3, pp.159-168, 2010.
DOI : 10.1016/j.pbiomolbio.2010.09.016

URL : https://hal.archives-ouvertes.fr/hal-00686056

H. Delingette and N. Ayache, Soft Tissue Modeling for Surgery Simulation, Computational Models for the Human Body, pp.453-550, 2004.
DOI : 10.1016/S1570-8659(03)12005-4

URL : https://hal.archives-ouvertes.fr/inria-00615656

M. Fatemi and J. F. Greenleaf, Ultrasound-Stimulated Vibro-Acoustic Spectrography, Science, vol.280, issue.5360, pp.82-85, 1998.
DOI : 10.1126/science.280.5360.82

Y. Fu and C. Chui, Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress?strain data, Journal of Biomechanics, vol.47, issue.10, pp.472430-2435, 2014.
DOI : 10.1016/j.jbiomech.2014.04.009

Y. Fu, C. Chui, and C. Teo, Liver tissue characterization from uniaxial stress?strain data using probabilistic and inverse finite element methods, Journal of the Mechanical Behavior of Biomedical Materials, vol.20, pp.105-112, 2013.
DOI : 10.1016/j.jmbbm.2013.01.008

Y. Fung, Elasticity of soft tissues in simple elongation, American Journal of Physiology?Legacy Content, vol.213, issue.6, pp.1532-1544, 1967.

Z. Gao and J. P. Desai, Estimating zero-strain states of very soft tissue under gravity loading using digital image correlation??????, Medical Image Analysis, vol.14, issue.2, pp.126-137, 2010.
DOI : 10.1016/j.media.2009.11.002

J. Gennisson, T. Deffieux, M. Fink, and M. Tanter, Ultrasound elastography: principles and techniques. Diagnostic and interventional imaging, pp.487-495, 2013.
DOI : 10.1016/j.diii.2013.01.022

URL : https://hal.archives-ouvertes.fr/inserm-00818817

N. Haouchine, S. Cotin, I. Peterlík, J. Dequidt, M. Sanz-lopez et al., Impact of Soft Tissue Heterogeneity on Augmented Reality for Liver Surgery, IEEE Transactions on Visualization and Computer Graphics, vol.21, issue.5, pp.584-597, 2015.
DOI : 10.1109/TVCG.2014.2377772

URL : https://hal.archives-ouvertes.fr/hal-01136728

T. Hu and J. P. Desai, A Biomechanical Model of the Liver for Reality-Based Haptic Feedback, Medical Image Computing and Computer-Assisted Intervention-MICCAI, pp.75-82, 2003.
DOI : 10.1007/978-3-540-39899-8_10

T. Hu and J. P. Desai, Characterization of Soft-Tissue Material Properties: Large Deformation Analysis, Medical Simulation, pp.28-37, 2004.
DOI : 10.1007/978-3-540-25968-8_4

L. Huwart, C. Sempoux, E. Vicaut, N. Salameh, L. Annet et al., Magnetic Resonance Elastography for the Noninvasive Staging of Liver Fibrosis, Gastroenterology, vol.135, issue.1, pp.32-40, 2008.
DOI : 10.1053/j.gastro.2008.03.076

D. L. James and D. K. Pai, ArtDefo accurate real time deformable objects, Computer Graphics (SIGGRAPH), pp.65-72, 1999.

P. Jordan, S. Socrate, T. Zickler, and R. Howe, Constitutive modeling of porcine liver in indentation using 3D ultrasound imaging, Journal of the Mechanical Behavior of Biomedical Materials, vol.2, issue.2, pp.192-201, 2009.
DOI : 10.1016/j.jmbbm.2008.08.006

A. E. Kerdok, Characterizing the Nonlinear Mechanical Response of Liver to Surgical Manipulation, 2006.

J. Kim and M. A. Srinivasan, Characterization of Viscoelastic Soft Tissue Properties from In Vivo Animal Experiments and Inverse FE Parameter Estimation, Medical Image Computing and Computer-Assisted Intervention? MICCAI, pp.599-606, 2005.
DOI : 10.1007/11566489_74

Y. Kobayashi, H. Watanabe, T. Hoshi, K. Kawamura, and M. G. Fujie, Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, chapter Viscoelastic and Nonlinear Liver Modeling for Needle Insertion Simulation, pp.41-67, 2012.
DOI : 10.1007/8415_2012_127

K. Lister, Z. Gao, and J. P. Desai, Development of In Vivo Constitutive Models for Liver: Application to Surgical Simulation, Annals of Biomedical Engineering, vol.20, issue.3, pp.1060-1073, 2011.
DOI : 10.1007/s10439-010-0227-8

Z. Liu and L. Bilston, Large deformations shear properties of liver tissue, Biorheology, vol.39, issue.6, pp.735-742, 2002.

Y. Lu, A. R. Kemper, and C. D. Untaroiu, Effect of storage on tensile material properties of bovine liver, Journal of the Mechanical Behavior of Biomedical Materials, vol.29, pp.339-349, 2014.
DOI : 10.1016/j.jmbbm.2013.09.022

S. Marchesseau, T. Heimann, S. Chatelin, R. Willinger, and H. Delingette, Fast porous visco-hyperelastic soft tissue model for surgery simulation: Application to liver surgery, Progress in biophysics and molecular biology, pp.185-196, 2010.
DOI : 10.1016/j.pbiomolbio.2010.09.005

URL : https://hal.archives-ouvertes.fr/hal-00593223

K. Miller, Constitutive modelling of abdominal organs, Journal of Biomechanics, vol.33, issue.3, pp.367-373, 2000.
DOI : 10.1016/S0021-9290(99)00196-7

K. Miller, G. Joldes, D. Lance, and A. Wittek, Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation, Communications in Numerical Methods in Engineering, vol.33, issue.4, pp.121-134, 2006.
DOI : 10.1002/cnm.887

R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca et al., Magnetic resonance elastography by direct visualization of propagating acoustic strain waves, Science, vol.269, issue.5232, pp.2691854-1857, 1995.
DOI : 10.1126/science.7569924

A. Nava, E. Mazza, M. Furrer, P. Villiger, and W. Reinhart, In vivo mechanical characterization of human liver, Medical Image Analysis, vol.12, issue.2, pp.203-216, 2008.
DOI : 10.1016/j.media.2007.10.001

A. Nava, E. Mazza, O. Haefner, and M. Bajka, Experimental Observation and Modelling of Preconditioning in Soft Biological Tissues, Medical Simulation, pp.1-8, 2004.
DOI : 10.1007/978-3-540-25968-8_1

F. Nickel, J. A. Brzoska, M. Gondan, H. M. Rangnick, J. Chu et al., Virtual Reality Training Versus Blended Learning of Laparoscopic Cholecystectomy, Medicine, vol.94, issue.20, pp.94-764, 2015.
DOI : 10.1097/MD.0000000000000764

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4602875

S. Nicolle, P. Vezin, and J. Palierne, A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues, Journal of Biomechanics, vol.43, issue.5, pp.927-932, 2010.
DOI : 10.1016/j.jbiomech.2009.11.002

URL : https://hal.archives-ouvertes.fr/hal-00955282

S. Niroomandi, D. Gonzlez, I. Alfaro, F. Bordeu, A. Leygue et al., Real-time simulation of biological soft tissues: a PGD approach, International Journal for Numerical Methods in Biomedical Engineering, vol.47, issue.3, pp.29586-600, 2013.
DOI : 10.1002/cnm.2544

URL : https://hal.archives-ouvertes.fr/hal-01007231

M. Ottensmeyer, TeMPeST I-D: AN INSTRUMENT FOR MEASURING SOLID ORGAN SOFT TISSUE PROPERTIES, Experimental Techniques, vol.85, issue.3, pp.48-50, 2002.
DOI : 10.1016/0021-9290(72)90010-3

F. Pervin, W. W. Chen, and T. Weerasooriya, Dynamic compressive response of bovine liver tissues, Journal of the Mechanical Behavior of Biomedical Materials, vol.4, issue.1, p.20, 2011.
DOI : 10.1016/j.jmbbm.2010.09.007

G. Picinbono, H. Delingette, and N. Ayache, Non-linear anisotropic elasticity for real-time surgery simulation, Graphical Models, vol.65, issue.5, pp.305-321, 2003.
DOI : 10.1016/S1524-0703(03)00045-6

URL : https://hal.archives-ouvertes.fr/inria-00072611

R. Plantefève, I. Peterlik, N. Haouchine, C. , and S. , Patient-Specific Biomechanical Modeling for Guidance During Minimally-Invasive Hepatic Surgery, Annals of Biomedical Engineering, vol.31, issue.3, pp.139-153, 2015.
DOI : 10.1007/s10439-015-1419-z

S. Raghunathan, D. Evans, and J. L. Sparks, Poroviscoelastic Modeling of Liver Biomechanical Response in Unconfined Compression, Annals of Biomedical Engineering, vol.30, issue.10, pp.1789-1800, 2010.
DOI : 10.1007/s10439-010-9957-x

E. Roan and K. Vemaganti, The Nonlinear Material Properties of Liver Tissue Determined From No-Slip Uniaxial Compression Experiments, Journal of Biomechanical Engineering, vol.129, issue.3, pp.450-456, 2007.
DOI : 10.1115/1.2720928

J. Rosen, J. D. Brown, S. De, M. Sinanan, and B. Hannaford, Biomechanical Properties of Abdominal Organs In Vivo and Postmortem Under Compression Loads, Journal of Biomechanical Engineering, vol.130, issue.2, p.21020, 2008.
DOI : 10.1115/1.2898712

E. Samur, M. Sedef, C. Basdogan, L. Avtan, and O. Duzgun, A robotic indenter for minimally invasive measurement and characterization of soft tissue response, Medical Image Analysis, vol.11, issue.4, pp.361-373, 2007.
DOI : 10.1016/j.media.2007.04.001

F. Sato, Y. Yamamoto, D. Ito, J. Antona-makoshi, S. Ejima et al., Hyper-viscoelastic response of perfused liver under dynamic compression and estimation of tissue strain thresholds with a liver finite element model, IRCOBI conference, 2013.

A. L. Simpson, P. Dumpuri, W. R. Jarnagin, and M. I. Miga, Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, chapter Model-Assisted Image-Guided Liver Surgery Using Sparse Intraoperative Data, pp.7-40, 2012.
DOI : 10.1007/8415_2012_117

S. Speidel, S. Roehl, S. Suwelack, R. Dillmann, H. Kenngott et al., Intraoperative surface reconstruction and biomechanical modeling for soft tissue registration, Proc. Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, pp.0-0, 2011.

S. Suwelack, S. Röhl, R. Dillmann, A. Wekerle, H. Kenngott et al., Computational Biomechanics for Medicine: Deformation and Flow, chapter Quadratic Corotated Finite Elements for Real-Time Soft Tissue Registration, pp.39-50, 2012.
DOI : 10.1007/978-1-4614-3172-5_6

A. Tamura, K. Omori, K. Miki, J. B. Lee, K. H. Yang et al., Mechanical characterization of porcine abdominal organs, Stapp car crash journal, vol.46, pp.55-69, 2002.

Z. Taylor, O. Comas, M. Cheng, J. Passenger, D. Hawkes et al., On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical solution and gpu execution. medical image Analysis, pp.234-244, 2009.

J. Teran, E. Sifakis, S. S. Blemker, V. Ng-thow-hing, C. Lau et al., Creating and Simulating Skeletal Muscle from the Visible Human Data Set, IEEE Transactions on Visualization and Computer Graphics, vol.11, issue.3, pp.317-328, 2005.
DOI : 10.1109/TVCG.2005.42

S. Umale, S. Chatelin, N. Bourdet, C. Deck, M. Diana et al., Experimental in vitro mechanical characterization of porcine Glisson's capsule and hepatic veins, Journal of Biomechanics, vol.44, issue.9, pp.1678-1683, 2011.
DOI : 10.1016/j.jbiomech.2011.03.029

S. Umale, C. Deck, N. Bourdet, P. Dhumane, L. Soler et al., Experimental mechanical characterization of abdominal organs: liver, kidney & spleen, Journal of the Mechanical Behavior of Biomedical Materials, vol.17, pp.22-33, 2013.
DOI : 10.1016/j.jmbbm.2012.07.010

C. D. Untaroiu and Y. Lu, Material characterization of liver parenchyma using specimen-specific finite element models, Journal of the Mechanical Behavior of Biomedical Materials, vol.26, pp.11-22, 2013.
DOI : 10.1016/j.jmbbm.2013.05.013

C. D. Untaroiu, Y. Lu, S. K. Siripurapu, and A. R. Kemper, Modeling the biomechanical and injury response of human liver parenchyma under tensile loading, Journal of the Mechanical Behavior of Biomedical Materials, vol.41, pp.280-291, 2015.
DOI : 10.1016/j.jmbbm.2014.07.006

C. D. Untaroiu, Y. Lu, S. K. Siripurapu, and A. R. Kemper, Modeling the biomechanical and injury response of human liver parenchyma under tensile loading, Journal of the Mechanical Behavior of Biomedical Materials, vol.41, pp.280-291, 2015.
DOI : 10.1016/j.jmbbm.2014.07.006

J. Vappou, Magnetic Resonance? and Ultrasound Imaging?Based Elasticity Imaging Methods: A Review, Critical Reviews? in Biomedical Engineering, vol.40, issue.2, 2012.
DOI : 10.1615/CritRevBiomedEng.v40.i2.30

J. Weiss, B. Maker, and S. Govindjee, Finite element implementation of incompressible, transversely isotropic hyperelasticity, Computer Methods in Applied Mechanics and Engineering, vol.135, issue.1-2, pp.107-128, 1996.
DOI : 10.1016/0045-7825(96)01035-3

H. Xiao and L. Chen, Hencky's elasticity model and linear stress-strain relations in isotropic finite hyperelasticity, Acta Mechanica, vol.457, issue.1-4, pp.51-60, 2002.
DOI : 10.1007/BF01182154

H. Yin, L. Sun, G. Wang, and M. W. Vannier, Modeling of Elastic Modulus Evolution of Cirrhotic Human Liver, IEEE Transactions on Biomedical Engineering, vol.51, issue.10, pp.511854-1857, 2004.
DOI : 10.1109/TBME.2004.828052

C. Zienkiewicz and R. Taylor, The Finite Element Method, 2000.