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Abstract

We tackle the problem of template estimation when data have been
randomly deformed under a group action in the presence of noise. In
order to estimate the template, one often minimizes the variance when
the influence of the transformations have been removed (computation of
the Fréchet mean in the quotient space). The consistency bias is defined
as the distance (possibly zero) between the orbit of the template and the
orbit of one element which minimizes the variance. In the first part, we
restrict ourselves to isometric group action, in this case the Hilbertian
distance is invariant under the group action. We establish an asymptotic
behavior of the consistency bias which is linear with respect to the noise
level. As a result the inconsistency is unavoidable as soon as the noise
is enough. In practice, template estimation with a finite sample is often
done with an algorithm called "max-max". In the second part, also in the
case of isometric group finite, we show the convergence of this algorithm
to an empirical Karcher mean. Our numerical experiments show that the
bias observed in practice can not be attributed to the small sample size
or to a convergence problem but is indeed due to the previously studied
inconsistency. In a third part, we also present some insights of the case
of a non invariant distance with respect to the group action. We will see
that the inconsistency still holds as soon as the noise level is large enough.
Moreover we prove the inconsistency even when a regularization term is
added.
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1 Introduction

1.1 General Introduction
Template estimation is a well known issue in different fields such as statis-
tics on signals [KSW11], shape theory, computational anatomy [GMT00,
JDJG04, CMT+04] etc. In these fields, the template (which can be viewed
as the prototype of our data) can be (according to different vocabulary)
shifted, transformed, wrapped or deformed due to different groups act-
ing on data. Moreover, due to a limited precision in the measurement,
the presence of noise is almost always unavoidable. These mixed effects
on data lead us to study the consistency of algorithms which claim to
compute the template. A popular algorithm consists in the minimiza-
tion of the variance, in other words, the computation of the Fréchet mean
in quotient space. This method has been already proved to be inconsis-
tent [BC11, MHP16, DATP17]. In [BC11] the authors proves the incon-
sistency with a lower bound of the expectation of the error between the
original template and the estimated template with a finite sample, they
deduce that this expectation does not go to zero as the size of the sample
goes to infinity. This work was done in a functional space, where functions
only observed at a finite number of points of the functions were observed.
In this case one can model these observable values on a grid. When the
resolution of the grid goes to zero, one can show the consistency [PZ16]
by using the Fréchet mean with the Wasserstein distance on the space
of measures rather than in the space of functions. However, in (medical)
images the number of pixels or voxels is finite.

In [MHP16], the authors demonstrated the inconsistency in a finite
dimensional manifold with Gaussian noise, when the noisel level tends
to zero. In our previous work [DATP17], we focused our study on the
inconsistency with Hilbert Space (including infinite dimensional case) as
ambient space. This current paper is an extension of a conference pa-
per [DPA17].

1.2 Why Using a Group Action? Comparison
with the Standard Norm

In the following, we take a simple example which justifies the use of
the group action in order to compare the shape of two functions:

On Figure 1, suppose that you want to compare these functions. The
simplest way to compare f0 with f1 would be to compute the L2-norm (or
any other norm) of f0 − f1, if we do that we have that ‖f0 − f1‖ ' 0.6.
Likewise ‖f0 − f2‖ ' 0.6, therefore the norm tells us that f0 is at the
same distance from f1 and from f2. Yet, our eyes would say that f0, f1

have the same shape, contrarily to f0 and f2. Therefore the simple use of
the L2-norm in the space of functions is not enough. To have a relevant
way to compare functions, one can register functions first. Firstly, we
estimate the better time translation which aligns f0 and f1 and secondly,
we compute the L2-norm after this alignment step. On this example, we
find that the distance is now '0.02. On the contrarily, after alignment the
distance between f0 and f2 is still '0.6. With this new way of comparing
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functions, the functions f0 looks like f1 but do not look like f2. This fits
with our intuition. That is why we use a group action in order to perform
statistics. In the following paragraph, we precise how to do it in general.

This idea of using deformations/transformation in order to compare
things is not new. It was already proposed by Darcy Thompson [Tho42]
in the beginning of the 20th century, in order to classify species.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5
f0
f1
f2

Figure 1: Three functions defined on the interval [0, 1]. The blue one (f0) is a
step function, the red one (f1) is a translated version of the blue one when noise
has been added, and the green one (f3) is the null function.

1.3 Settings and Notation
In this paper, we suppose that observations belong to a Hilbert space
(M, 〈·, ·〉), we denote by ‖ · ‖ the norm associated to the dot product 〈·, ·〉.
We also consider a group of transformation G which acts on M the space
of observations. This means that g′ · (g · x) = (g′g) · x and e · x = x for
all x ∈ M , g, g′ ∈ G, where e is the identity element of G. Note that in
this article, g · x is the result of the action of g on x, and · should not to
be confused with the multiplication of real numbers noted ×

The generative model is the following: we transform an unknown tem-
plate t0 ∈M with Φ a random and unknown element of the group G and
we add some noise. Let σ be a positive noise level and ε a standardized
noise: E(ε) = 0, E(‖ε‖2) = 1. Moreover we suppose that ε and Φ are inde-
pendent random variables. Finally, the only observable random variable
is:

Y = Φ · t0 + σε. (1)

This generative model is commonly used in Computational anatomy
in diverse frameworks, for instance with currents [DPC+14, GM01], vari-
folds [Cha13], LDDMM on images [BMTY05] but also in functional data
analysis [KSW11]. All these works are applied in different spaces, for in-
stance, the varifold builds an embedding of the surfaces into an Hilbert
space, and a group of diffeomorphisms have the ability of deform these
surfaces. Supposing a general group action on a space with the generative
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model (1) allows us to embed all these various situations into one abstract
model, and to study template estimation in this abstract model.

Example of noise: if we assume that the noise is independent and
identically distributed on each pixel or voxel with a standard deviation w,
then σ =

√
Nw, where N is the number of pixels/voxels. However, the

noise which we consider can be more general: we do not require the fact
that the noise is independent over each region of the space M .

Note that the inconsistency of Template estimation can be also studied
with an alternative generative model, called backward model where Y =
Φ ·(t0 +σε) [DATP17]. Some authors also use the term perturbation model
see [Huc11, Roh03, Goo91].

Quotient space: the random transformation of the template by the
group leads us to project the observation Y into the quotient space. The
quotient space is defined as the set containing all the orbit [x] = {g ·x, g ∈
G} for x ∈M . The set which is constituted of all orbits is call the quotient
space M by the group G and is noted by:

Q = M/G = {[x], x ∈M}.

As we want to do statistics on this space, we aim to equip the quotient
with a metric. One often requires that dM the distance in the ambient
space is invariant under the group action G, this means that

∀m,n ∈M, ∀g ∈ G dM (g ·m, g · n) = dM (m,n).

If dM is invariant and if the orbits are closed sets (if the orbits are not
closed sets, it is possible to have dQ([a], [b]) = 0 even if [a] 6= [b], in this
case we call dQ a pseudo-distance. Nevertheless, this has no consequence
in this paper if dQ is only a pseudo-distance), then

dQ([x], [y]) = inf
g∈G

dM (x, g · y),

is well defined, and dQ is a distance in the quotient space. The quotient
distance dQ([x], [y]) is the distance between x and y′ where y′ is the reg-
istration of y with respect to x. We say in this case that y′ is in optimal
position with respect to x.

One particular distance in the ambient space M , which we use in
all this article, is the distance given by the norm of the Hilbert space:
dM (a, b) = ‖a − b‖. Moreover we say that G acts isometrically on M ,
if x 7→ g · x is a linear map which leaves the norm unchanged. In this
case dM the distance given by the norm of the Hilbert space is invariant
under the group action. The quotient (pseudo)-distance is, in this case
(see fig. 2), dQ([a], [b]) = inf

g∈G
‖a− g · b‖.

Remark 1.1. When G acts isometrically on M a Hilbert space, by ex-
pansion of the squared norm we have:

dQ([a], [b])2 = ‖a‖2 − 2sup
g∈G
〈a, g · b〉+ ‖b‖2
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•
0

•

•

p = (0, 1)

q = (−2, 0) dQ([p], [q]) = 1

Figure 2: Due to the invariant action, the orbits are parallel. Here the orbits are
circles centred at 0. This is the case when the group G is the group of rotations.

Thus, even if the quotient space is not a linear space, we have a “po-
larization identity” in the quotient space:

sup
g∈G
〈a, g · b〉 =

1

2

(
‖a‖2 + ‖b‖2 − d2

Q([a], [b]
)

=
1

2

(
d2
Q([a], [0]) + d2

Q([b], [0])− d2
Q([a], [b]

)
(2)

When the distance given by the norm is invariant under the group
action, we define the variance of the random orbit [Y ] as the expectation
of the (pseudo)-distance between the random orbit [Y ] and the orbit of a
point x in M :

F (x) = E(d2
Q([x], [Y ])) = E( inf

g∈G
‖g · x− Y ‖2) = E( inf

g∈G
‖x− g · Y ‖2).

Note that F (x) is well defined for all x ∈M because E(‖Y ‖2) is finite.
Moreover, since F (g · x) = F (x), for all x ∈M and g ∈ G, the variance F
is well defined in the quotient space: [x] 7→ F (x) does have a sense.

Moreover, in presence of a sample of the observable variable Y noted
Y1, . . . , Yn, one can define the empirical variance of a point x in M :

Fn(x) =

n∑
k=1

( inf
g∈G
‖g · x− Yi‖2) =

n∑
k=1

( inf
g∈G
‖x− g · Yi‖2).

Definition 1.2. Template estimation is performed by minimizing Fn :

t̂0n = argmin
x∈M

Fn,

In order to study this estimation method, one can look the limit of this
estimator when the number of data n tends to +∞, in this case, the
estimation becomes:

t̂0∞ = argmin
x∈M

F

If m? ∈ H minimizes F , then [m?] is called a Fréchet mean of [Y ].

6



Definition 1.3. We say that the estimation is consistent if t0 minimizes
F . Moreover the consistency bias, noted CB, is the (pseudo)-distance
between the orbit of the template [t0] and [m?]: CB = dQ([t0], [m?]). If
such a m? does not exist, then the consistency bias is infinite.

Note that, if the action is not isometric and is not either invariant, a priori
dQ is no longer a (pseudo)-distance in the quotient space (this point is
discussed in Section 3). However one can still define F and wonder if the
minimization of F is a consistent estimator of t0. In this case, we call F
a pre-variance.

1.4 Questions and Contributions
This setting leads us to wonder about few things listed below:

Questions:

• Is t0 a minimum of the variance or the pre-variance?

• What is the behavior of the consistency bias with respect to the
noise level?

• How to perform such a minimization of the variance? Indeed, in
practice we have only a sample and not the whole distribution.

Contribution: In the case of an isometric action, we provide a Taylor
expansion of the consistency bias when the noise level σ tends to infinity.
As we do not have the whole distribution, we minimize the empirical vari-
ance given a sample. An element which minimizes this empirical variance
is called an empirical Fréchet mean. We already know that the empirical
Fréchet mean converges to the Fréchet mean when the sample size tends to
infinity [Zie77]. Therefore our problem is reduced to finding an empirical
Fréchet mean with a finite but sufficiently large sample. One algorithm
called the “max-max” algorithm [AAT07] aims to compute such an em-
pirical Fréchet mean. We establish some properties of the convergence
of this algorithm. In particular, when the group is finite, the algorithm
converges in a finite number of steps to an empirical Karcher mean (a
local minimum of the empirical variance given a sample). This helps us
to illustrate the inconsistency in this very simple framework.

We would like to insist on this point: the noise is created in the ambient
space with our generative model and the computation of the Fréchet mean
is done in the quotient space, this interaction induces an inconsistency.
On the opposite, if one models the noise directly in the quotient space
and compute the Fréchet mean in the quotient space, we have no reason
to suspect any inconsistency.

Moreover it is also possible to define and use isometric actions on
curves [HCG+13, KSW11] or on surfaces [KKD+11] where our work can
be directly applied. The previous works related to the inconsistency of
template estimation [BC11, MHP16, DATP17] focused on isometric ac-
tion, which is a restriction to real applications. That is why we provide,
in Section 3, some insights of the non invariant case: the inconsistency
also appears as soon as the noise level is large enough.
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This article is organized as follows: Section 2 is dedicated for isomet-
ric action. More precisely, in Section 2.2, we study the presence of the
inconsistency and we establish the asymptotic behavior when the noise
parameter σ tends to∞. In Section 2.4 we detail the max-max algorithm
and its properties. In Section 2.5 we illustrate the inconsistency with
synthetic data. Finally in Section 3, we prove the inconsistency for more
general group action, when the noise level is large enough. We do it in
two settings, the first one is that the group contains a subgroup acting
isometrically on M , the second one is that the group acts linearly on the
space M .

2 Inconsistency of Template Estimation
with an Isometric Action

2.1 Congruent Section and Computation of Fréchet
Mean in Quotient Space
Given pointsm and y, there is a priori no closed formed expression in order
to compute the quotient distance inf

g∈G
‖g ·m−y‖. Therefore computing and

minimizing the variance in the quotient does not seem straightforward.
There is one case where it may be possible: the existence of a congruent
section. We say that s : Q→M is a section if π◦s = Id, where π : M → Q
is the canonical projection into the quotient space. Moreover we say that
the section s is congruent if:

∀o, o′ ∈ Q ‖s(o)− s(o′)‖ = dQ(o, o′).

Then S = s(Q) the image of the quotient by the section is a part of
M which has an interesting property:

∀p, q ∈ S, ‖p− q‖ = dQ([p], [q]).

In other words, the section gives us a part of M containing a point of
each orbit such that all points in S are already registered. Moreover, if s
is a section, s′ : [m] 7→ g ·s([m]) is also a section, without loss of generality
we can assume that t0 = s([t0]).

In this case, the variance is equal to:

F (m) = E(‖s([m])− s([Y ])‖2),

where we recognize the variance of the random variable s([Y ]). As we
know that the element which minimizes the variance in a linear space is
given by the expected value, we have that:

F (m) ≥ F (E(s([Y ]))).

Moreover this inequality is strict if and only if m and E(s([Y ])) are
not in the same orbit.

Therefore, we have a method in order to know if the estimation is con-
sistent or not: computing E(s([Y ])) and verifying if t0 and E(s([Y ])) are in
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the same orbit, and the consistency bias is given by dQ([t0], [E(s([Y ]))]).
Moreover if we take m ∈ S, we have F (m) = E(‖m − s([Y ])‖2) and
it is now straightforward that F |S the restriction of F to S is differen-
tiable on S (We say that F |S is differentiable on S, even if S is not
open, because m 7→ E(‖m− s([Y ])‖2) is defined and differentiable on M ,
and is equal to F |S), and that ∇F |S(m) = m − E(s([Y ]) in particular
‖∇F |S(t0)‖ = ‖t0 − E(s([Y ]))‖ gives us the value of the bias.

Example 2.1. The action of rotations: G = SO(n) acts isometrically on
M = Rn. We notice that the quotient distance is dQ([x], [y]) = |‖x‖−‖y‖|.
We can check that s([x]) = ‖x‖v is a section for v an unitary vector.
Therefore the computation of the bias is given by dQ([t0], [E(s([Y ])]) =
|E(‖Y ‖)− ‖t0‖)|.

Unfortunately, the congruent section generally does not exist. Let us give
an example:

Example 2.2. Taking N ∈ N with N ≥ 3, we consider the action of G =
Z/NZ onM = RN by time translation, for k̄ ∈ Z/NZ, and (x1, x2, . . . , xN ):

k̄ · (x1, x2, . . . , xN ) = (x1+k, x2+k, . . . , xN+k),

where indexes are taken modulo N . If we take p1 = (0, 5, 0, . . . , 0), p2 =
(0, 3, 2, 0, . . . , 0), p3 = (2, 3, 0, . . . , 0). By hand we can check that there
is no x ∈ [p1], y ∈ [p2] and z ∈ [p3] such that ‖x − y‖ = dQ([p1], [p2]),
‖x − z‖ = dQ([p1], [p3]), and ‖y − z‖ = dQ([p2], [p3]). Thus, a congruent
section in Q = M/G does not exists.

We can generalize this simple example by taking a non finite group:

Example 2.3. Let us take M = L2(R/Z) the set of 1-periodic functions
such that

∫ 1

0
f2(t)dt < +∞. G = R/Z acts on L2(R/Z) by time translation

defined by:

τ ∈ R/Z, f ∈ L2(R/Z) 7→ fτ withf(x) = f(x+ τ).

Then a section in Q = M/G does not exists.

Proof. Let us take f1 = 1[ 1
4
, 3
4

], f2 = f1 + 21[ 1
4
, 1
4

+η] and f2 = f1 +

21[ 1
4

+η, 1
4

+2η] for some η ∈ (0, 1
4
) (see fig. 3). Let us suppose that a section

s exists, then without loss of generality we can assume that s([f1]) = f1,
then we should have ‖f1 − s([f2])‖ = ‖s([f1])− s([f2])‖ = dQ([f1], [f2]) in
other words, s([f2]) should be registered with respect to f1. For τ ∈ R/Z
we can verify that ‖f1 − τ · f2‖ ≥ ‖f1 − f2‖ and that this inequality is
strict as soon as τ 6= 0. Then f2 is the only element of [f2] registered with
f1 then s([f2]) = f2. Likewise for s([f3]) = f3, then we should have:

dQ([f2], [f3]) = ‖f2 − f3‖,

However it is easy to verify that d2
Q([f2], [f3]) ≤ ‖η · f2 − f3‖2 = 2η < 8η = ‖f2 − f3‖2 = dQ([f2], [f3]).

This is a contradiction. Therefore, a congruent section does not exist.

9



0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

(a) f1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

(b) f2

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

(c) f3

Figure 3: Representation of the three functions f1, f2 and f3 with h = 0.05. the
functions f2 and f3 are registered with respect to f1. However f2 and f3 are
not registered with each other, since it is more profitable to shift f2 in order to
align the highest parts of f2 and f3.

When the congruent section exists, then the quotient can be included
in a part S of the ambient space M and the metric dM and dQ are cor-
responding. The existence of a congruent section indicates us that the
quotient space is not so complicated. Indeed when there is an existence of
a congruent section, the quotient space is embedded in the ambient space
with respect to the distances in the quotient space and in the ambient
space. In that case computations are easier, projecting data on this part
S and taking the mean. Then when such a congruent section does not
exist, computing the Fréchet mean in quotient space is not so obvious.
However, we can established proofs of inconsistency which are less tight.
In this article we prove that the method is inconsistent when the noise is
large.

2.2 Inconsistency and Quantification of the Con-
sistency Bias
We start with Theorem 2.4 which gives us an asymptotic behavior of the
consistency bias when the noise level σ tends to infinity. One key notion
in Theorem 2.4 is the concept of fixed point under the action G: a point
x ∈ M is a fixed point if for all g ∈ G, g · x = x. We require that the
support of the noise ε is not included in the set of fixed points. However,
this condition is almost always fulfilled. For instance in Rn the set of fixed
points under a linear group action is a null set for the Lebesgue measure
(unless the action is trivial: g · x = x for all g ∈ G but this situation is
irrelevant).

Theorem 2.4. Let us suppose that the support of the noise ε is not in-
cluded in the set of fixed points under the group action. Let Y be the
observable variable defined in Equation (1). If the Fréchet mean of [Y ] ex-
ists, then we have the following lower and upper bounds of the consistency
bias noted CB:

σK − 2‖t0‖ ≤ CB ≤ σK + 2‖t0‖, (3)

10



where K = sup
‖v‖=1

E
(

sup
g∈G
〈v, g · ε〉

)
∈ (0, 1], K is a constant which depends

only of the standardized noise and of the group action. The consistency
bias has the following asymptotic behavior when the noise level σ tends to
infinity:

CB = σK + o(σ) as σ → +∞. (4)

In the following we note by S the unit sphere of M . For v ∈ S, we call

θ(v) = E
(

sup
g∈G
〈v, g · ε〉

)
, so that K = sup

v∈S
θ(v). The sketch of the proof

is the following:

• K > 0 because the support of ε is not included in the set of fixed
points under the action of G.

• K ≤ 1 is the consequence of the Cauchy-Schwarz inequality.

• The proof of Inequalities (3) is based on the triangular inequalities:

‖m?‖ − ‖t0‖ ≤ CB = inf
g∈G
‖t0 − g ·m?‖ ≤ ‖t0‖+ ‖m?‖,

where m? minimizes F : having a piece of information about the
norm of m? is enough to deduce a piece of information about the
consistency bias.

• The asymptotic Taylor expansion of the consistency bias (4) is the
direct consequence of inequalities (3).

Proof of Theorem 2.4. We note S the unit sphere inM . In order to prove
that K > 0, we take x in the support of ε such that x is not a fixed point
under the action of G. It exists g0 ∈ G such that g0 · x 6= x. We note
v0 = g0·x

‖x‖ ∈ S, we have 〈v0, g0 · x〉 = ‖x‖ > 〈v0, x〉 and by continuity of the
dot product it exists r > 0 such that: ∀y ∈ B(x, r) 〈v0, g0 · y〉 > 〈v0, y〉
as x is in the support of ε we have P(ε ∈ B(x, r)) > 0, it follows:

P
(

sup
g∈G
〈v0, g · ε〉 > 〈v0, ε〉

)
> 0. (5)

Thanks to Inequality (5) and the fact that supg∈G 〈v0, g · ε〉 ≥ 〈v0, ε〉
we have:

θ(v0) = E
(

sup
g∈G
〈v0, g · ε〉

)
> E(〈v0, ε〉) = 〈v0,E(ε)〉 = 〈v0, 0〉 = 0.

Then we get K ≥ θ(v0) > 0. Moreover, if we use the Cauchy-Schwarz
inequality:

K ≤ sup
v∈S

E(‖v‖ × ‖ε‖) ≤ E(‖ε‖2)
1
2 = 1.

In order to prove Inequalities (3), we use the "polar" coordinates of
a point in M (see fig. 4), every point in M can be represented by (r, v)
where r ≥ 0 is the radius, and v belong to S the unit sphere in M , v
represents the “angle”. We compute F (m) as a function of (r, v). In a
first step, we minimize this expression as a function of r, in a second step
we minimize this expression as a function of v. This makes appear the
constant K.
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m′
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m′′

?
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?

Figure 4: We minimize the variance on each half-line R+v where ‖v‖ = 1.
The element which minimizes the variance on such a half-line is λ̃(v)v, where
λ̃(v) ≥ 0. We get a surface in M by S ∈ v 7→ λ̃(v)v (which is a curve in this
figure since we draw it in dimension 2). The Proof of Theorem 2.4 states that
if [m?] is a Fréchet mean then m? is an extreme point of this surface. On this
picture there are four extreme points which are in the same orbit: we took here
the simple example of the group of rotations of 0, 90, 180 and 270 degrees.

As we said, let us take r ≥ 0 and v ∈ S, we expand the variance at
the point rv:

F (rv) = E
(

inf
g∈G
‖rv − g · Y ‖2

)
= r2 − 2rE

(
sup
g∈G
〈v, g · Y 〉

)
+ E(‖Y ‖2).

(6)
Indeed ‖g · Y ‖ = ‖Y ‖ thanks to the isometric action. We note x+ =

max(x, 0) the positive part of x. Moreover we define the two following
functions:

λ(v) = E(sup
g∈G
〈v, g · Y 〉) = E(sup

g∈G
〈g · Y, v〉) and λ̃(v) = λ(v)+ for v ∈ S,

since that f : x ∈ R+ 7→ x2 − 2bx + c reaches its minimum at the point
r = b+ and f(b+) = c− (b+)2, the r? ≥ 0 which minimizes (6) is λ̃(v) and
the minimum value of the variance restricted to the half line R+v is:

F (λ̃(v)v) = E(‖Y ‖2)− λ̃(v)2.

To find [m?] the Fréchet mean of [Y ], we need to maximize λ̃(v)2 with
respect to v ∈ S:

m? = λ(v?)v? with v? ∈ argmax
v∈S

λ(v).

Note that we remove the positive part and the square because argmaxλ =
argmax (λ+)2 indeed λ takes a non negative value. In order to prove it
let us remark that:

λ(v) ≥ E(〈v,Φ · t0 + ε〉) = 〈v,E(Φ · t0)〉+ 0,
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then there is two cases: if E(Φ · t0) = 0 then for any v ∈ S we have
λ(v) ≥ 0, if w = E(Φ · t0) 6= 0 then we take v = w

‖w‖ ∈ S, and we get

λ(v) ≥
〈

w
‖w‖ , w

〉
= ‖w‖ ≥ 0.

As we said in the sketch of the proof we are interested in getting
information about the norm of ‖m?‖:

‖m?‖ = λ(v?) = sup
v∈S

λ.

Let v ∈ S, we have: −‖t0‖ ≤ 〈v, gΦ · t0〉 ≤ ‖t0‖ because the action is
isometric. Now we decompose Y = Φ · t0 + σε and we get:

λ(v) = E
(

sup
g∈G
〈v, g · Y 〉

)
= E

(
sup
g∈G

(〈v, g · σε〉+ 〈v, gΦ · t0〉)
)

(7)

λ(v) ≤ E
(

sup
g∈G

(〈v, g · σε〉+ ‖t0‖)
)

= σE
(

sup
g∈G
〈v, g · ε〉

)
+ ‖t0‖ (8)

λ(v) ≥ E
(

sup
g∈G

(〈v, g · σε〉)− ‖t0‖
)

= σE
(

sup
g∈G
〈v, g · ε〉

)
− ‖t0‖. (9)

By taking the largest value in these inequalities with respect to v ∈ S,
we get by definition of K:

− ‖t0‖+ σK ≤ ‖m?‖ = sup
v∈S

λ(v) ≤ ‖t0‖+ σK. (10)

Moreover we recall the triangular inequalities:

‖m?‖ − ‖t0‖ ≤ CB = inf
g∈G
‖t0 − g ·m?‖ ≤ ‖t0‖+ ‖m?‖, (11)

Thanks to (10) and to (11), Inequalities (3) are proved.

2.3 Remarks about Theorem 2.4 and Its Proof
We can ensure the presence of inconsistency as soon as the signal to noise
ratio satisfies ‖t0‖

σ
< K

2
. Moreover, if the signal to noise ratio verifies

‖t0‖
σ

< K
3

then the consistency bias is not smaller than ‖t0‖ i.e.,: CB ≥
‖t0‖. In other words, the Fréchet mean in quotient space is too far from
the template: the template estimation with the Fréchet mean in quotient
space is useless in this case. In [DATP17] we also gave lower and upper
bounds as a function of σ but these bounds were less informative than
bounds given by Theorem 2.4. These bounds did not give the asymptotic
behaviour of the consistency bias. Moreover, in [DATP17] the lower bound
goes to zero when the template becomes closed to fixed points. This may
suggest that the consistency bias was small for this kind of template. We
prove here that it is not the case.

Note that Theorem 2.4 is not a contradiction with [KSW11] where the
authors proved the consistency of template estimation with the Fréchet
mean in quotient space for all σ > 0. Indeed their noise was included in
the set of constant functions which are the fixed points under their group
action.

The constant K appearing in the asymptotic behaviour of the consis-
tency bias (4) is a constant of interest. We can give several (but similar)
interpretations of K:
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• It follows from Equation (3) that K is the consistency bias with a
null template t0 = 0 and a standardized noise (σ = 1).

• From the proof of Theorem 2.4 we know that 0 < K ≤ E(‖ε‖) ≤ 1.
On the one hand, if G is the group of rotations then K = E(‖ε‖),
because for all v s.t. ‖v‖ = 1, supg∈G 〈v, gε〉 = ‖ε‖, by aligning
v and ε. On the other hand if G acts trivially (which means that
g · x = x for all g ∈ G, x ∈ M) then K = 0. The general case
for K is between two extreme cases: the group where the orbits are
minimal (one point) and the group for which the orbits are maximal
(the whole sphere). We can state that the more the group action
has the ability to align the elements, the larger the constant K is
and the larger the consistency bias is.

• The squared quotient distance between two points is:

dQ([a], [b])2 = ‖a‖2 − 2 sup
g∈G
〈a, g · b〉+ ‖b‖2,

thus the larger supg∈G 〈a, g · b〉, the smaller dQ([a], [b]). K = 1 −
1
2

inf
‖v‖=1

E(d2
Q([v], [ε])), encodes the level of contraction of the quotient

distance (or folding). The larger K is, the more contracted the
quotient space is.

One disadvantage of Theorem 2.4 is that it ensures the presence of
inconsistency for σ large enough but it says nothing when σ is small, in
this case one can refer to [MHP16] or [DATP17].

We can remark that this Theorem can be used as an alternating proof
the following Theorem (which was already proved in [DATP17]), proving
and quantifying inconsistency when the template is a fixed point:

Corollary 2.5. Let G acting isometrically on M an Hilbert space. Let t0
be a fixed point, and ε a standardized noise which support is not included
in the set of fixed points. Then estimating the template with the Fréchet
mean is inconsistent. Moreover if the Fréchet mean in quotient space exists
then the consistency bias is equal to:

CB = σK.

Indeed for t0 = 0 which is a particular fixed point we have CB = σK
thanks to Theorem 2.4. If t0 is a fixed point non necessarily equal to 0,
we can define Y ′ = Y − t0 = 0 + σε, in this random variable 0 is the
template we can apply the formula CB = σK to the random variable Y ′,
which concludes.

In the proof of Theorem 2.4, we have seen that the minimum of the
variance restricted to the half-line R+v for v ∈ S, was

E(‖Y ‖2)−

((
E
(

inf
g∈G
〈v, g · Y 〉

))+
)2

.

therefore λ̃(v) =

(
E
(

inf
g∈G
〈v, g · Y 〉

))+

is a registration score: λ̃(v) tells

you how much it is a good idea to search the Fréchet mean of [Y ] in the
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direction pointed by v: the more λ̃(v) is large, the more v is a good choice.
On the contrary when this value is equal to zero, it is useless to search
the Fréchet mean in this direction.

Likewise, for v ∈ S, θ(v) = E(sup
g∈G
〈g · v, ε〉) is a registration score with

respect to the noise, the larger θ(v), the more the unit vector v looks like
to the noise ε after registration.

If [m?] is a Fréchet mean of [Y ] we have seen that its norm verifies:

‖m?‖ = sup
‖v‖=1

E(sup
g∈G
〈v, g · Y 〉).

Then if there is two different Fréchet means of [Y ] noted [m?] and [n?],
we can deduce that ‖m?‖ = ‖n?‖. Even if there is no uniqueness of the
Fréchet mean in the quotient space, we can state that the representants
of the different Fréchet means have all the same norm.

Remark 2.6. We can also wonder if the converse of Theorem 2.4 is true:
if ε is a non biased noise always included in the set of fixed point, is [t0]
a Fréchet mean of [Φ · t0 + σε]? A simple computation show that t0 is a
minimum of the variance:

F (m) = E
(

inf
g∈G
‖m− g · (Φt0 + σε)‖2

)
= ‖m‖2 + E(‖Φt0 + σε‖2)− 2E(sup

g
〈m, gΦt0〉+ 〈m, gσε〉)

= ‖m‖2 + E(‖Φt0 + σε‖2)− 2E
(

sup
g∈G
〈m, g · t0〉

)
− 2 〈m,E(σε)〉

= ‖m‖2 + E(‖Φt0 + σε‖2)− 2E
(

sup
g∈G
〈m, g · t0〉

)
(12)

We see that the element m which minimizes (12) does not depend of σ,
in particular we can assume σ = 0, and wonder which elements minimizes
F (m) = E(infg∈G ‖m− gΦ · t0‖2), it becomes clear that only the points in
the orbit of t0 can minimize this variance. Then when ε is included in
the set of fixed points, the estimation is always consistent for all σ. This
is an alternative proof of the Theorem of consistency done by Kurtek et
al. [KSW11].

In the proof of Theorem 2.4, we have seen that the direction of the
Fréchet mean of [Y ] is given by the supremum of this quantity (7):

E
(

sup
g∈G
〈v, g · σε〉+ 〈v, gΦ · t0〉

)
.

This Equation is a good illustration of the difficulty to compute the
Fréchet mean in quotient space. Indeed, we have on one side the contri-
bution of the noise 〈v, g · σε〉 and on the other side the contribution of the
template 〈v, gΦ · t0〉, and we take the supremum of the sum of these two
contributions over g ∈ G. Unfortunately the supremum of the sum of two
terms is not equal to the sum of the supremum of each of these terms.
Hence, it is difficult to separate these two contributions. However, we can
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intuit that when the noise is large, 〈v, gσε〉 prevails over 〈v, gΦ · t0〉, and
the use of the Cauchy-Schwarz inequality in Equations (8) and (9) proves
it rigorously. We can conclude that, when the noise is large, the direction
of the Fréchet mean in the quotient space depends more on the noise than
on the template.

2.4 Template Estimation with the Max-Max Al-
gorithm
2.4.1 Max-Max Algorithm Converges to a Local Minima
of the Empirical Variance

Section 2.2 can be understood as follows: if we want to estimate the
template by minimizing the Fréchet mean with quotient space, then there
is a bias. This supposes that we are able to compute such a Fréchet mean.
In practice, we cannot minimize the exact variance in quotient space,
because we have only a finite sample and not the whole distribution. In
this section we study the estimation of the empirical Fréchet mean with
the max-max algorithm. We assume that the group is finite. In this case,
the registration can always be found by an exhaustive search. Hence, the
numeric experiments which we conduct in Section 2.5 lead to an empirical
Karcher mean in a finite number of steps. In a compact group acting
continuously, the registration also exists but is not necessarily computable
without approximation.

If we have a sample: Y1, . . . , YI of independent and identically dis-
tributed copies of Y , then we define the empirical variance in the quotient
space:

M 3 x 7→ FI(x) =
1

I

I∑
i=1

d2
Q([x], [Yi]) =

1

I

I∑
i=1

min
gi∈G
‖x−gi·Yi‖2 =

1

I

I∑
i=1

min
gi∈G
‖gi·x−Yi‖2.

(13)
The empirical variance is an approximation of the variance. Indeed

thanks to the law of large number we have limI→∞ FI(x) = F (x) for all
x ∈ M . One element which minimizes globally (respectively locally) FI
is called an empirical Fréchet mean (respectively an empirical Karcher
mean). For x ∈ M and g ∈ GI : g = (g1, . . . , gI) where gi ∈ G for all
i = 1..I we define J an auxiliary function by:

J(x, g) =
1

I

I∑
i=1

‖x− gi · Yi‖2 =
1

I

I∑
i=1

‖g−1
i · x− Yi‖

2.

The max-max algorithm 1 iteratively minimizes the function J in the
variable x ∈M and in the variable g ∈ GI (see fig. 5):

First, we note that this algorithm is sensitive to the the starting point.
However we remark thatm1 = 1

I

∑I
i=1 gi ·Yi for some gi ∈ G, thus without

loss of generality, we can start from m1 = 1
I

∑I
i=1 gi · Yi for some gi ∈ G.

The empirical variance does not increase at each step of the algorithm
since:

FI(mn) = J(mn, g
n) ≥ J(mn+1, g

n) ≥ J(mn+1, g
n+1) = FI(mn+1)
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Algorithm 1 Max-Max Algorithm
Require: A starting point m0 ∈M , a sample Y1, . . . , YI .
n = 0.
while Convergence is not reached do
Minimizing g ∈ GI 7→ J(mn, g): we get gni by registering Yi with respect
to mn.

Minimizing x ∈M 7→ J(x, gn): we get mn+1 = 1
I

I∑
i=1

gni Yi.

n = n+ 1.
end while
m̂ = mn

Proposition 2.7. As the group is finite, the convergence is reached in a
finite number of steps.

Proof of Proposition 2.7. The sequence (FI(mn))n∈N is non-increasing.
Moreover the sequence (mn)n∈N takes value in a finite set which is: { 1

I

∑I
i=1 gi·

Yi, gi ∈ G}. Therefore, the sequence (FI(mn))n∈N is stationary. Let n ∈ N
such that FI(mn) = FI(mn+1). Hence the empirical variance did not de-
crease between step n and step n+ 1 and we have:

FI(mn) = J(mn, g
n
) = J(mn+1, g

n
) = J(mn+1, g

n+1
) = FI(mn+1),

as mn+1 is the unique element which minimizes m 7→ J(m, g
n
) we con-

clude that mn+1 = mn.

This proposition gives us a shutoff parameter in the max-max algo-
rithm: we stop the algorithm as soon as mn = mn+1. Let us call m̂ the
final result of the max-max algorithm. It may seem logical that m̂ is at
least a local minimum of the empirical variance. However this intuition
may be wrong: let us give a toy counterexample, suppose that we ob-
serve Y1, . . . , YI , due to the transformation of the group it is possible that∑n
i=1 Yi = 0. We can start from m1 = 0 in the max-max algorithm, as

Yi and 0 are already registered, the max-max algorithm does not trans-
form Yi. At step two, we still have m2 = 0, by induction the max-max
algorithm stays at 0 even if 0 is not a Fréchet or Karcher mean of [Y ].
Because 0 is equally distant from all the points in the orbit of Yi, 0 is
called a focal point of [Yi]. The notion of focal point is important for
the consistency of the Fréchet mean in manifold [BB08]. Fortunately, the
situation where m̂ is not a Karcher mean is almost always avoided due to
the following statement:

Proposition 2.8. Let m̂ be the result of the max-max algorithm. If the
registration of Yi with respect to m̂ is unique, in other words, if m̂ is not
a focal point of Yi for all i ∈ 1..I then m̂ is a local minimum of FI : [m̂]
is an empirical Karcher mean of [Y ].
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Figure 5: Iterative minimization of the function J on the two axis, the horizontal
axis represents the variable in the space M , the vertical axis represents the set
of all the possible registrations GI . Once the convergence is reached, the point
(mn, gn) is the minimum of the function J on the two axis in green. Is this
point the minimum of J on its whole domain? There are two pitfalls: firstly
this point could be a saddle point, it can be avoided with Proposition 2.8,
secondly this point could be a local (but not global) minimum, this is discussed
in Section 2.5.3

Note that, if we call z the registration of y with respect to m, then the
registration is unique if and only if 〈m, z − g · z〉 6= 0 for all g ∈ G \ {e}.
Once the max-max algorithm has reached convergence, it suffices to test
this condition for m̂ obtained by the max-max algorithm and Yi for all i.
This condition is in fact generic and is always obtained in practice.

Proof of Proposition 2.8. We call gi the unique element in G which regis-
ter Yi with respect to m̂, for all h ∈ G\{gi}, ‖m̂− gi ·Yi‖ < ‖m̂−hi ·Yi‖.
By continuity of the norm we have for a close enough to m: ‖a−gi ·Yi‖ <
‖a − hi · Yi‖ for all hi 6= gi (note that this argument requires a finite
group). The registrations of Yi with respect to m and to a are the same:

FI(a) =
1

I

I∑
i=1

‖a− gi · Yi‖2 = J(a, g) ≥ J(m̂, g) = FI(m̂),

because m 7→ J(m, g) has one unique local minimum m̂.

Remark 2.9. We remark the max-max algorithm is in fact a gradient
descent. The gradient descent is a general method to find the minimum
of a differentiable function. Here we are interested in the minimum of
the variance F : let m0 ∈ M and we define by induction the gradient
descent of the variance mn+1 = mn − ρ∇F (mn), where ρ > 0 and F the
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variance in the quotient space. In [DATP17], the gradient of the variance
in quotient space for finite group and for a regular point m was computed
(m is regular as soon as g ·m = m implies g = e), this leads to:

mn+1 = mn − 2ρ [mn − E(g(Y,mn) · Y )] ,

where g(Y,mn) is the almost-surely unique element of the group which
registers Y with respect to mn. Now if we have a set of data Y1, . . . , Yn
we can approximated the expectation which leads to the following approx-
imated gradient descent:

mn+1 = mn(1− 2ρ) + ρ
2

I

I∑
i=1

g(Yi,mn) · Yi,

now by taking ρ = 1
2
we get mn+1 = 1

I

∑I
i=1 g(Yi,mn) · Yi. So the ap-

proximated gradient descent with ρ = 1
2
is exactly the max-max algorithm.

However, the max-max algorithm for finite group, is proved to be converg-
ing in a finite number of steps which is not the case for gradient descent
in general.

2.5 Simulation on Synthetic Data
In this Section, we consider data in an Euclidean space RN equipped
with its canonical dot product 〈·, ·〉, and G = Z/NZ acts on RN by time
translation on coordinates:

(k̄ ∈ Z/NZ, (x1, . . . , xN ) ∈ RN ) 7→ (x1+k, x2+k, . . . xN+k),

where indexes are taken modulo N . This space models the discretiza-
tion of functions defined on [0, 1] with N points. This action is found
in [AAT07] and used for neuroelectric signals in [HCG+13]. The registra-
tion between two vectors can be made by an exhaustive research but it is
faster with the fast Fourier transform [CT65].

2.5.1 Max-Max Algorithm with a Step Function as Tem-
plate

We display an example of a template and template estimation with the
max-max algorithm on Figure 6a. This experiment was already conducted
in [AAT07], but no explanation of the appearance of the bias was pro-
vided. We know from Section 2.4 that the max-max output is an empiri-
cal Karcher mean, and that this result can be obtained in a finite number
of steps. Taking σ = 10 may seem extremely high, however the standard
deviation of the noise at each point is not 10 but σ√

N
= 1.25 which is

reasonable.
The sample size is 105, the algorithm stopped after 247 steps, and m̂

the estimated template (in red on the Figure 6a) is not a focal points of the
orbits [Yi], then Proposition 2.8 applies. We call empirical bias (noted EB)
the quotient distance between the true template and the point m̂ given by
the max-max result. On this experiment we have EB

σ
' 0.11. Of course,

one could think that we estimate the template with an empirical bias due
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to a too small sample size which induces fluctuation. To reply to this
objection, we keep in memory m̂ obtained with the max-max algorithm.
If there was no inconsistency then we would have F (t0) ≤ F (m̂). We do
not know the value of the variance F at these points, but thanks to the
law of large number, we know that:

F (t0) = lim
I→∞

FI(t0) and F (m̂) = lim
I→∞

FI(m̂),

Given a sample, we compute FI(t0) and FI(m̂) thanks to the definition
of the empirical variance FI (13). We display the result on Figure 6b, this
tends to confirm that F (t0) > F (m̂). In other word, the variance at the
template is larger that the variance at the point given by the max-max
algorithm.
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-0.5
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max max output

template and max max output
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I: size of the sample

F_I(t_0)   

F_I(m)   

Empirical variance at the template in blue and at the estimated template in red

(b)

Figure 6: Template t0 and template estimation m̂ on Figure 6a. Empirical
variance at the template and template estimation with the max-max algorithm
as a function of the size of the sample on Figure 6b. (a) Example of a template
(a step function) and the estimated template m̂ with a sample size 105 in R64,
ε is Gaussian noise and σ = 10. At the discontinuity points of the template,
we observe a Gibbs-like phenomena; (b) Variation of FI(t0) (in blue) and of
FI(m̂) (in red) as a function of I the size of the sample. Since convergence is
already reached, F (m̂), which is the limit of red curve, is below F (t0): F (t0) is
the limit of the blue curve. Due to the inconsistency, m̂ is an example of point
such that F (m̂) < F (t0).

2.5.2 Max-Max Algorithm with a Continuous Template

Figure 6a shows that the main source of the inconsistency was the dis-
continuity of the template. One may think that a continuous template
would lead to a better behaviour. However, it is not the case as presented
on Figure 7. Even with a large number of observations created from a
continuous template we do not observe a convergence to the template. In
the example of Figure 7, the empirical bias satisfies EB

σ
= 0.23. In green
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we also display the mean of data knowing transformations, this produces
a much better result, since that in this case we have EB

σ
= 0.04.
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template, max max, mean of data with the true amount of transformations

Figure 7: Example of an other template (here a discretization of a continuous
function) and template estimation with a sample size 103 in R64, ε is Gaussian
noise and σ = 10. Even with a continuous function the inconsistency appears.

2.5.3 Does the Max-Max Algorithm Give Us a Global
Minimum or Only a Local Minimum of the Variance?

Proposition 2.8 tells us that the output of the max-max algorithm is a
Karcher mean of the variance, but we do not know whether it is Fréchet
mean of the variance. In other words, is the output a global minimum of
the variance? In fact, FI has a lot of local minima which are not global. To
illustrate this, we may use the max-max algorithm with different starting
points and we observe different outputs (which are all local minima thanks
to Proposition 2.8) with different empirical variance on Table 1.

Points Template t0 m̂1 m̂2 m̂3 m̂4 m̂5

Empirical variance at these points 96.714 95.684 95.681 95.676 95.677 95.682

Table 1: Empirical variances at 5 different outputs of the max-max algorithm
coming from the same sample of size 104, but with different starting points. We
use σ = 10 and the action of time translation in R64. Conclusion: on these five
points, only m̂3 is an eventual global minima.
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3 Inconsistency in the Case of Non Invari-
ant Distance under the Group Action
3.1 Notation and Hypothesis
In this Section, data still come from an Hilbert space M . However, we
take a group of deformation G which acts in a non invariant way on
M . Starting from a template t0 we consider a random deformation in
the group G namely a random variable Φ which takes value in G and
ε an standardized noise in M independent of Φ. We suppose that our
observable random variable is:

Y = Φ · t0 + σε with σ > 0, E(ε) = 0, E(‖ε‖2) = 1,

where σ is the noise level. We suppose that E(‖Y ‖2) < +∞, and we define
the pre-variance of Y in M/G as the map defined by:

F (m) = E
(

inf
g∈G
‖g ·m− Y ‖2

)
.

In this part we still study the inconsistency of template estimation by
minimizing F .

We present two frameworks where we can ensure the presence of in-
consistency: in Section 3.3 we suppose that the group G contains a non
trivial group H which acts isometrically on M . However, some groups do
not satisfy this hypothesis, that is why, in Section 3.4 we do not suppose
that G contains a subgroup acting isometrically but we require that G
acts linearly on M . In both sections we prove inconsistency as soon as
the variance σ2 is large enough.

These hypothesis are not unacceptable as for example, deformations
that are considered in computational anatomy may include rotations which
form a subgroup H of the diffeomorphic deformations which acts isomet-
rically. Concerning the second case, an important example is:

Example 3.1. Let G be a subgroup of the group of C∞ diffeomorphisms
on Rn G acts linearly on L2(Rn) with the map:

∀ϕ ∈ G ∀f ∈ L2(Rn) ϕ · f = f ◦ ϕ−1.

Note that this action is not isometric: indeed, f ◦ ϕ−1 has generally a
different L2-norm than f , because a Jacobian determinant appears in the
computation of the integral.

3.2 Where DidWe Need an Isometric Action Pre-
viously?
Let M be an Hilbert space, and G a group acting on M . Can we define a
distance in the quotient space Q = M/G defined as the set which contains
all the orbits? When the action is invariant, the orbits are parallel in the
sense where dM (m,n) = dM (g ·m, g ·n) for all m,n ∈M and for all g ∈ G.
This implies that:

dQ([m], [n]) = inf
g∈G
‖m− g · n‖,
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is a distance on Q. However, it is not necessarily the case when the action
is no longer invariant. Let us take the following example:

Example 3.2. We call C∞diff(R2) the set of the C∞ diffeomorphisms of

R2. We equip R2 with its canonical Euclidean structure. We take p =
(−1,−1), q = (1, 1) and r = (2, 0) (see fig. 8),

G =
{
f ∈ C∞diff(R2) | f(q) = (q), f(p) = (p), ∀x ∈ R f(x, 0) ∈ Rr

}
,

(14)
G acts on R2 by f · (x, y) = f(x, y). Then q and p are fixed points under
this group action and the orbit of r is the horizontal line {(x, 0), x ∈ R}.
On this example:

inf
g∈G
‖q−g·r‖ = ‖q−(1, 0)‖ = 1 however inf

g∈G
‖r−g·q‖ = ‖r−q‖ =

√
2,

then the function dQ is not symmetric. One could think define a distance
by:

d̃Q([m], [n]) = inf
h,g∈G

‖h ·m− g · n‖.

Unfortunately, in this case d̃Q([p], [q]) = ‖p−q‖ = 2
√

2 and d̃Q([p], [r]) =
1 = d̃Q([r], [q]) then we do not have d̃Q([p], [q]) ≤ d̃Q([p], [r]) + d̃Q([r], [q]).
In other words we do not have the triangular inequality.

p

q

r[r]

•

•

•
d̃Q([p], [r]) = 1

d̃Q([q], [r]) = 1

d̃Q([p], [q]) = 2
√
2

Figure 8: Example of three orbits, when d̃Q does not satisfy the inequality
triangular.

Therefore when the action is no longer invariant, a priori one cannot
define a distance in the quotient anymore. If Y is a random variable in
M , F (m) = E(infg∈G ‖g ·m− Y ‖2) cannot be interpreted as the variance
of [Y ].

However infg∈G ‖g ·a− b‖ is positive and is equal to zero if a = b, then
infg∈G ‖g ·a−b‖ is a pre-distance inM . Then infg∈G ‖g ·m−Y ‖ measures
the discrepancy between the random point Y and the current point m.
Even if the discrepancy measure is not symmetric or does not satisfy the
triangular inequality, we can still define F (x) = E(infg∈G ‖g ·x−Y ‖2) and
call it the pre-variance of the projection of Y intoM/G, if E(‖Y ‖2) < +∞.
The elements which minimize this function are the element whose orbit
are the closest of the random point Y . Hence, we wonder if the template
can be estimated by minimizing this pre-variance. Note that, once again
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F (x) = F (g · x) for all x ∈ M and g ∈ G. Then the pre-variance is well
defined in the quotient space by [x] 7→ F (x).

It is not surprising to use a discrepancy measure which is not a dis-
tance, for instance the Kullback-Leibler divergence [KL51] is not symmet-
ric although it is commonly used.

In the proof of inconsistency of Theorem 2.4, we used that the ac-
tion was isometric in order to simplify the expansion of the variance in
Equation (6):

F (m) = E
(

inf
g∈G
‖m− g · Y ‖2

)
= E

(
inf
g∈G

[
‖m‖2 − 〈m, g · Y 〉+ ‖g · Y ‖2

])
,

with ‖g · Y ‖2 = ‖Y ‖2 there was only one term which depends on g:
〈g ·m,Y 〉 and the two other terms could be pulled out of the infimum.
When the action is no longer isometric we cannot do this trick anymore.
To remedy this situation, in this article, we require that the orbit of the
template is a bounded set.

In the following, we prove inconsistency even with non isometric action
(but only when the noise level is large enough if the template is not a fixed
point). The sketches of the different proofs are always the same: finding a
point m such that F (m) < F (t0), in order to do that it suffices to find an
upper bound of F (m) and a lower bound of F (t0) and to compare these
two bounds.

3.3 Non Invariant Group Action, with a Subgroup
Acting Isometrically
In this subsection G acts on M an Hilbert space. We assume that there
exists a subgroup H ⊂ G such that H acts isometrically on M . As H is
included in G, we deduce a useful link between the variance of Y projected
in M/H and the pre-variance of Y projected in M/G:

F (m) = E( inf
g∈G
‖g ·m− Y ‖2) ≤ E( inf

h∈H
‖h ·m− Y ‖2) = FH(m).

The orbit of a pointm under the group action G is [m] = {g·m, g ∈ G},
whereas the orbit of the point m under the group action H is [m]H =
{h ·m, h ∈ H}. Moreover, we call FH the variance of [Y ]H in the quotient
space M/H, and F the variance of [Y ] in the quotient space M/G.

3.3.1 Inconsistency when the Template Is a Fixed Point

We begin by assuming that the template t0 is a fixed point under the
action of G:

Proposition 3.3. Suppose that t0 is a fixed point under the group action
G. Let ε be a standardized noise which support is not included in the fixed
points under the group action of H, and Y = Φ ·t0 +σε = t0 +σε. Then t0
is not a minimum of the pre-variance F .
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Proof. We have:

1. Thanks to Corollary 2.5 of Section 2.2 we know that [t0]H = [E(Y )]H
is not the Fréchet mean of [Y ]H the projection of Y into M/H: we
can find m ∈M such that:

FH(m) < FH(t0). (15)

Note that in order to apply Corollary 2.5, we do not need that Φ is
included in H, because t0 is a fixed point.

2. Because we take the infimum over more elements we have:

F (m) ≤ FH(m). (16)

3. As t0 is a fixed point under the action of G and under the action of
H:

FH(t0) = F (t0) = E(‖t0 − Y ‖2). (17)

With Equations (15)–(17), we conclude that t0 does not minimize F .

3.3.2 Inconsistency in the General Case for the Template

The following Proposition 3.4 tells us that when σ is large enough then
there is an inconsistency.

Proposition 3.4. We suppose that the template is not a fixed point and
that its orbit under the group G is bounded. We consider A ≥ sup

g∈G

‖g·t0‖
‖t0‖

and a ≤ inf
g∈G

‖g·t0‖
‖t0‖

, note that a ≤ 1 ≤ A and we have:

∀g ∈ G a‖t0‖ ≤ ‖g · t0‖ ≤ A‖t0‖.

We note:

θ(t0) =
1

‖t0‖
E(sup
g∈G
〈g · t0, ε〉) and θH =

1

‖t0‖
E
(

sup
h∈H
〈h · t0, ε〉

)
.

We suppose that θH > 0. If σ is bigger than a critical noise level noted
σc defined as:

σc =
‖t0‖
θH

(θ(t0)

θH
+A

)
+

√(
θ(t0)

θH
+A

)2

+A2 − a2

 . (18)

Then we have inconsistency.

Note that in Section 2.2 we have proved inconsistency in the isometric case
as soon as σ > 2‖t0‖

K
, where K ≥ θH , then we find in this theorem an ana-

logical sufficient condition on σ where

[(
θ(t0)
θH

+A
)

+

√(
θ(t0)
θH

+A
)2

+A2 − a2

]
is a corrective term due to the non invariant action.

We have shown in [DATP17] that if the orbit of the template [t0]H is
a manifold, then θH > 0 as soon as the support of ε is not included in
Tt0 [t0]⊥ (the normal space of the orbit of the template t0 at the point t0).
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If [t0] is not a manifold, we have also seen in [DATP17] that θH > 0 as
soon as t0 is an accumulation point of [t0]H and the support of ε contains
a ball B(0, r). Hence, θH > 0 is a rather generic condition. Condition (18)
can be reformulated as follows: as soon as the signal to noise ratio ‖t0‖

σ
is

sufficiently small:

‖t0‖
σ

<
θH(

θ(t0)
θH

+A
)

+

√(
θ(t0)
θH

+A
)2

+A2 − a2

,

then there is inconsistency.
We remark the presence of the constants θ(t0) and θH in Proposi-

tion 3.4. This kind of constants were already here in the isometric case
under the form θ( t0

‖t0‖
) = 1

‖t0‖
E(sup
g∈G
〈t0, g · ε〉), due to the polarization

identity (2), we can state that it measures how much the template looks
like to the noise after registration, but only in the isometric case. How-
ever we can intuit that this constant plays a analogical role in the non
isometric case.

Example 3.5. Let G acting on M , we suppose that G contains H =
O(M) the orthogonal group of M . Assume that G can modifying the norm
of the template by multiplying its norm by at most 2. Then we can set
up A = 2 and a = 0. By aligning ε and ‖t0‖ we have θH = E(‖ε‖) > 0,
and θ(t0) = AE(‖ε‖) then when the signal to noise ratio ‖t0‖

σ
is smaller

that E(‖ε‖)
4+
√

20
then there is inconsistency. By Cauchy-Schwarz inequality we

have E(‖ε‖) ≤ E(‖ε‖2) = 1, thus the signal to noise ratio has to be rather
small in order to fulfill this condition.

3.3.3 Proof of Proposition 3.4

We define the following values:

λH =
1

‖t0‖2
E
(

sup
h∈H
〈h · t0, Y 〉

)
and λ(t0) =

1

‖t0‖2
E
(

sup
g∈G
〈g · t0, Y 〉

)
.

Note that λH and λ(t0) are registration scores which definitions are
the same than the registration score used in the proof of Theorem 2.4
in Section 2 (only the normalization by ‖t0‖ is different). The proof of
Proposition 3.4 is based on the following Lemma:

Lemma 3.6. If:

λH ≥ 0, (19)

a2 − 2λ(t0) + λ2
H > 0, (20)

then t0 is not a minimizer of the pre-variance of [Y ] in M/G.

How condition (20) can be understood? In order to answer to that
question, let us imagine that G = H acts isometrically, then a can be set
up to 1, and λ(t0) = λH the condition (20) becomes λ2

H − 2λH + 1 =
(λH − 1)2 > 0 and the conditions of Theorem 4.2 of [DATP17] aimed to
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ensure that λH > 1. Now let us return to the non invariant case: if H is
strictly included in G such that a is closed enough to 1 and λ(t0) closed
enough to λH , then on can think that condition (20) still holds. However,
the closed enough seems hard to be quantified.

Proof of Lemma 3.6. The proof is based on the following points:

1. F (λHt0) ≤ FH(λHt0),
2. FH(λHt0) < F (t0).

With items 1 and 2 we get that F (λHt0) < F (t0). Item 1 is just based
on the fact that in the map F , we take the infimum on a larger set than
on FH . We now prove item 2, in order to do that we expand the two
quantities, firstly:

FH(λHt0) = E
(

inf
h∈H
‖h · λHt0‖2 + ‖Y ‖2 − 2 〈h · λHt0, Y 〉

)
(21)

= λ2
H‖t0‖2 + E(‖Y ‖2)− 2λHE

(
sup
h∈H
〈h · t0, Y 〉

)
(22)

= E(‖Y ‖2)− λ2
H‖t0‖2,

We use the fact that H acts isometrically between Equations (21)
and (22) and the fact that λH ≥ 0 because infa∈A−λa = −λ supa∈A a is
true for any A subset of R if λ ≥ 0. Secondly:

F (t0) = E
(

inf
g∈G
‖g · t0‖2 + ‖Y ‖2 − 2 〈g · t0, Y 〉

)
≥ a2‖t0‖2 + E(‖Y ‖2)− 2E

(
sup
g∈G
〈g · t0, Y 〉

)
≥ a2‖t0‖2 + E(‖Y ‖2)− 2λ(t0)‖t0‖2

Then:

F (t0)− FH(λHt0) ≥ ‖t0‖2
[
a2 − 2λ(t0) + λ2

H

]
> 0,

thanks to hypothesis (20).

Proof of Proposition 3.4. In order to prove Proposition 3.4, all we have
to do is proving λH ≥ 0 and proving that Condition (20) is fulfilled when
σ > σc. Firstly, thanks to Cauchy-Schwarz inequality, we have:

λH =
1

‖t0‖2
E
(

sup
h∈H
〈h · t0,Φ · t0 + σε〉

)
≥ 1

‖t0‖2

[
−A‖t0‖2 + E(sup

h∈H
〈h · t0, σε〉)

]
≥ −A+ σ

θH
‖t0‖

Note that as σ > σc ≥ A ‖t0‖θH
we get λH ≥ 0, this proves (19). We also

have:

λ(t0) =
1

‖t0‖2
E
(

sup
g∈G
〈g · t0,Φ · t0 + σε〉

)
≤ 1

‖t0‖2

[
A2‖t0‖2 + σE

(
sup
g∈G
〈g · t0, ε〉

)]
≤ A2 + σ

θ(t0)

‖t0‖
,

27



Then we can find a lower bound of a2 − 2λ(t0) + λ2
H :

a2 − 2λ(t0) + λ2
H ≥ a− 2

(
A2 + σ

θ(t0)

‖t0‖

)
+

(
σθH
‖t0‖

−A
)2

≥ a2 −A2 − 2
σθH
‖t0‖

(
θ(t0)

θH
+A

)
+

(
σθH
‖t0‖

)2

:= P (σ)

For σ > σc where σc is the biggest solution of the quadratic Equation
P (σ) = 0, we get a2 − 2λ(t0) + λ2

H > 0 and template estimation is incon-
sistent thanks to Lemma 3.6. The critical σc is exactly the one given by
Proposition 3.4.

3.4 Linear Action
The result of the previous part has a drawback, it requires that the group
of deformations contains a non trivial subgroup which acts isometrically.
We know remove this hypothesis, but we require that the group acts
linearly on data.

3.4.1 Inconsistency

In this Subsection we suppose that the group G acts linearly on M . Once
again, we can give a criteria on the noise level which leads to inconsistency:

Proposition 3.7. We suppose that the orbit of the template is bounded
with:

∃a ≥ 0, A > 0 such that ∀g ∈ G a‖t0‖ ≤ ‖g · t0‖ ≤ A‖t0‖.

We suppose that A <
√

2. In other words, the deformation of the
template can multiply the norm of the template by less than

√
2. We also

suppose that:

θ(t0) =
1

‖t0‖
E
(

sup
g∈G
〈g · t0, ε〉

)
> 0. (23)

There is inconsistency as soon as

σ ≥ σc =
‖t0‖
θ(t0)

[
A2 +

1 +
√

1− a2(2−A2)

2−A2

]
.

Example 3.8. For instance if A ≤ 1.2, then there is inconsistency if
σ ≥ 7 ‖t0‖

θ(t0)
.

Once again we find a condition which is similar to the isometric case,
but due to the non invariant action we have here a corrective term which
depends on A and a. Note that as G does not act isometrically, results
in [DATP17] do not apply in order to fulfill Condition (23). However it is
easy to fulfill this Condition thanks to the following Proposition:

Proposition 3.9. If t0 is not a fixed point, and if the support of ε con-
tains a ball B(0, ρ) for ρ > 0 then

θ(t0) =
1

‖t0‖
E
(

sup
g∈G
〈g · t0, ε〉

)
> 0.
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Remark 3.10. It is possible to remove the condition A <
√

2 in Propo-
sition 3.7. Indeed Let be h ∈ G such that:

sup
g∈G
‖g · t0‖

‖h · t0‖
<
√

2.

The template t0 can be replaced by h · t0 since Φt0 + σε is equal to
Φh−1 ·ht0 and applying Proposition 3.7 to the new template h · t0. We get
that h ·t0 does not minimize the variance F with A ≤

√
2 (because the new

template is h · t0). Since h · t0 does not minimize F , the original template
t0 does not minimize the pre-variance F neither, since F (t0) = F (h · t0).

This changes the critical σc since we apply Proposition 3.7 to h · t0
instead of t0 itself.

3.4.2 Proofs of Proposition 3.7 and Proposition 3.9

As in Section 3.3 we first prove a Lemma:

Lemma 3.11. We define:

λ(t0) =
1

‖t0‖2
E
(

sup
g∈G
〈g · t0, Y 〉

)
.

Suppose that λ(t0) ≥ 0 and that:

a2 − 2λ(t0) + λ(t0)2(2−A2) > 0. (24)

Then t0 is not a minimum of F .

Proof of Lemma 3.11. Since

∀g ∈ G a‖t0‖ ≤ ‖g · t0‖ ≤ A‖t0‖, (25)

then by linearity of the action we get:

∀g ∈ G, µ ∈ R a‖µt0‖ ≤ ‖g · µt0‖ ≤ A‖µt0‖. (26)

We remind that:

F (m) = E
(

inf
g∈G
‖g ·m‖2 − 2 〈g ·m,Y 〉+ ‖Y ‖2

)
.

By using Equations (25) and (26) we get:

F (t0) ≥ a2‖t0‖2 − 2λ(t0)‖t0‖2 + E(‖Y ‖2),

We get:

F (λ(t0)t0) ≤ E
(
A2‖λ(t0)t0‖2 + ‖Y ‖2 + inf

g∈G
− 2λ(t0) 〈g · t0, Y 〉

)
(27)

≤ A2λ(t0)2‖t0‖2 + E(‖Y ‖2)− 2λ(t0)2‖t0‖2.

Note that we use the fact that the action is linear in Equation (27).
We obtain that t0 is not the minimum of the F :

F (t0)− F (λ(t0)t0) ≥ ‖t0‖2
[
a2 − 2λ(t0) + λ(t0)2(2−A2)

]
> 0.
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Proof of Proposition 3.7. By solving the following quadratic inequality we
remark that:

a2 − 2λ(t0) + (2−A2)λ(t0)2 > 0 if λ(t0) >
1 +

√
1− a2(2−A2)

2−A2
,

Besides, as in section 3.3.2 we can take a lower bound of λ(t0) by
decomposing Y = Φ · t0 + σε and applying Cauchy-Schwarz inequality
〈Φ · t0, g · t0〉 ≥ −A2‖t0‖2, we get:

λ(t0) ≥ −A2 +
σ

‖t0‖
θ(t0). (28)

Thanks to Condition (28) and the fact that σ > σc we get:

λ(t0) ≥ −A2 +
σ

‖t0‖
θ(t0) >

1 +
√

1− a2(2−A2)

2−A2

Then λ(t0) ≥ 0 and Condition (24) is fulfilled. Thus, there is incon-
sistency, according to Lemma 3.11.

Proof of Proposition 3.9. First we notice that:

‖t0‖θ(t0) = E
(

sup
g∈G
〈g · t0, ε〉

)
≥ E(〈t0, ε〉) = 〈t0,E(ε)〉 = 0. (29)

In order to have θ(t0) > 0, first we show that it exists x ∈ B(0, ρ) and
g0 ∈ G such that

sup
g∈G
〈g · t0, x〉 ≥ 〈g0 · t0, x〉 > 〈t0, x〉 .

Let g0 ∈ G such that g0 · t0 6= t0. There are three cases to be distin-
guished (see fig. 9):

1. The vectors g0 · t0 and t0 are linearly independent. In this case
t⊥0 6⊂ (g0 · t0)⊥, then we can find x ∈ t⊥0 and x /∈ (g · t0)⊥. Then
〈t0, x〉 = 0 and 〈g · t0, x〉 6= 0, without loss of generality we can
assume that 〈g · t0, x〉 > 0 (replacing x by −x if necessary). We also
can assume that x ∈ B(0, ρ) (replacing x by xρ

2‖x‖ if necessary. Then
we have x ∈ B(0, ρ) and:

〈g0 · t0, x〉 > 0 = 〈t0, x〉 .

2. If g0 · t0 = wt0 with w > 1, we take x = ρ
2‖t0‖

t0 ∈ B(0, ρ) and we
have:

〈g · t0, x〉 = w
ρ

2
‖t0‖ >

ρ

2
‖t0‖ = 〈t0, x〉 .

3. If g0 · t0 = wt0 with w < 1 we take x = − ρ
2‖t0‖

t0 ∈ B(0, ρ) and we
have:

〈g0 · t0, x〉 = −wρ
2
‖t0‖ > −

ρ

2
‖t0‖ = 〈t0, x〉 .

In all these cases we can find x such that 〈g0 · t0, x〉 > 〈t0, x〉 By con-
tinuity it exists r > 0 such that for all y on this ball we have 〈g · t0, y〉 >
〈t0, y〉. Then the event {supg∈G 〈g · t0, ε〉 > 〈t0, ε〉} has non zero proba-
bility, since x is in the support of ε we have P(ε ∈ B(x, r)) > 0. Thus
Inequality in (29) will be strict. This proves that θ(t0) > 0.
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Figure 9: Representation of the three cases, on each we can find an x in the
support of the noise such as 〈x, g0 · t0〉 > 〈x, t0〉 and by continuity of the dot
product 〈ε, g0 · t0〉 > 〈ε, t0〉 with is an event with a non zero probability, (for
instance the ball in gray). This is enough in order to show that θ(t0) > 0.
(a) Case 1: t0 and g ·t0 are linearly independent; (b) Case 2: g ·t0 is proportional
to t0 with a factor > 1; (c) Case 3: g · t0 is proportional to t0 with a factor < 1.

3.5 Example of a Template Estimation Which is
Consistent
In order to underline the importance of the hypotheses, we give an example
where the method is consistent:

Example 3.12. Let M be an Hilbert space and V a closed sub-linear
space of M . Then G = V acts on M by (see fig. 10):

(v,m) ∈ G×M 7→ m+ v.

This action is not isometric, indeed m 7→ m + v is not linear (ex-
cept if v = 0). However this action is invariant, let us consider V ⊥ the
orthogonal space of V . The variance in the quotient space is:

F (m) = E
(

inf
v∈V
‖m+ v − Y ‖2

)
= E(‖p(m)−p(Y )‖2) = E(‖p(m)−p(t0)+ε‖2),

where p : M → V ⊥ the orthogonal projection on V ⊥. Then it is clear that
t0 minimizes F . In fact, s : [m] 7→ p(m) is just a congruent section of the
quotient (see Section 2.1). Here, once again, we see the role played by the
the congruent section (when it exists) in order to study the consistency.

Hence, is there a contradiction with Proposition 3.4 or Proposition 3.7
which prove inconsistency as soon as the noise level is large enough? In
Proposition 3.4, we require that there is a subgroup acting isometrically,
in this example the only element which acts linearly is the identity element
m 7→ m + 0, then H = {0} is the only possibility, however the support
of the noise should not be included in the set of fixed point under the
group action of H. Here, all points are fixed under H, hence it is not
possible to fulfill this condition. Example 3.12 is not a contradiction with
Proposition 3.4, it is also not a contradiction with Proposition 3.7 since
it does not act linearly on data.
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V ⊥

V

•x
•y

•
p(x)

•
p(y)

dQ([x], [y])

[x] [y]

Figure 10: In the case of affine translation by vectors of V , the orbits are affine
subspace parallel to V . The distance between two orbits [x] and [y] is given by
the distance between the orthogonal projection of x and y in V ⊥. This is an
example where template estimation is consistent.

3.6 Inconsistency with Non Invariant Action and
Regularization
In practice people add a regularization term in the function they minimize
in LDDMM [BMTY05, DPC+14], or in Demons [LGP+13] etc. Because,
if one considers two points, one does not want necessarily to fit one with
the other. Indeed, even if one deformation matches exactly these two
points, it may be an unrealistic deformation. So far, we did not study the
use of such a term in the inconsistency.

3.6.1 Case of Deformations Closed to the Identity Element
of G

If we suppose that the deformations Φ of the template is closed to identity,
it is useless to take the infimum over G because G contains big deforma-
tions. Perhaps one of these big deformations can reaches the infimum
in F , but this element is not the one which deformed the template in
the generative model. Then such big deformations should not be taken
into account. That is why, if we suppose that G can be equipped with
a distance dG, then we can assume that there exists r > 0 such that the
deformation Φ belongs almost surely to

B = B(e, r) = {g ∈ G, dG(e, g) < r}.

Instead of defining F (m) as E(infg∈G ‖g · m − Y ‖2), one can define
F (m) = E(infg∈B ‖g ·m− Y ‖2), and the previous proofs will still be true,
when replacing for instance λ(t0) by λ(t0) = 1

‖t0‖2
E(supg∈B 〈g · t0, Y 〉) etc.

Likewise we need to replace the hypothesis “the support of ε is not included
in the set of fixed points “ by ”the support of ε in not included is the set
of fixed points under the action restricted to B”.

Note that restraining ourselves to B is equivalent to add a following
regularization on the function F :

F (m) = E
(

inf
g∈G
‖g ·m− Y ‖2 +Reg(g)

)
with Reg(g) =

{
0 if g ∈ B

+∞ if g /∈ B .
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Moreover considering only the elements in B will automatically satisfy
the condition A <

√
2 in Proposition 3.7 as long as the group G acts

continuously on the template, if r is small enough.

3.6.2 Inconsistency in the Case of a Group Acting Linearly
with a Bounded Regularization

In this Section we suppose that the group G acts linearly. We also suppose
that A <

√
2. The regularization term is a bounded map Reg : G→ [0,Ω].

With this framework, we still able to prove that there is inconsistency as
soon as the noise level is large enough:

Proposition 3.13. Let G be a group acting linearly on M . We suppose
that the orbit of the template t0 is bounded with A = sup

g∈G

‖g·t0‖
‖t0‖

<
√

2, the

generative model is still Y = Φ · t0 + σε. We define the pre-variance as:

F (m) = E
(

inf
g∈G

(
‖Y − g ·m‖2 +Reg(g)

))
.

Then as soon as the noise level is large enough, i.e.,:

σ > σc =
‖t0‖
θ(t0)

A2 +
1 +

√
1− (a2 + Ω

‖t0‖2
)(2−A2)

2−A2

 .
Then t0 is not a minimizser of F .

The proof is exactly the same as the Proof of Proposition 3.7, we take 0 as
a lower bound of the the regularization term in the lower bound of F (t0),
and we take Ω as a upper bound of the regularization term in the upper
bound of F (λ(t0)t0). We solve a similar quadratic equation in order to
find the critical σ.

4 Conclusions and Discussion
We provided an asymptotic behavior of the consistency bias when the
noise level σ tends to infinity in the case of isometric action. As a con-
sequence, the inconsistency can not be neglected when σ is large. When
the action is no longer isometric, inconsistency has been also shown when
the noise level is large.

However, we have not answered this question: can the inconsistency
be neglected? When the noise level is small enough, then the consistency
bias is small [MHP16, DATP17], hence it can be neglected. Note that the
quotient space is not a manifold, this prevents us to use a priori the Central
Limit theorem for manifold proved in [BB08]. However, if the Central
Limit theorem could be applied to quotient space, the fluctuations induces
an error which would be approximately equal to σ√

I
and if K � 1√

I
,

then the inconsistency could be neglected because it is small compared
to fluctuation. One way to avoid the inconsistency is to use another
framework, for a instance a Bayesian paradigm [CDH16].

33



In the numerical experiments we presented, we have seen that the
estimated template is more crispy that the true template. The intuition
is that the estimated template in computational anatomy with a group
of diffeomorphisms is also more detailed. However, the true template
is almost always unknown. It is then possible that one think that the
computation of the template succeeded to capture small details of the
template while it is just an artifact due to the inconsistency. Moreover
in order to tackle this question, one needs to have a good modeliation of
the noise, for instance in [KSW11], the observations are curves, what is a
relevant noise in the space of curves?

In this article, we have considered actions which do not let the dis-
tance invariant. Although we have only shown the inconsistency as soon
as the noise level is large enough, the inequality used where not optimal
at all, surely future works could improve this work and prove that incon-
sistency appears for small noise level. Moreover a quantification of the
inconsistency should be established.
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