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Tracking a Varying Number of People
with a Visually-Controlled Robotic Head

Yutong Ban1, Xavier Alameda-Pineda1, Fabien Badeig1, Sileye Ba1,2 and Radu Horaud1

Abstract— Multi-person tracking with a robotic platform is
one of the cornerstones of human-robot interaction. Challenges
arise from occlusions, appearance changes and a time-varying
number of people. Furthermore, the final system is constrained
by the hardware platform: low computational capacity and
limited field-of-view. In this paper, we propose a novel method
to simultaneously track a time-varying number of persons
in three-dimension and perform visual servoing. The comple-
mentary nature of the tracking and visual servoing enables
the system to: (i) track multiple objects while compensating
for large ego-movements and (ii) visually-control the robot to
keep the person-of-interest in the field-of-view. We implement
a variational approximation allowing us to effectively solve the
inference problem through the use of closed-form solutions.
Importantly, this leads to a computationally light system that
runs at 10 FPS. The experiments on the NAO-MPVS dataset
confirm the importance of using motor information when
tracking multiple persons.

I. INTRODUCTION

Robots are currently on the verge of sharing many com-
mon spaces with humans. Exemplar scenarios are the front
desk of a hotel, museum guides, elder assistance or entertain-
ment for children. In all these situations, and many others,
the robotic platform is required to interact with people and,
as part of its low-level behavioral skills, to perform person
tracking and visual servoing. In plain words, this means that
the robot is supposed to keep track of the position of the
people in the scene and, once the person-of-interest has been
chosen, keep its visual focus towards that person.

Visual servoing, or how to perform control based on
visual information, has been a well-studied problem [1], [2].
Different methods have been developed targeting different
applications, such as grasping [3], mobile robot naviga-
tion [4] or autonomous aerial vehicles [5]. In this paper
we are interested in visual servoing with a robot’s head,
which is commonly known as head-eye coordination, and
that has been studied in a wide range of applicative scenarios
with a single object/person of interest [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15] using different methodologies such
as detect and pursuit, image-feature based tracker, or the
extended Kalman filter (EKF).

However, most of the communicative situations of our
everyday life are populated with several people and, even if
not all of them may constantly be persons of interest, robotic
platforms would benefit from joint multiple-person tracking

1INRIA Grenoble Rhône-Alpes, 655 Avenue de l’Europe, 38330 Mont-
bonnot Saint-Martin, France firstname.lastname@inria.fr

2 VideoStitch, 15 Place de la Nation 75011 Paris, France
This work is supported by the ERC Advanced Grant VHIA #340113.

Fig. 1. Schematic overview of the system. The visual servoing module
estimates the optimal robot commands and the expected impact of the
tracked positions. The multi-person tracking module refines the positions
of the persons with the new observations and the information provided by
the visual servoing.

and visual servoing capabilities. Compared to single-person
scenarios, addressing populated environments is challenging
for various reasons. First, computationally cheap face/person
detection algorithms often deliver noisy detections or even
fail to provide a consistent sequence of bounding boxes.
Second, even under the hypothesis of high-quality face
detections, we are still left with the task of associating the
detections at time t with the previous position estimates. For
instance, [16] proposed to use the EKF for each tracked per-
son, often leading to wrong detection-to-person assignmens
and thus estimatin roaming tracks. More computationally
demanding algorithms exist, such as particle-filtering, e.g.
[17], but their use in on-line applications is rather limited.
Third, in out-of-the-lab scenarios, people will continuously
appear and disappear from the field-of-view of the robot, and
it is highly desirable to have a rough estimate of whether the
recently appeared person had previously been seen.

There exist a plethora of methodologies specifically de-
signed to tackle the multiple-object (or person) tracking
problem. For example, [18] tackles the problem by combin-
ing a sparse representation-based appearance model with a
sliding window and [19] proposed the aggregated local flow
descriptor and a dynamic graphical model that is optimized
off-line. To the best of our knowledge, most of the existing
methods are not designed to handle moving cameras, and
even if some of them are partially robust to ego-motions,
since they need additional background features to estimate
camera motions [20]. It is not straightforward to take ego-
motion information into account in case it is available.
As we experimentally show, this can cause a huge drop
on tracking performance, in particular when addressing the
aforedescribed scenarios.



In order to overcome this issue, we propose to include
into the multi-person tracker the expected impact of the
robot’s motion caused by the visual servoing, as schemat-
ically shown in Figure 1. To do that, we track all people
present in the scene in the three-dimensional space, thanks
to the use of a stereo camera rig. Formulating the problem
in the three-dimensional world allows us to compute the
servoing Jacobian in closed-form, meaning that we can easily
estimate the impact of the robot’s motion at any point in
the three-dimensional space, and at the tracked positions
in particular. This estimate is explicitly taken into account
in the tracking formulation. Indeed, we incorporate this
information within the tracking probabilistic model, that is
solved using a variational Bayes formulation [21]. In our
applicative context such a solution is preferred over more
classical methods because the overall system is (i) able to
handle a number of people varying over time, (ii) robust
to appearing/disappearing people and (iii) computationally
cheap since all steps are closed-form.

Our contribution is multi-way. First, we propose a joint
multi-person tracking and visual servoing system that is able
to continuously estimate the three-dimensional position of a
time-varying number of people and to encompass the effect
of the robot’s motion on this estimation. This complements
current studies on visual servoing by providing the ability of
tracking multiple objects, and it also complements current
studies on MOT by compensating for large ego-movements.
Second, we propose a sound probabilistic formulation and
a variational approximation allowing to effectively solve the
inference problem of the filtering distribution while keeping a
reasonably low computational load (the overall system works
at 10 FPS). Third, we report a large experimental study
on the NAO Multi-Person Visual Servoing (NAO-MPVS)
dataset showing, not only that the addressed scenarios are
challenging, but also that including the impact of the robot’s
motion into the tracking probabilistic framework is of utmost
importance for the performance of the system.1

The remaining of the paper is as follows. Section II
presents the probabilistic tracking formulation that is inter-
layered with the visual servoing module detailed in Sec-
tion III. The system’s architecture is described in Section IV,
before discussing the experimental protocol and results in
Section V and drawing some conclusions in Section VI.

II. MULTIPLE-PERSON TRACKING

We adopt the probabilistic techniques for multiple person
tracking recently developed in [21]. Let Nt denote the (time-
varying) number of people at time t, and Xtn denote the
three-dimensional position of the n-th person at time t.
Exploiting three-dimensional position in the joint tracking-
servoing paradigm has two prominent advantages. First, the
extra depth information leads to a more stable tracker that
is also more robust to object occlusions. Second, the three-
dimensional formulation allows us to compute the Jacobian

1https://team.inria.fr/perception/mot-servoing/

associated to the visual servoing in closed form, and there-
fore the expected effect of the robot’s motion into the visual
image can be computed without any prior knowledge about
the person to be tracked (see Section III). This is a crucial
feature of the proposed system, since it allows to encompass
the effect of the robot control in the tracking framework and
therefore to infer the persons’ position taking the robot’s
motion into account.

Aiming to privilege smooth trajectories, we track the
velocity of the person and a bounding box of the face in addi-
tion to the position. More formally, the tracking variable is a
concatenation of these three variables: Mtn = [X>tn,B>tn, Ẋ>tn]>.
These variables are expressed in the coordinate system of
the the robot’s camera. In order to track multiple persons,
we set a probabilistic model (Section II-A) and inspired
from variational Bayes techniques [22] to derive the filtering
distribution (Section II-B). The birth process allowing a time-
varying number of people is described in Section II-C.

A. Probabilistic model

The probabilistic model consists of two main components.
On one hand, the tracking state dynamics delineates the
probabilistic behavior of the hidden state over time. On the
other hand, the observation model associates the hidden state
at current time-instance Mtn to the observations. Both are
described in the following and required in order to compute
the filtering distribution.

1) The state dynamics: models the prior about the tem-
poral evaluation of a person’s tracking state through the
relationship between the two consecutive random variables
Mtn and Mt−1n. Indeed, we assume that the sources move
independently. Regarding the assignment variable, and since
there is no relationship between assignments at different time
steps, they are modeled as independent random variables:

p(Zt ,Mt |Zt−1,Mt−1) =
N

∏
n=1

p(Mtn|Mt−1n)
Kt

∏
k=1

p(Ztk). (1)

Since the assignment variables at different time steps are not
related, the probability of Zt does not depend on Zt−1.

The two modeling choices that need to be done at this
stage are: the prior probability of the assignment variable Ztk
and the dynamic model. A prior, there is no reason to belief
that one source is more prone to generate observations than
another one and we set p(Ztk)=

1
Nt+1 , for all k. Regarding the

dynamics of Mt , we propose a transition model that takes
the robot’s motion explicitly into account. Indeed, let Ctn
denote the expected three-dimensional motion of Xt−1n due
to the robot’s motion (see Section III). Importantly, Ctn can
be computed in closed-form thanks to the three-dimensional
formulation. We concatenate Ctn with a 5-dimensional vector
of zeros (that would correspond to the expected shift of the
bouding box and the velocity), a construct a 8-dimensional
vector that for the sake of simplicity we will also denote by
Ctn. The explicit computation of Ctn, that will be described



in details in Section III, allows us to predict when a person
would appear/disappear and re-appear in the field-of-view.
Notice that, due to the potentially large appearance variation,
the use of the geometric proprioceptive information may
become crucial for the tracking performance. More formally,
we model the transition probability with a Gaussian distri-
bution defined as:

p(Mtn|Mt−1n) = N (Mtn;DMt−1n +Ctn,Λn), (2)

where Ctn is the translation associated to the effect of
the robot control (since Mtn is expressed in the camera
coordinate system, see Section III for details), Λn models
the uncertainty over the dynamics of the n-th source, and D
is the following matrix:

D =

 I3 0 I3
0 I2 0
0 0 I3

 .

This definition of D is equivalent to have a first order model
on the dynamic of the person. In other words, a priori the
bounding box and the velocity do not change, while the
position changes according to the previous velocity.

2) The observation model: provides a principled defi-
nition of the probabilistic relationship between the obser-
vations and the hidden tracking state. Let us assume that
at every time t there are Kt observations, denoted by otk,
k ∈ {1, . . . ,Kt}. The way we extract the observations is de-
tailed in Section IV, here we assume otk = [g>tk,a

>
tk]
>, where

gtk (resp. atk) provides some geometric (resp. appearance)
information of the person.

One of modeling difficulties briefly discussed above is
that, given that the detectors are not perfect, misdetections,
false positive and noisy detections frequently happen. In
order to account for this behavior, we define a categorical
random variable Ztk ∈ {1, . . . ,Nt} assigning observation k at
time t to source Ztk:

p(ot |Zt ,Mt) =
Kt

∏
k=1

p(gtk|Ztk,Mt)p(atk|Ztk), (3)

where Zt and Mt are defined analogously to ot . Notice that,
while the geometric information depends on the hidden state
Mt and on the assignment variable Ztk, the appearance only
depends on the latter. Implicitly we are assuming that the
appearance does not depend on the position in a way that
can be intuitively modeled.

For both the geometric and the appearance observations
we assume that they can belong either to a clutter class (and
write Ztk = 0) or to a person. In other words we extended
the set in which Ztk takes values with a fake garbage class
responsible to attract all noisy observations. Observations
belonging to this extra class follow a uniform distribution
on gtk and on atk. Otherwise, we model the geometric
information with a Gaussian distribution:

p(gtk|Ztk = n,Mt) = N (gtk;PMtn,Σ), (4)

where P = (I5 0) ∈ R5×8 extracts the three-dimensional po-
sition of the source and the size of the bounding box
from the state vector Mtn and Σ models the uncertainty
of the detector. The model for the appearance follows a
Bhattacharya distribution:

p(atk|Ztk = n) =B(atk;a∗tn) =
1

Wλ

exp(−λdB(atk,a∗tn)) , (5)

where λ is a positive skewness parameter, dB(·) is the
Bhattacharya distance between feature vectors, Wλ is the
normalization constant and a∗tn is the appearance model
closest to the observations atk among those that have been
previously associated to person n. This is done so as to inte-
grate the high-performance philosophy of tracking-learning-
detection [23] into the proposed probabilistic model, and
therefore keep on enriching the appearance model with the
newly available observations.

B. Variational inference

In order to merge all the previous observations together
with the current information gathered at time t, we write the
filtering distribution of the hidden random variables:

p(Zt ,Mt |o1:t) ∝ p(ot |Zt ,Mt)p(Zt ,Mt |o1:t−1), (6)

where the second term is the so-called predictive distribution,
which is related to the filtering distribution at time t−1 by:

p(Zt ,Mt |o1:t−1)=p(Zt)
∫

Mt−1

p(Mt |Mt−1)∑
Zt−1

p(Zt−1,Mt−1|o1:t−1).

Since (6) does not accept a computationally tractable
closed-form expression, we choose to use a variational ap-
proximation [22]. If properly designed, such approximations
have the prominent advantage of deriving into closed-form
updates for the a posterior (filtering) probabilities. Concisely,
variational approximations consist on imposing a partition
over the hidden variables, in our case:

p(Zt ,Mt |o1:t)≈
Nt

∏
n=1

q(Mtn)
Kt

∏
k=1

q(Ztk), (7)

and then finding the optimal distributions q(Mtn) and q(Ztk)
in the Kullback-Leibler distance sense.

The optimal posterior distribution of the assignment vari-
able q(Ztk) writes:

q(Ztk = n) = αtkn =
etnεtknatn

∑
N
m=0 etmεtkmatn

, (8)

with εtkn is defined as:{
U (gtk)U (atk) n = 0,
N (gtk,Pµ tn,Σ)e

− 1
2 trace(P>Σ−1PΓtn)B(atk;a1:t,n) n 6= 0,

where trace (·) is the trace operator and µ tn and Γtn are
defined by (9) and (10) below. Intuitively, the assignment
of an observation to a person is based on spatial proximity
between the geometric observation and the current estimated



position as well as the similarity between the observation’s
appearance and the person’s previous appearances.

The a posterior distribution for Mtn turns out to be a
distribution with mean µtn and covariance Γtn given by:

Γtn =

(
Λ
−1
n +

Kt

∑
k=0

αtknP>Σ
−1P

)−1

, (9)

µ tn=Γtn

(
Λ
−1
n (Dµ t−1n +Ctn)+

Kt

∑
k=0

αtknP>Σ
−1gtk

)
(10)

where µ t−1n is the expected position of source n in the
previous time step. These two steps are commonly iterated a
few times at every time step. Remarkably, this strategy can
also be used to learn the parameters of the model, for which
we would then be required to derive the so-called M-step.
The reader is referred to [21] for an exhaustive discussion.

C. Birth process

Until now we assumed that Nt was known, but this is an
unrealistic assumption in real-world applications. We model
the variability of Nt with a track birth process, that allows
creating new “identities”. At time t, after the algorithm has
estimated the a posterior distribution for Zt and Mt we
perform a test to decide whether a new track is created or
not. Intuitively, we test is the observations assigned to the
clutter class in the past Tnew frames are consistent enough
to belong to a person that has not been seen before. Let
H = {gt ′k,at ′k}t

t ′=t−Tnew,Ztk=0 such set of observations. If
p(H )> τ , where τ is the probability that these observations
are generated by clutter, a new track is created, µtNt+1 is
set to the most recent geometric observation in H , and the
appearance observations are assigned to the new source.

III. VISUALLY-CONTROLLED HEAD MOVEMENTS

In this section we detail the visual servoing model allow-
ing the robot to focus its attention on targets of interest. In
order to simplify the discussion we remove the temporal and
source indices t and n. The objective of the visual servoing
module is to compute the required motor velocity to bring the
source of interest to the center of the image. Therefore we
need the Jacobian linking the image space to the motor space.
Since such relationship is difficult to model, classically one
models the motor-to-image Jacobian and then computes the
inverse. In our case, we pass by the three-dimensional world
and compute the Jacobian as the composite of a camera-
world Jacobian and a world-motor Jacobian.

World-to-image Jacobian: We consider the coordinate
system associated to the left camera (at the initial head’s
position) to be the world’s coordinate system. This is an
arbitrary choice that can be replaced with any other static
coordinate system with a simple rigid transformation. The
non-linear mapping between world-coordinate and image-
coordinate is:

V = K
1

X3
X, (11)

where X = (X1,X2,X3)
>, V = (V1,V2)

> and K ∈R2×3 is the
matrix of intrinsic parameters of the pinhole camera model.
The Jacobian of this transformation writes:

V̇ = K
(

1/X3 0 −X1/X2
3

0 1/X3 −X2/X2
3

)
︸ ︷︷ ︸

Jwi(X)

Ẋ, (12)

where Ẋ is the velocity vector at X, and V models the
velocity as seen in the left camera image.

Motor-to-world Jacobian: In order to compute the Ja-
cobian relating the velocity at X and the motor velocity,
we first recall that in a general, the velocity of a three-
dimensional point when the coordinate system is subject to
a rigid motion, namely a rotation ω = [ωx,ωy,ωz]

> and a
translation u = [u1,u2,u3]

>, can be expressed as:

Ẋ = ω×X+u =
(

S(ω) u
)( X

1

)
, (13)

where S(ω) is the skew symmetric twist matrix representing
the exterior product by the three-dimensional vector ω .

In our case, ω and u depend on the motor yaw and pitch
rotation velocities α̇ and β̇ respectively. As shown in the
literature [24], for a rotation velocity α̇ , the velocity at X
can be expressed as:

Ẋ =
(
−S(X) I3

)( ω1
u1

)
α̇, (14)

where the values of ω1 and u1 are acquired through a
calibration phase (see Section IV).

The effect of the pitch is quite similar, with the only
difference that, since we first apply the yaw rotation and then
the pitch rotation, one has to take into account the effect of
β̇ after the rotation induced by α . Formally we write:

Ẋ =
(
−S(X) I3

)( Rω2
−S(Rω2)t+Ru2

)
β̇ , (15)

where ω2 and u2 are obtained through the calibration and R
and t are the rotation and translation vectors associated to
the yaw state α . In all, the motor-to-world Jacobian writes:

Ẋ =
(
−S(X) I3

)
L(α)︸ ︷︷ ︸

Jmw(X)

(
α̇

β̇

)
, (16)

where L(α) ∈ R6×2 is a matrix that implicitly depends on
the calibration parameters ω1, ω2, u1 and u2.

Importantly, since this equation is true for any point in
the scene X, it can be applied to estimate predicted people’s
current position from the previous time step, i.e. Dµt−1n. By
doing this, we compute the velocity of the person due to the
robot’s motion. In other words, at time t, the n-th person
will not be around position Dµt−1n, but close to Dµt−1n +
Jmw(Dµt−1n)

(
α̇

β̇

)
. This is the value given to the translation

due to the robot control:

Ctn = Jmw(Dµt−1n)

(
α̇

β̇

)
. (17)



Fig. 2. Robot data synchronization with NAOLab. The shared buffers
contain time-stamped data. During the synchronization process, the nearest
pairs of data are associated together regarding the time chosen time baseline.

Joint Jacobian: The joint motor-to-image Jacobian is the
product of the Jacobians above:

V̇ = Jim(X)Jmw(X)

(
α̇

β̇

)
= J(X)

(
α̇

β̇

)
. (18)

To summarize, we are expressly interested in two Jacobian
operators. First, the inverse of the motor-to-image Jacobian
maps the desired image shift ∆V into motor velocities:(

α̇c

β̇c

)
= γJ−1(Xs)∆V, (19)

where Xs is the servo position in three-dimension, 0 < γ <
1 is a scale factor and α̇c and β̇c are the yaw and pitch
velocities to control the robot. Second, we can estimate the
impact of these motor velocities onto the people’s position
by computing Ctn using (17) with α̇c and β̇c.

IV. SYSTEM AND ARCHITECTURE

The proposed joint multi-person tracking and visual ser-
voing system is implemented on top of the NAOLab mid-
dleware (see Section IV), which utilizes the synchronization
strategy described in IV to find temporal matches between
proprioceptive and perceptive information. Temporal corre-
spondence is insufficient, and the motor-camera calibration
procedure depicted in IV is used to estimate the spatial
relationship between the motor and the camera coordinate
systems. Finally, some implementation details of the joint
system can be found in Section IV.

NAOLab: The motivation to use a middleware is multi-
fold. First, algorithm implementations can be platform-
independent and thus easily portable. Second, the use of
computational resources external to the platform is transpar-
ent to the developing stage. Third, prototyping is much faster.
For all these reasons, we developed a remote and modular
layer-based middleware architecture named NAOLab.

NAOLab consists of 4 layers: drivers, shared memory, syn-
chronization engine and application programming interface
(API). Each layer is divided into 3 modules devoted to vision,
audio and proprioception respectively. The first layer is
platform-dependent and interfaces the sensors and actuators

through the network using serialized data structures. The
second layer implements a common shared memory that
provides a concurrent interface to deserialize data from the
robot sensors and implements an event-based control for
robot command. The third layer is dedicated to synchro-
nize the audio, video and proprioception data, so that the
joint tracking-servoing system handles temporally coherent
information. The last layer of NAOLab provides a general
programming interface in C++ or Matlab to handle the
robot’s sensor data and manage its actuators.

Synchronization engine of NAOLab: The synchroniza-
tion is implemented in the third NAOLab layer thanks to a
circular data buffer (initialized to a fixed maximum size).
The synchronization engine exploits these circular buffers
together with the robot clock, and builds packages containing
audio, visual and proprioception data whose corresponding
time-stamps are close to each other. Figure 2 depicts the
synchronization process for the multi-person tracking and
visual servoing system (without audio involved), with a time
baseline of 0.1 s and a buffer size of four packages.

As illustrated in Figure 3, the robot produces vision and
proprioception data at different sampling rates. Each type
of data is grabbed by a dedicated parallel process (drivers)
who publishes the serialized data into the shared memory.
After synchronization, the joint tracking and visual servoing
module is able to request data from the shared memory or
send motor-control commands to the motion drivers.

Motor-camera calibration: As previously discussed, the
motor-to-world Jacobian required for the visual servoing
depends on four parameters obtained through calibration: ω1,
ω2, u1 and u2. In order to do that, we first notice that when
the robot’s head rotates from α0 to αi, there is an extrinsic
rotation matrix Q0→i that can be expressed as a function of
ω1 and u1:

Q0→i = I4 + sin(αi−α0)

(
S(ω1) u1

0 0

)
+(1− cos(αi−α0))

(
S(ω1) u1

0 0

)2

.

(20)

At the same time, thanks to the cameras, the external
matrix can be estimated with visual information. Indeed,
the images of a static chessboard are recorded before and
after the rotation, and by manually detecting the chessboard
in the image, one can estimate the extrinsic matrix Q̃0→i.
Based on the previous equation and on the properties of the
trigonometric functions one can write:

J(ω1,u1) = ∑
i

∥∥∥∥2sin(αi−α0)

(
S(ω1) u1

0 0

)
− Q̃0→i + Q̃i→0

∥∥∥∥2

F

where ‖.‖F is the Frobenius norm. This cost function is then
minimized to find the optimum values for the calibration
parameters ω1 and u1. The analogous procedure is repeated
for the calibration parameters ω2 and u2.



Fig. 3. Data temporal flow chart: the drivers published serialized data into
the shared memory. After synchronization, the joint tracking and servoing
algorithm requests the data from which computes the appropriate motor
control command, sent to the motor drivers through the shared memory.

Implementation details: The overall system is imple-
mented in C++, within the middleware framework described
in Section IV. For the sake of reproducibility, we use the
face detector and descriptor built-in on NAO, i.e. provided by
NAO’s API. The geometric observations, gtk are face bound-
ing boxes (image position, width and height). The position
of the bouding box from the left and right camera images is
combined by means of epipolar geometry, and triangulation
to recover 3D face position. The face appearance descriptor
is based on color histograms. Importantly, the detector and
descriptor can be replaced or combined with other techniques
thanks to the flexibility of the proposed probabilistic model
for tracking. The detection and description of faces runs at 10
frames per second (FPS). Since the joint tracking-servoing
computational load is less than 70 ms per time step, we are
able to provide an on-line implementation of the joint multi-
person tracking and visual servoing system.

The proposed variational model is governed by several
parameters. Aiming at providing an algorithm that is dataset-
independent and that features a good trade-off between flex-
ibility and performance, we set the observation covariance
matrix Σ and the state covariance matrix Λn automatically
from the detections. More precisely, both matrices are im-
posed to be diagonal; for Σ, the variances of the three-
dimensional position, of the width, and of the horizontal
(resp. vertical) speed are 1/2, 1/2 and 1/4 of the average de-
tected width (resp. height). The rationale behind this choice
is that we consider that the true detection lies approximately
within the width and height of the detected bounding box.
Regarding Λn , the diagonal entries are half of the tracked
width and 5 times of motor speed. The window length chosen
for the birth process is Tnew = 4.

(a) NAO-MPVS-1-3

(b) NAO-MPVS-2F-2

(c) NAO-MPVS-2F-3

Fig. 4. The distance between tracked person and left camera image center
(in pixels) over time (in frames) for three different sequences.

V. EXPERIMENTS

The proposed joint multi-person tracking and visual ser-
voing system is evaluated on a series of scenarios using
the NAO robot. Both left and right cameras provide VGA
images, which is 640× 480 pixels. Ten different sequences
have been recorded in a regular living room scenario with
its usual lighting source and background, where various
people were moving around. The recorded sequences are thus
challenging because of illumination variations, occlusions,
appearance changes, and people leaving the robot field-of-
view. We tried two different high-level control rules: (i)
the robot should servo the first tracked person and (ii) the
robot should sequentially change the pursuit person every
three seconds. The sequences with the servoing-tracking
results are publicly available 2. The sequences are named
with the following scheme: NAO-MPVS-NS-P, which stands
for NAO Multi-Person Visual Servoing, N is the number
of people present in the sequence (although not constantly
visible), S defines the strategy when N > 1 (“F” for following
the first tracked person and “J” for jumping every three
seconds) and P for the trial. For instance NAO-MPVS-1-
1, is the first trial of a scenario involving one person, while
NAO-MPVS-2J-3 is the third trial of a scenario involving two
people and the control rule set to “jumping”. In the following,
we provide both quantitative and qualitative evaluation of
both the visual servoing and of the multi-person tracking.

Visual servoing: Figure 4 shows the distance in pixels
from the tracked person to the left camera image center over
time, for three different sequences of the dataset, all under
the servoing strategy of following the first tracked person.

2https://team.inria.fr/perception/mot-servoing/



Fig. 5. Left: robot left camera view, red bounding boxes represent the three-dimensional tracking results projected on the image, blue bounding boxes
represents three-dimensional face-detection, green arrows represent people’s self-velocity, magenta arrows represent the velocity due to the robot control.
Right: scenario bird-view, red circles represent current tracking positions and the blue lines represent tracked people’s trajectories. Example results are
from NAO-MPVS dataset sequence NAO-MPVS-3F-1

We can clearly see the oscillation due to the lag between
the person’s motion and the control response. Remarkably,
shortly after each of the person’s movements, the servoing
mechanism position back the person in the image center.
Indeed, after a few seconds the distance between the tracked
person and the image center has decreased to below 30
pixels. Furthermore, if we compute the average distance for
all frames of all sequences (i.e. almost 2,000 frames), we
obtain an average distance of 80.1 pixels, indicating the
that proposed system is able to approximately maintain the
person’s face at the image center.

Qualitatively speaking, Figure 5 shows four frames of
the most challenging sequence in the dataset, NAO-MPVS-
3F-1. This sequence involves three people, among which
the tracked one passes behind the other two. Each of the
frames shows the marked-up left camera image together to
a bird-view representation of the tracked scene. While in the
marked-up image we can see the face detection (blue), the
tracked bounding box with the tracking ID (red), the target
motion due to the robot control (magenta) and the target’s
self-motion (green), in the bird-view we can see the tracking
ID and the trajectories. We can observe different prominent
characteristics of the proposed system. Firstly, the ability to
separate the image motion due to the robot control, from the
image motion due to the natural movements of the target
allows for the estimation of a smooth trajectory in the three-
dimensional space. Secondly, the algorithm is able to keep
a rough estimate of the positions of the targets that are out
of the field of view, and even more important, to correctly
re-assign the identify to a re-appearing person thanks to the
cooperation of the state dynamics and appearance model.
Thirdly, the capacity of the system to add a create a new
track when a new person appears in the field-of-view thanks
to the birth process. Finally, robustness to identify switches,
even with illumination and appearance changes, occlusions
and the robot’s self-motion.

TABLE I
COMPARISON OF TRACKING RESULT W/O AND W CONTROL BY MOT

METRICS ON THREE SEQUENCES WITH INCREASING COMPLEXITY.
↑ : THE HIGHER THE BETTER

↓ : THE LOWER THE BETTER

Sequence Ctrl MOTA(↑) MOTP(↑) FP(↓) FN(↓) IDs(↓)

NAO-MPVS-1-1 w/o 92.1 67.2 9 9 0
w/ 91.3 68.7 10 10 0

NAO-MPVS-2J-1 w/o 52.8 67.1 93 207 2
w/ 81.6 68.0 30 88 0

NAO-MPVS-3J-1 w/o 35.8 62.3 159 433 19
w/ 63.1 62.1 83 268 0

Overall w/o 48.8 65.0 261 649 21
w/ 73.1 65.3 123 366 0

Multi-person tracking: We have also evaluated the im-
pact of the visual servoing from the multi-person tracking
perspective. Aiming to this, we compared the performance
of the system when using/discarding the image-motion due
to the robot control. In more detail, we manually annotated
the position of the persons in three different sequences of in-
creasing complexity (NAO-MPVS-1-1, -2J-1 and -3J-1) and
we computed the following standard multi-person tracking
evaluation metrics [25]: multiple-object tracking accuracy
(MOTA), multiple-object tracking precision (MOTP), false
positives (FP), false negatives or missed targets (FN) and
identity switches (ID). While for MOTA and MOTP are the
higher the better, for the rest are the lower the better. Table I
reports all these measures with (w/) and without (w/o) using
the impact of the robot control (Ctrl) on the targets’ position,
i.e. Ctn.

In light of the results, we can see that indeed NAO-MPVS-
1-1 is an easy sequence. Indeed, the only person to be tracked
does not perform large movements. It is therefore not sur-
prising that (i) the performance measures are very high and
(ii) there is no much performance difference when adding
the impact of the control variable. When the complexity of
the scenario increases (more people to track, larger move-
ments) the proposed tracking framework including motor



information leads to higher accuracy and less FP/FN/IDs
results. This difference is specially remarkable in the case
of the NAO-MPVS-3J-1 sequence, showing that tracking
based only on the appearance and the position of people
is not sufficient when multiple people need to be tracked,
while at the same time the robot performs some movements.
We also notice that the MOTP measure is not strongly
affected by the information provided by the robot control,
and this is expected. Indeed, MOTP measures the tracking
precision in terms of how much do the bounding boxes of the
detected positives overlap with their assigned true positives.
In other words, if a detected positive is too far from all true
positives, it counts as a FP, but is not computed as a precision
error. This confirms our hypothesis that the use of Ctn is
crucial to correct large deviations of the tracking estimates
due to the motor control; And at the same time result
shows that it is not specially helpful to refine these tracking
estimates. In other words, the use of Ctn is complementary
to developing precise tracking methodologies which are able
to provide very accurate bounding box localization once the
large corrections due to the motor-control are applied.

Overall the proposed joint multiple-person tracking and
visual servoing framework leads to promising results even
in sequences which contain large and frequent robot motions
under challenging illumination conditions. Remarkably, the
method is able to systematically keep the right person iden-
tity for all three sequences. This feature is highly desirable
for numerous applications and critically depends upon the
use of motor information during tracking.

VI. CONCLUSIONS

This paper proposes a novel joint variational multi-person
tracking and visual servoing system which is able to con-
tinuously estimate the three-dimensional position of a time-
varying number of people and to encompass the effect of the
robot’s ego-motion. In addition, we propose a probabilistic
formulation and a variational approximation allowing to
effectively solve the inference problem while keeping a rea-
sonably low computational cost (the overall systems works at
10 FPS). Furthermore, thanks to the motor information, the
system can separate people’s self-motion from the robot’s
ego-motion, leading to more robust tracking capabilities.
The experimental study on the NAO Multi-Person Visual
Servoing dataset confirms our hypothesis that including the
robot’s ego-motion into the tracking probabilistic framework
is of utmost importance for the performance of the system.
In the future, we will investigate (i) the calibration of other
motors (e.g. robot’s leg-joint), thus compensating for the full
ego-motion and (ii) the combination of audio information to
construct a tracking system based on audio-visual informa-
tion, thus able to track outside the camera field-of-view.
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