Memoryless Determinacy of Finite Parity Games: Another Simple Proof

Serge Haddad 1, 2, 3
2 MEXICO - Modeling and Exploitation of Interaction and Concurrency
LSV - Laboratoire Spécification et Vérification [Cachan], ENS Cachan - École normale supérieure - Cachan, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8643
Abstract : Memoryless determinacy of (infinite) parity games is an important result with numerous applications. It was first independently established by Emerson and Jutla [1] and Mostowski [2] but their proofs involve elaborate developments. The elegant and simpler proof of Zielonka [3] still requires a nested induction on the finite number of priorities and on ordinals for sets of vertices. There are other proofs for finite games like the one of Björklund, Sandberg and Vorobyovin [4] that relies on relating infinite and finite duration games. We present here another simple proof that finite parity games are determined with memoryless strategies using induction on the number of relevant states. The closest proof that relies on induction over non absorbing states is the one of Grädel [5]. However instead of focusing on a single appropriate vertex for induction as we do here, he considers two reduced games per vertex, for all the vertices of the game. The idea of reasoning about a single state has been inspired to me by the analysis of finite stochastic priority games by Karelovic and Zielonka [6].
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées


https://hal.inria.fr/hal-01541508
Contributeur : Serge Haddad <>
Soumis le : lundi 19 juin 2017 - 11:14:53
Dernière modification le : dimanche 25 juin 2017 - 01:07:03

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01541508, version 1

Citation

Serge Haddad. Memoryless Determinacy of Finite Parity Games: Another Simple Proof. 2017. <hal-01541508>

Partager

Métriques

Consultations de
la notice

133

Téléchargements du document

34