M. Barr and C. Wells, Toposes, triples and theories, 1985.
DOI : 10.1007/978-1-4899-0021-0

J. Berdine, W. Peter, . O-'hearn, S. Uday, H. Reddy et al., Linearly used continuations, Proceedings of the Third ACM SIGPLAN Workshop on Continuations (CW'01). Citeseer, pp.47-54, 2000.

G. Bierman, What is a categorical model of Intuitionistic Linear Logic?, Proc. TLCA, pp.78-93, 1995.
DOI : 10.1007/BFb0014046

R. Blute, R. Cockett, and . Seely, Cartesian differential storage categories, Theory and Applications of Categories, vol.30, issue.18, pp.620-686, 2015.

P. Curien, M. Fiore, and G. Munch-maccagnoni, A Theory of Effects and Resources: Adjunction Models and Polarised Calculi, Proc. POPL, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01256092

T. Ehrhard, The Scott model of linear logic is the extensional collapse of its relational model, Theoretical Computer Science, vol.424, issue.2, pp.20-45, 2012.
DOI : 10.1016/j.tcs.2011.11.027

URL : https://hal.archives-ouvertes.fr/hal-00369831

T. Ehrhard, Call-By-Push-Value from a Linear Logic Point of View, European Symposium on Programming Languages and Systems, pp.202-228, 2016.
DOI : 10.1007/3-540-49253-4_6

URL : https://hal.archives-ouvertes.fr/hal-01375814

C. Führmann, Direct Models of the Computational Lambda-calculus, Electronic Notes in Theoretical Computer Science, vol.20, issue.2 3, pp.245-292, 1999.
DOI : 10.1016/S1571-0661(04)80078-1

J. Girard, Linear logic, Theoretical Computer Science, vol.50, issue.1, pp.1-102, 1987.
DOI : 10.1016/0304-3975(87)90045-4

URL : https://hal.archives-ouvertes.fr/inria-00075966

J. Girard, On the unity of logic, Annals of Pure and Applied Logic, vol.59, issue.3, pp.201-217, 1993.
DOI : 10.1016/0168-0072(93)90093-S

URL : https://hal.archives-ouvertes.fr/inria-00075095

J. Girard, Le Point Aveugle, Cours de logique, Tome II: Vers l'imperfection. Hermann. published subsequently in, p.7, 2007.

J. Girard, The Blind Spot: Lectures on Logic, 2011.
DOI : 10.4171/088

URL : https://hal.archives-ouvertes.fr/hal-01322183

M. Hasegawa, Semantics of Linear Continuation-Passing in Call-by-Name, International Symposium on Functional and Logic Programming, pp.229-243, 2004.
DOI : 10.1007/978-3-540-24754-8_17

J. Hatcliff and O. Danvy, Thunks and the lambda-Calculus, BRICS Report Series, vol.3, issue.19, pp.303-319, 1997.
DOI : 10.7146/brics.v3i19.19981

H. Huwig and A. Poigné, A note on inconsistencies caused by fixpoints in a cartesian closed category, Theoretical Computer Science, vol.73, issue.1, pp.101-112, 1990.
DOI : 10.1016/0304-3975(90)90165-E

L. Paul-blain, Adjunction models for call-by-push-value with stacks, Proc. Cat. Th. and Comp. Sci., ENTCS, 2005.

C. Liang and D. Miller, Focusing and Polarization in Intuitionistic Logic, CSL, pp.451-465, 2007.
DOI : 10.1007/978-3-540-74915-8_34

URL : https://hal.archives-ouvertes.fr/inria-00167231

C. Liang and D. Miller, Focusing and polarization in linear, intuitionistic, and classical logics, Theoretical Computer Science, vol.410, issue.46, pp.46-4747, 2009.
DOI : 10.1016/j.tcs.2009.07.041

URL : http://doi.org/10.1016/j.tcs.2009.07.041

P. Melliès, Categorical semantics of linear logic, Panoramas et Synthèses, vol.27, issue.3 5, pp.15-215, 2009.

P. Melliès and N. Tabareau, Resource modalities in tensor logic, Annals of Pure and Applied Logic, vol.161, issue.5, pp.632-653, 2010.
DOI : 10.1016/j.apal.2009.07.018

G. Munch-maccagnoni, Syntax and Models of a non-Associative Composition of Programs and Proofs, Ph.D. Dissertation. Univ. Paris Diderot, vol.2, issue.3 4, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00918642

G. Munch-maccagnoni, Models of a Non-associative Composition, Proc. FoSSaCS (LNCS), pp.397-412, 2014.
DOI : 10.1007/978-3-642-54830-7_26

URL : https://hal.archives-ouvertes.fr/hal-00996729

P. Selinger, Control categories and duality: on the categorical semantics of the lambda-mu calculus, Mathematical Structures in Computer Science, vol.11, issue.2, pp.207-260, 2001.
DOI : 10.1017/S096012950000311X