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Abstract

We describe a general framework —compressive statistical learning— for resource-efficient large-
scale learning: the training collection is compressed in one pass into a low-dimensional sketch (a
vector of random empirical generalized moments) that captures the information relevant to the
considered learning task. A near-minimizer of the risk is computed from the sketch through the
solution of a nonlinear least squares problem. We investigate sufficient sketch sizes to control the
generalization error of this procedure. The framework is illustrated on compressive clustering,
compressive Gaussian mixture Modeling with fixed known variance, and compressive PCA.

1 Introduction

Large-scale machine learning faces a number of fundamental computational challenges, triggered both
by the high dimensionality of modern data and the increasing availability of very large training col-
lections. Besides the need to cope with high-dimensional features extracted from images, volumetric
data, etc., a key challenge is to develop techniques able to fully leverage the information content and
learning opportunities opened by large training collections of millions to billions or more items, with
controlled computational resources.

Such training volumes can severely challenge traditional statistical learning paradigms based on
batch empirical risk minimization. Statistical learning offers a standardized setting where learning
problems are expressed as the optimization of an expected loss, or risk, R(mo,h) := Ex~rl(X,h)
over a parameterized family of hypotheses H (where 7 is the probability distribution of the training
collection). This risk is empirically estimated on a training collection, and parameters that empirically
minimize it are seeked, possibly with some regularization. Empirical minimization typically requires
access to the whole training collection, either in batch mode or iteratively with one or more passes
of stochastic gradient. This can become prohibitively costly when the collection is large and each
iteration has non-negligible cost. An alternative is to sub-sample the collection, but this may come at
the price of neglecting some important items from the collection. Besides online learning (e.g., [70]),
sampling techniques such as coresets [47] or Nystrom’s method (e.g., [75]) have emerged to circumvent
computational bottlenecks and preserve the ability to exploit latent information from large collections.

Can we design an alternate learning framework, with the ability to compress the training collection
before even starting to learn? We advocate a possible route, compressive statistical learning, which is
inspired by the notion of sketching and is endowed with favorable computational features especially
in the context of the streaming and distributed data model [27] (see Section [[3)). Rooted both in the
generalized method of moments [57] and in compressive sensing [50], it leverages recent techniques
from kernel methods such as kernel mean embeddings [79] and random Fourier features [73] to obtain
innovative statistical guarantees.



As a trivial example, assume z, h belong to R?, and consider the squared loss £(z,h) = ||z — hHQ,
whose risk minimizer is E[X]. In this specific example, keeping only the d empirical averages of the
coordinates of X is obviously sufficient. The vision developed in this paper is that, for certain learning
problems, all the necessary information can be captured in a sketch: a vector of empirical (generalized)
moments of the collection that captures the information relevant to the considered learning task.
Computing the sketch is then feasible in one pass, and a near-minimizer of the risk can be computed
from the sketch with controlled generalization error.

This paper is dedicated to show how this phenomenon can be generalized: roughly speaking, can
the sketch size be taken to be proportional to the number of “intrinsic parameters” of the learning
task? Another fundamental requirement for the sketching operation is to be online. When recording
the training collection, it should be possible to update the sketch at almost no additional cost. The
original training collection can then be discarded and learning can be performed from the sketch only,
potentially leading to privacy-preservation. We will see that a sketching procedure based on random
generalized moments meets these requirement for clustering and Gaussian mixture estimation.

1.1 Inspiration from compressive sensing

Another classical example of learning task is Principal Component Analysis (PCA). In this setting,
x € R4, h is an arbitrary linear subspace of dimension k, and the loss is ¢(z,h) = |z — Ph:ng with
P, the orthogonal projector onto h. The matrix of second moments ¥, := Ex. .. XX T is known to
summarize all the information needed to select the best subspace for a training collection. It thus
constitutes a natural sketch (of finite dimension d?) of the training set.

A much smaller sketch can in fact be computed. Results from compressive sensing and low-rank
matrix completion [50] allow to compress the matrix of second moments to a sketch of dimension
O (kd) (much smaller that d> when k < d) from which the best rank-k approximation to ¥, can
be accurately estimated (this rank-k approximation allows to calculate the PCA with appropriate
learning guarantees, as we will see Section[3)). This compression operation is made using random linear
projections on X, which can be seen as random second order moments of the training collection.

We propose to generalize such a sketching procedure to arbitrary random generalized moments.
Given a learning task and training collection, we study the following questions:

e How can we perform learning from a sketch of the training collection?

e What learning guarantees can we obtain with such a procedure?

1.2 Contributions

In this paper, we present a general compressive learning framework.

e We describe a generic sketching mechanism with random generalized moments and provide a
theoretical learning procedure from the sketched data.

e We derive general learning guarantees for sketching with random generalized moments.

e We apply this framework to compressive clustering, demonstrating that a sketch of dimension
O (k*d? - (1 4 log(kd) + log(R/<))), with k the prescribed number of clusters, R a bound on the
norm of the centroids, and e the separation between them, is sufficient to obtain statistical
guarantees. To the best of our knowledge this is the first time that such guarantees are given.

e We apply this framework to compressive Gaussian mixture estimation with known covari-
ance. In this case, we identify a finite sketch size sufficient to obtain statistical guarantees under
a separation assumption between means expressed in the Mahalanobis norm associated to the



known covariance matrix. A parameter embodies the tradeoff between sketch size and separa-
tion. At one end of the spectrum the sketch size is polynomial in k£ and exponential in d and
guarantees are given for means that can be separated in O (\/log k), which compares favorably
to existing literature [T} [83] (recent works make use of more complex conditions that theoreti-
cally permits arbitrary separation [I3], however all these approaches use the full data while we
consider a compressive approach that uses only a sketch of the data), while at the other end the
sketch size is polynomial in k and d but the required separation is in O (y/dlogk).

We finally briefly discuss the potential impact of the proposed framework and its extensions in terms
of privacy-aware learning and of the insight it may bring on the information-theoretic properties of
certain convolutional neural networks.

1.3 Related work

Sketching and streaming methods. Sketches are closely linked with the development of streaming
methods [27], in which data items are seen once by the user then discarded. A sketch is a small summary
of the data seen at a given time, that can be queried for a particular piece of information about the
data. Asrequired by the streaming context, when the database is modified, e.g. by inserting or deleting
an element, the subsequent update of the sketch must be very fast. In practice, sketches are often
applied in context where the data are stored in multiple places. In this heavily distributed framework,
a popular class of sketch is that of linear sketches, i.e. structures such that the sketch of the union
of two databases is the sum of their sketches — then the sketch of a database distributed over several
parts is simply the sum of all their sketches. The sketch presented in this work is indeed a linear
sketch (when considered without the normalization constant 1/n) and as such, updates operations are
excessively simple and fast. Sketches have been used for a large variety of operations [27] such as the
popular detection of heavy-hitters [30, B1, 29]. Closer to our framework, sketches have been used to
approximately maintain histograms [80] or quantiles [53], however these methods are subject to the
well-known curse of dimensionality and are unfeasible even in moderate dimension.

Learning in a streaming context. Various learning algorithms have also been directly adapted to
a streaming context. Examples include the Expectation-Maximization algorithm [5] 2], the k-means
algorithm [56] 3], or Principal Component Analysis [52]. In each case, the result of the algorithm
is updated as data arrive. However these algorithms do not fully benefit from the many advantages
of sketches. Sketches are simpler to merge in a distributed context, update operations are more
immediate, and the learning step can be delocalized and performed on a dedicated machine.

Coresets. Another popular class of structures that summarize a database for learning is called
coresets. Coresets were initially developed for k-means [59] or, more generally, subspace approximation
[48,[47] and also applied to learning Gaussian Mixture Models [46,[69]. In a sense, the philosophy behind
coresets is situated halfway between sketches and streaming learning algorithms. Like the sketching
approaches, coresets methods construct a compressed representation of the database (or “coreset”),
but are somehow closer to already approximately performing the learning task. For instance, the
coreset described in [51] already incorporates steps of Lloyd’s k-means algorithm in its construction.
Similar to the k-means++ algorithm [7], many coresets have been developed as (weighted) adaptive
subsampling of the data [46, [69)].

Linear sketches vs Coresets. It is in general difficult to compare sketching and coresets methods
(including the sketching method presented in this paper) in terms of pure performance or theoretical
guarantees, since they are very different approaches that can be more or less adapted to certain
contexts. We can however outline some differences. Unlike sketches, coresets are not specifically build



for the streaming context, and they may require several passes over the data. Nevertheless they can
still be adapted to streams of data, as described e.g. in [59, 47, [69], by using a merge-and-reduce
hierarchical strategy: for each batch of data that arrives sequentially, the user builds a coreset, then
groups these coresets and build a coreset of coresets, and so on. This update method is clearly less direct
than updating a linear sketch, and more importantly the user must balance between keeping many
coresets and letting the size of the overall summary grow with the number of points in the database, or
keeping only highest-level coresets at the cost of losing precision in the theoretical guarantees each time
the height of the hierarchical structure increases. As a comparison, the sketch presented in this work
for k-means (Section ) does not have these limitations: like any linear sketch, updates are totally
independent of previous events, and for a fixed sketch size the ability to perform the learning task
strictly increases with the number of points.

Generalized Method of Moments and Compressive Sensing. The methodology that we em-
ploy to develop the proposed sketching framework is similar to a Generalized Method of Moments
(GeMM) [65], 57]: the parameters 6 of a model are learned by matching a collection of theoretical
generalized moments from the distribution 7y with empirical ones from the data. GeMM is often
seen as an alternative to Maximum Likelihood estimation, to obtain different identifiability guaran-
tees [12, 60, 4] or when the likelihood is not available. Traditionally, a finite number of moments is
considered, but recent developments give guarantees when an infinite (integral) number of generalized
moments are available [22] [24], in particular generalized moments associated to the (empirical) charac-
teristic function [23, [49]. Our point of view is slightly different: we consider the collection of moments
as a compressed representation of the data and as a mean to achieve a learning task.

Compared to the guarantees usually obtained in GeMM such as consistency and efficiency of the
estimator 6, the results that we obtain are more akin to Compressive Sensing and Statistical Learning.
For instance, when learning Gaussian Mixture Model (Section [l), we prove that learning is robust to
modeling error (the true distribution of the data is not exactly a GMM but close to one), which is
generally overlooked is GeMM. In the proof technique, this is done by replacing the so-called “global
identifiability condition”, (i.e. injectivity of the moment operator, which is a classical condition in
GeMM but is already difficult to prove and sometimes simply assumed by practitioner, see [71], p.
2127]) by the strictly stronger Lower Restricted Isometry Property (LRIP) from the Compressive
Sensing literature [37, 20, (10, [50]. This is achieved by considering random feature moments (related to
random features [73] [74] [§] and kernel mean embeddings [79]), so in a sense the resulting Compressive
Statistical Learning framework could be considered as a Method of Random Feature Moments. While
the LRIP is reminiscent of certain kernel approximation guarantees with random features (see e.g.
[78, [§], it is in fact of a different nature, and none seems to be a direct consequence of the other.

1.4 Outline

Section [2] describes our general framework for compressive statistical learning. We define here statis-
tical learning guarantees, introduce the required notions and state our general Theorem for statistical
learning guarantees for compressive learning. To familiarize the reader with the proposed framework,
we detail in Section [B] a procedure for Compressive PCA, where we do not intend to match the latest
developments in the domain of PCA such as stochastic and incremental PCA [6] [9] but rather to give
a first illustration. Section M (respectively Section [ specifies a sketching procedure and states the as-
sociated learning guarantees for compressive clustering (respectively for compressive Gaussian mixture
estimation). Section [l describes precisely how learning guarantees can be obtained when estimation of
mixtures of elementary distributions are involved as in the two examples of compressive clustering and
compressive Gaussian mixture estimation. We discuss in Section [7] possible extensions of the proposed
framework as well as the insight it may bring on the information flow across one layer of a convolutive
neural network with average pooling. Finally, all proofs are stated in the Annex.



2 A general compression framework for statistical learning

This section is dedicated to the introduction of our compressive learning framework.

2.1 Statistical learning

Statistical learning offers a standardized setting where many learning problems can be expressed as
the optimization of an expected risk over a parameterized family of functions. Formally, we consider
a training collection X = {z;}?, € Z™ drawn i.i.d. from a probability distribution 7y on the set Z.
In our examples, Z = R?. One wishes to select a hypothesis h from a hypothesis class H to perform
the task at hand. How well the task can be accomplished with the hypothesis h is typically measured
through a loss function £ : (z,h) — €(x,h) and the expected risk associated to h:

R(mo, h) :=Exmn, U(X,h). (1)
In the idealized learning problem, one selects the function h* that minimizes the expected risk

h* € arg hm€17r{1 R(mo, h). (2)

In practice one has no access to the true risk R(mo, k) since the expectation with respect to the
underlying probability distribution, Ex.r,[:], is unavailable. Instead, methods such as empirical risk
minimization (ERM) produce an estimated hypothesis h from the training dataset X. One expects to
produce, with high probability at least 1 — ¢ on the draw of the training set, the bound on the excess
risk

R(mo, h) = R(mo, ™) < 1 = 1 (C), (3)

where 7, is a control that has good behavior with respect to n. We will use three running examples.

Examples:

e PCA: as stated in the introduction, the loss function is £(x,h) = ||z — Phx||§ where Py, is the
orthogonal projection onto the subspace hypothesis i of prescribed dimension k.

e k-means clustering: each hypothesis corresponds to a set of k candidate cluster centers, h =
{c1,..., ¢k}, and the loss is defined by the k-means cost ¢(z,h) = minj<i<y ||z — cl||§. The
hypothesis class 7 may be further reduced by defining constraints on the considered centers
(e.g., in some domain, or as we will see with some separation between centers).

e Gaussian Mixture Modeling: each hypothesis h corresponds to the collection of weights,
means and variances of mixture of k Gaussians, which probability density function is denoted
mr(x). The loss function is based on the maximum likelihood ¢(z, h) = —log 7 ().

2.2 Compressive learning

Our aim, and one of the major achievements of this paper, is to control the excess risk (@) using an
estimate h obtained from the sole knowledge of a sketch of the training collection. As we will see, the
resulting philosophy for large scale learning is, instead of addressing an ERM optimization problem of
size proportional to the number of training samples, to first compute a sketch vector of size driven by
the complexity of the task, then to address a nonlinear least-squares optimization problem associated
to the Generalized Method of Moments (GeMM) on this sketch.

Taking its roots in compressive sensing [37, 20, [50] and the generalized method of moments [65] [57],
but also on kernel mean embeddings [76, [79], random features [73] [74] [§], and streaming algorithms
[53, B0, 28], compressive learning has three main steps:



1. Choose (at random) a (nonlinear) feature function ® : Z — R™ or C™.

2. Compute (random) generalized moments using the feature function of the training collection to
summarize it into a single sketch vector

y := Sketch(X) := %Z ®(x;) € R™or C™ (4)
=1

3. Produce an hypothesis from the sketch using an appropriate learning procedure: h= Learn(y).

Overall, the goal is to design the sketching function ®(-) and the learning procedure Learn(-) given a
learning task (i.e., a loss function) such that the resulting hypothesis h has controlled excess risk (3.

Trivial examples.

e Estimation of the mean: Assume z,h belong to R?, and consider the squared loss ¢(x,h) =
|z — h|®, whose risk minimizer is E[X]. In this specific example, it is obviously sufficient to keep
only the d empirical averages of the coordinates of X, i.e., to use ®(x) := x.

e PCA: As the principal components are calculated from the eigenvalue decomposition of the

matrix of second moments of the samples, we can simply use ®(z) := xzT.

A less trivial example is Compressive PCA. Instead of estimating the full matrix 3, of size d x d,
it is known that computing m random gaussian linear measurements of this matrix makes it possible
to manipulate a vector y of dimension m = O (kd) from which one can accurately estimate the best
rank-k approximation to 3, that gives the k first principal components. Nuclear norm minimization
is typically used to produce this low rank approximation given the vector y. We will describe this
procedure in details in Section [3 as a first illustration of our framework.

In Sections (4] and [B] for the more challenging examples of Compressive k-means and Compressive
Gaussian Mizture Modeling, we provide a feature function ® and a method “Learn” (based on a
non-convex least-squares minimization) that leads to a control of the excess risk. This is achieved
by establishing links with the formalism of linear inverse problems and low complexity recovery (i.e.,
sparse/structured vector recovery, low-rank matrix recovery) and extending theoretical tools to the
setting of compressive statistical learning.

2.3 Compressive learning as a linear inverse problem

The most immediate link with linear inverse problems is the following. The sketch vector y can be seen

as a linear function of the empirical probability distribution 7, := % > 0z, of the training samples:

n

y == D) = Alh), )

where A is a linear operator from the space of distributions to R™ (or C™) defined by
A(m) == Ex - P(X). (6)

This is linear in the sense that] A+ (1 =0)n") = 0A(7) + (1 — 0)A(x’) for any m, 7" and 0 < 6 < 1.
Since for large n we should have A(#,) ~ A(m), the sketch y can be viewed as a noisy linear

observation of the underlying probability distribution 7. This viewpoint allows to formally leverage

the general methodology of linear inverse problems to produce an hypothesis from the sketch y.
Conceptually, we will be able to control the excess risk (@) —our goal- if we can:

1One can indeed extend A to a linear operator on the space of finite signed measures, see Annex [A.2



e Define a so-called decoder A that finds a probability distribution 7 given y:
T = Aly]
such that the risk with 7 uniformly approximates the risk with 7g:

sup [R (7o, h) — R(#t, h)| < 51 (7)
heH

e Deduce the best hypothesis from this estimate:

h=3(7) € arg min R(7, h) (8)

Indeed, using ([®) and the triangle inequality, it is easy to show that () directly implies @]). In a way,
this is very similar to ERM except that instead of using the empirical risk R(7,,, -), we use an estimate
of the risk R(#,-) where 7 is deduced directly from the sketch y.

Remark 2.1. At first sight, the above conceptual view may wrongly suggest that compressive learning
replaces statistical learning with the much more difficult problem of density estimation. Fortunately,
as we will see, this is not the case, thanks to the fact that our objective is never to accurately estimate
T in the standard sense of density estimation [14)], but only to accurately estimate the risk R(mo,-).

2.4 Statistical learning guarantees: control of the excess risk

To leverage the links between compressive learning and general inverse problems, we further notice
that sup,cy |R(m, h) — R(n’, h)| can be viewed as a metric on probability distributions. Given a class
F of measurable functions f : Z — R or C, one can indeed define

7=l 2= up [Ex o (X) ~ B S () (9)

which defines a semi-norm on the space of finite signed measures (see Annex [A2)) on Z. With this
definition
sup [R(x,h) = R(x', )| = |7 = 7'l 0 (10)
heH
where L(H) := {{(-,h) : h € H}. The desired guarantee () then reads |[mo — Aly]|z 3y < 1n/2.
In the usual context of linear inverse problems, producing an accurate estimate from noisy under-
determined linear observations requires some “regularity” assumption Such an assumption often takes
the form of a “low-dimensional” model set that the quantity to estimate is close to.

Example 2.2. In the case of sparse vector recovery (respectively low-rank matriz recovery), one wishes
to estimate x € R™ (resp. X € R™" ™) fromy ~ Ax (resp. y ~ Avec(X), and obtains guarantees
provided that x is close to the set of k-sparse vectors (resp. that X is close to the set of rank-r
matrices).

Similarly here, estimating 7 from y &~ A(m) may require considering some model set &, which
choice and definition will be discussed in Section

Remark 2.3. While in classical compressive sensing the model set plays the role of prior knowledge
on the data distribution that completes the observations, in the examples considered here we will obtain
distribution free excess risk guarantees using models derived from the loss function.



Given a model set & and a sketching operator A, an ideal decoder A should satisfy recovery
guarantees that can be expressed as: for any distribution 7y, any draw of the training samples from
7o (embodied by the empirical distribution #,,), with y = A(#,,) and & = A[A(#,)]

17 = moll 23 S d(m0, &) + [l A(mo — 7n) I, (11)

where < hides multiplicative constants, and d(-, &) is some measure of distance to the model set &.

It turns out that general results from abstract linear inverse problems [I6] can be adapted to
characterize the existence of a decoder satisfying this property, which is a form of instance optimality
generalizing early formulations for sparsity regularized inverse problems [26]. By [16l Section IV-A], if
a decoder with the above property exists then a so-called lower Restricted Isometry Property (LRIP)
must hold: there is a finite constant C'4 < oo such that

I = 7llge) < CallAG =), V7' € &, (12)
Conversely, the LRIP (I2)) implies [16, Theorem 7] that the following decoder (aka ideal decoder)

Aly] = argmin, s | A(T) — y][3. (13)

is instance optimal, i.e., (Il holds for any 7y and 7, with the particular distance
D(mo, &) = inf { 70 = oll 3¢y +2Ca | Almo — o)l } (14)

As a consequence, the LRIP ([2) implies a control of the excess risk achieved with the hypothesis h
selected with (), where 7 = Aly], as

R(ro, h) = R(mo, h*) < 2D (w0, &) +4C.a [ Ao — 7tn)| (15)

where we used explicit constants from [16, Theorem 7).

For large collection size n, the term || A(mo — 7,)||, becomes small and ([IT) shows that compressive
learning will benefit from accurate excess risk guarantees provided the model & and the feature function
® (or equivalently the sketching operator A) are chosen so that:

1. the LRIP ([I2)) holds;

2. the distance D(mp, ©) is “small”; this vague notion will be exploited in Section 2.5 below to guide
our choice of &, and will be made more concrete on examples in Sections 4 and B}

3. this holds for a “small” value of m, as we also seek to design compact sketches and, eventually,
tractable algorithms to learn from them.

All the above considerations will guide our choice of model set & and feature function ®.

2.5 Choice of a model set

Learning tasks such as maximum likelihood estimation directly involve a natural model set: if the loss
is {(z,h) = —logm,(x) for h € H, then a natural model set is Gy := {m), : h € H}.

For many other learning tasks, the choice of the model set & results from a tradeoff between several
needs, and can primarily be guided by the loss function itself.

On the one hand, results from compressed sensing tell us that given a model set & that has proper
“low-dimensional” properties, it is possible to choose a small m and design A such that the LRIP
holds, and the ideal decoder A has stable recovery guarantees of elements of & from their compressed
version obtained with 4. This calls for the choice of a “small” model set.



On the other hand, and perhaps more importantly, the model set should not be “too small” in order
to ensure that the obtained control of the excess risk is nontrivial. Ideally, when the loss is non-negative,
the bias term D(7p, &) in the excess risk (I3)) should be small when the true optimum risk is small,
and even vanish when the true optimum risk vanishes, i.e. when R(my, h*) = infpey R(mo, h) = 0.
The “smallest” model with this property is the collection

Sy :={r:3h € H,R(m, h) =0}, (16)

and any model such that & D G4 also has this property.

Finally, given an estimate @ € &, obtained either with the ideal decoder ([I3]) or more realistically
with a heuristic procedure, we need to select the minimum risk hypothesis according to (), i.e. to
find a minimizer

in R(#, h). 17
argmin R(#, h) (17)

In our examples this procedure is trivial when & = Gy as h is simply the parameterization of 7 € Gy.

Examples: The resulting model sets are the following

e Compressive PCA: the model set G4 consists of all distributions which admit a matrix of
second moments of rank at most k. Given any # € &3, a minimum risk hypothesis is any
subspace h spanned by eigenvectors associated to the k largest eigenvalues of 3.

e Compressive k-means: the model set G4 consists of all mixtures of k& Diracs, possibly with
constraints on the Dirac locations. Given any 7 = Zle ad¢, € Gy, a minimum risk hypothesis

is h={ci,...,cr}.

e Compressive Gaussian Mixture Modeling : the model set G4 consists of all mixtures
mp, of k Gaussians, where the mixture parameters h may further be constrained. Given an
T = 7, € Gy, a minimum risk hypothesis indeed minimizes the Kullback-Leibler divergencd\é
miny, KL(m,/||m,), hence h = h. This also holds for more general density models.

For these examples and certain choices of hypothesis class H we will exhibit in Section below
and in Sections [B] Ml and Bl a feature function ® so that A satisfies the LRIP ([I2)) with & = G4.

2.6 Choice of a feature function

Compressive learning is deeply connected to kernel mean embeddings of probability distributions, as
any feature function ® (and the related sketching operator .A) defines a kernel (i.e. an inner product)
between probability distributions:

ka(m, ') = (A(m), A(7")) = ExrExrmn ko (X, X)

where the explicit kernel between samples is ke (x,2’) := (®(x), P(2'))gm (or (®(z), P(z'))cm). In
fact, any kernel (-, -) in the sample space is associated to a Mean Map Embedding (a kernel between
distributions) [79]. By abuse of notation, we keep the notation  for both the expression of the kernel
in the sample space and of the kernel for probability distributions,

k(m, ') = ExanExrmmr(X, X'). (18)

The associated Maximum Mean Discrepancy (MMD) metric is

|m— ||, == &(7, ) — 26(m, 7') + k(! 7). (19)

2see Section [B] for reminders on the Kullback-Leibler divergence.



Designing ® (resp. A) that satisfies the LRIP (I2) for a given model set & thus amounts to designing
a kernel (z,2') so that the metric |7 — 7'|| (5, is dominated by the metric [|r — ||, for m, 7" € &.

In practice, choosing A will often amount to choosing a set of (real- or complex-valued) functions
® = {¢, }eq and a probability distribution A over a set Q (often = R?) and drawing m independent
functions (¢wj )j=1,m from A to calculate the feature function:

D(a) = = (60, (@), 0 (20)

The couple (@, A) is an integral representation of a kernel x through the relation

K(.’L‘,CL'/) = EWNA¢w(x)¢w(x/)' (21)

Examples:

e Compressive PCA: ¢, (z) := (Lj,za”)p = 2" L;jz, where L; is a random matrix in R?*?
and (A,B)r := Tr(ATB) is the Frobenius inner product between matrices. The kernel mean
embedding k(m, "), which is implicitly determined by the distribution of the random matrix L,
is a weighted inner product between the matrices 3, and X .

e Compressive k-means: ¢, () := Ce (i) Jap(w;) is a weighted random Fourier feature, with
w; € R? j the imaginary unit and w(w) a weighting function. The implicit kernel x(x,2’) is
determined by the distribution of the random frequency vector w. It is shift-invariant hence
with a standard abuse of notation it can be written as x(z — 2’). The MMD takes the form
[m—7'll, = l[k*m = £ x 7| 2 (ray-

e Compressive Gaussian Mixture Modeling: ¢, () := e@ir?) is a plain random Fourier
feature. The implicit kernel x is again determined by the distribution of the random frequency
vector w, and shift-invariant.

A characterization of the MMD that we will leverage throughout this paper is that for any m, 7/,

7= 7|12 = Ewn [Exantu(X) — Exrmmdu (X)) (22)

2

.. is the expectation with respect to the distribution of the random w of the quantity

Hence |7 — ||
2 1 & 2
||A(7T_7T/)H2 = EZ‘]EXNTA'QSW]'(X)_EX’NTA"(ZSUJJ'(XI)‘ )

Jj=1

and our overall strategy to design a feature function ® satisfying the LRIP (I2) with controlled sketch
dimension m will be to:

1. identify an (implicit) kernel s that satisfies the Kernel LRIP
H7T—7T/||£(,H) < Cy|m =7 v, € &; (23)

K’

2. in the spirit of random features, exploit an integral representation of x to design a random
finite-dimensional ® associated with an explicit kernel k3 approximating x;

3Note the distinct fonts denoting the feature function ® and the family of functions ® from which it is built.
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3. in the spirit of compressive sensing theory, use concentration of measure and covering arguments
to show that for any 0 < 6 < 1, for large enough m, with high probability on the draw of w;,

- 2 -7 2
1_6< || A(m 7T)2||2 _ I = 7"l <146, Vmn €6 (24)

|l — | [ .

K

so that the kernel LRIP (23] actually holds with x4 instead of x and an adapted constant.

Remark 2.4. The LRIP [24) expresses the control of the relative error of approzimation of the MMD,
restricted to certain distributions. This contrasts with state of the art results on random features (see
e.g. [78, 8] that control uniformly the error |ka(-,-) — (-, -)|. These two types of controls are indeed
of a different nature, and none seems to be a direct consequence of the other.

2.7 Verifying the Lower Restricted Isometry Property

This strategy will be achieved through the estimation of three quantities: first, a constant C,, character-
izing the compatibility between a kernel, a task, and a model set; second, a constant W,; characterizing
the concentration of || A(r — 7/ )||§ around its expectation; and finally certain covering numbers.

2.7.1 Compatibility between a kernel, a learning task, and a model set

Definition 2.5 (Compatibility constant). Consider a kernel k and a learning task defined by the loss
functions €(-,h), h € H. The compatibility constant between this kernel, this task, and the model set
G is
| — 7TIHL(H)
Cy(L(H),6) := sup _ (25)
T, €6, ||m—n’]], >0 ||7T—7T/HH

where we recall that the metric ||| L) 8 defined in [I0). The compatibility constant measures the
suitability of the kernel k for performing the considered learning task in terms of a Kernel LRIP (23]).
The case of & = Gy is of particular interest, giving the compatibility constant between the kernel and
the task, that we will denote for short C,, = C(L(H), Sx).

Examples:

o Compressive PCA: we will show in Section 3 that for the considered kernel, both || — 7’| £ 5,
and || — 7’|, are indeed norms on the matrix ¥, — X,/ € R4 The existence of a finite
compatibility constant C'; will simply follow from the equivalence of all norms in finite dimension,
and more explicit bounds will be provided.

e Compressive k-means (resp. Compressive Gaussian Mixture Modeling): for certain
shift-invariant kernels (such as the Gaussian kernel k(x, z') := exp(— ||z — x’Hg /20?)), we provide
finite bounds on the compatibility constant in Section @l for k-mixtures of Diracs (resp. in
Section [ for k-mixtures of Gaussians) with e-separation assumptions between centroids (resp.
between Gaussian means). These assumptions ensure the boundedness of

o
sup M < 00 (26)

T, €S, ||r—n'||, . >0 Hﬂ— - ﬂ—/”n

where BL is a class of regular functions (see Definition in Section [6] for a precise definition of
BL). Up to some fixed rescaling the considered loss functions belong to BL, hence || — || 3,y <
C||m — 7’| 5 which yields the desired bound.

11



2.7.2 Concentration of the empirical kernel to its expectation on the model

Classical arguments from compressive sensing [T11, [42] 72, [36, [50] prove that certain random linear
operators satisfy the RIP by relying on pointwise concentration inequalities. Similarly, a first step
to establish that the inequalities (24]) hold with high probability consists in assuming that for any

mr €6, t>0,and m>1
> t) < 2exp <_—cﬂZt)> (27)

A — )2

P( [Ax =I5 |
[lm —='l[5,

for some concentration function t — ¢, (t) that should ideally be as small as possible. The concrete

estimates we will get exploit a Lemma based on Bernstein’s inequality that we prove in Annex

Lemma 2.6. Let k be a kernel with integral representation (@, A) where we recall that A is a distri-
bution over the random variable w € Q. Consider m parameters (w;)7; drawn i.i.d. according to A
and the feature function

O(x) = \/—% [¢wj (x)};nzl ) (28)

Consider m, 7" such that |7 —7'||, >0 and W = W(m — ') := M < 00. For any t > 0 we have
lA(T — )5 mt?

Pl|l———5=—-1|>t] <2 —— . 29

( R A ) A TR (ETE) (29)

This suggests the following definition.

Definition 2.7 (Concentration constant). The concentration constant W, of the integral representa-
tion (D, A) of the kernel k with respect to the model & is defined by

o
W, = sup w. (30)

T, €S, ||lr—n'||, . >0 ||7T - ﬂJHK
By Lemma 24 this constant gives a bound on the best possible concentration function: for any t > 0

2(1+t/3)

Cli(t) < er : 12

. (31)

The reader may have noticed the similarity between the definition of the concentration constant
W, in B0) and of the compatibility constant Cy; in (25). To bound the concentration constant W
for Compressive k-means and Compressive Gaussian Mixture Modeling, we will indeed reuse
the bound (28] with a well-chosen integral representation (@, A) of the kernel such that ® C BL (see
Definition in Section [6] for the definition of BL).

2.7.3 Measuring the model “size” through coverings of its normalized secant set

Finally, one can extrapolate pointwise concentration (27) to all pairs m, 7’ € & using covering numbers
of the so-called normalized secant set of the model & with an appropriate metric (see, e.g., [36] [72]).

Definition 2.8 (Normalized secant set; covering number; yet another metric).
e The normalized secant set of the model set & with respect to a seminorm || - || is the following

subset of the set of finite signed measures (see Annex[A9)

e
S = {u o €6, || -7 > O} . (32)

[l — |
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e The covering number N (d(-,-),S,0) of a set S with respect to to a (pseudo)metritﬁ d(-,-) is the
minimum number of closed balls of radius 6 with respect to d(-,-) with centers in S needed to
cover S. The set S has finite upper boz-counting dimension smaller than s if

1im inf log'/\/'(d('5 ')5 S) 6)
50 log1/6

This holds as soon as the covering numbers are bounded by (C/8)* for small enough 6.

e We focus on _covering numbers of the normalized secant set ).~ with respect to the following

pseudometri(ﬁ
do (m,7) := sup | [Ex~rdu (X)[* - Exs s (X)]*
we

(33)
where (@, A) is an integral representation of the kernel k.

Examples: In our examples, we obtain the following covering results with the relevant metrics:

e Compressive PCA: The normalized secant set associated with the set of matrices with rank
lower than k has upper-box counting dimension s = O (kd).

e Compressive k-means: The normalized secant set associated with the set of mixtures of k
e-separated Diracs in a bounded domain has upper-box counting dimension s = O (kd).

e Compressive Gaussian Mixture Modeling: The normalized secant set associated with the
set of mixtures of k£ Gaussians with the same covariance and 2e-separated means in a bounded
domain has upper-box counting dimension s = O (kd).

2.8 Compressive statistical learning guarantees

Even though the above ingredients may look quite abstract at this stage, we will turn them into concrete
estimates on several examples. Let us first see how they can be combined to yield compressive statistical
learning guarantees. The proof of the following theorem is in Annex

Theorem 2.9. Consider a kernel k(x,2") with integral representation (®,A) and finite compatibility
constant with a model set S, C, < oo, and 0 < § < 1 such that:

e the concentration function is finite, ¢, (0/2) < oo;
e the normalized secant of the model set & has finite covering number N (dq),SH,HN,5/2) < 00.

Fiz any probability level 0 < ( < 1 and a sketch size such that
m > cu(8/2) - log (2/\/ (dos Sy +3/2) /<) (34)
Draw wj, 1 < j < m, i.i.d. from the distribution A and define the feature function
D) i= = (00, (@), . (35)

Then, with probability at least 1 — ¢ on the draw of (w;)7L;, the induced sketching operator A satisfies

the LRIP ([I2)) with constant C 4 = \/%.

4Further reminders on metrics, pseudometrics, and covering numbers are given in Annex [A]
5 . . . .
50Or rather with respect to the extension of dg to finite signed measures, see Annex
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In turn, assume that A satisfies the LRIP ([[2)) with constant C' 4 = \/%. Consider any probability

distribution o and any training collection X = {z;}, € Z™ (possibly drawn i.i.d. from my but not
necessarily), and denote &, := L 3" | 6,.. Consider

y = Sketch(X) = A(7,) (36)
# € argmin|A(m) -yl (37)
h € arg min R(7, h). (38)
We have the guarantee
R(mo, ) — R(mo, B*) < 1y == 2D(9, &) + 4C.4 - || A(mg — 7)) || (39)

where D(my, S) := inf,cq { [mo = oll g3y +2Ca [ Almo — o), }

Discussion

e As, we will see in our examples, a concentration function with good behaviour is primarily
obtained when the concentration constant W, is small enough.

e Computing the sketch ([B0) is highly parallelizable and distributable. Multiple sketches can be
easily aggregated and updated as new data become available.

e Asdiscussed in Remark[ZT] while (7)) may appear as a general nonparametric density estimation
problem, in all our examples it is indeed a nonlinear parametric least-squares fitting problem
when the model set is & = G4, and the existence of the minimizer follows in practice from
compactness arguments.

— For Compressive PCA it is a low-rank matrix reconstruction problem. Provably good
algorithms to estimate its solution have been widely studied.

— For Compressive k-means and Compressive Gaussian Mixture Modeling, the prob-
lem has been empirically addressed with success through the CL-OMPR algorithm [62] [63].
Algorithmic success guarantees are an interesting challenge. This is however beyond the
scope of this paper.

e In the Examples of Section 2] solving the minimization problem (B8] is trivial when & = &4.

e The first term in the bound ([39) of the excess risk, 7, is the empirical estimation error || A(mg — 7y, )||5-

It is easy to bound it as O (1//n), this will be done explicitly for the considered examples.

2.9 Controlling the bias term D(m, S3) for certain learning tasks

The second term in ([B9) is the distance to the model set &, D(m,S). The particular model set
G = Gy was designed so that this bias term vanishes when my € &. For certain learning tasks such
as Compressive Clustering, we can further bound the bias term D(mg, S3) defined in (I4) with an
increasing function of the true minimum risk, R(mg, h*). These recovery guarantees provide distribution
free excess risk guarantees. Whether this holds for other learning tasks, or even generically, is a
challenging question left to further work.

Lemma 2.10. Assume that (Z,d) is a separable metric space and consider a loss that can be written
as (x,h) = dP(x,E,) where 1 < p < oo and &, C Z for each h € H. Assume further that ® :
(Z,d) = (R™,|||ly) (or (C™,|]-||l5)) is L-Lipschitz. Then for any value of C4 the distance defined

by [[d) satisfies
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e case p=1: for any mo

D(?TQ,G’H) S (1+2LCA) 'gn,f_['R,(ﬂ'o,h) (40)
€
e case p > 1: denoting B := sup,¢ z peq d(x, Vi) we have for any mo

D(m0,6y) < (p-BP™' +2L-Cu)- hin%Rl/p(wo, h) (41)
S

The proof (in Annex [D)) exploits optimal transport through connections between the considered
norms and the norm || — 7'{| ;7 o) = L-[lm = 7'|,3,1,4), where Lip(L, d) denotes the class of functions
f:(Z,d) — R that are L-Lipschitz.

2.10 Summary

Given a learning task, embodied by a family of loss functions ¢(z, h), h € H, and a (random) feature
function ® used to define a sketching procedure, establishing compressive statistical learning guarantees
involves several steps. Overall, to determine whether the task and the sketching function are compatible
one needs

1. to determine a model set Gy associated to the learning task, and to identify the metric [|-[| ;33
2. to identify the kernel x(z,2’) associated to the (random) feature function, and the MMD ||| ;

3. to check whether the Kernel LRIP ([23) holds, through the characterization of a compatibility
constant between the kernel, the learning task, and the model set G.

4. to characterize the concentration (7)) of the empirical MMD toward the MMD ||-||,. for distri-
butions in the model set Gy;

5. to control a certain covering dimension of the normalized secant set S of G4 with respect to the
MMD.

Gathering all these steps, one can prove that the sketching operator A associated to ® satisfies a
LRIP (2] with high probability for a sketch of controlled finite size, and that the solution of a certain
nonlinear least squares problem (1) yields an hypothesis ([B8]) with controlled excess risk. These steps,
and the resulting guarantees are summarized in Table [I] for the three examples developed in the next
sections.

Conversely, to construct a suitable random feature function given only a learning task, it will be
relevant to first find an appropriate kernel and to approximate it by random feature sampling, see
Section [T for a discussion of perspectives in this direction.

3 A first illustration: Compressive PCA

As a first simple illustration, this general compressive statistical framework can be applied to the
example of PCA, where most of the tools already exist. Our aim is essentially illustrative, and focuses
on controlling the excess risk, rather than to compare the results with state-of-the art PCA techniques.
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Task

PCA

k-med. (p = 1) / k-means (p = 2)

Gaussian Mixture Model.

Hypothesis h

k-dim. subspace

h CR? dimh =k

k cluster centers

{017...,Ck}CRd

param. of k Gaussians
d
means ¢; € R

covar. 3, € R¥x4

mixture parameters o

Loss {(z, h)

|z — Pl

miny <i<y |z — ¢}

—log mh ()

Model set Gy

{m : rank(X,) < k}

{7 : mixt. of k Diracs}

{7 : mixt. of k Gaussians}

Feature function

D(z)

quadratic polyn.
(o' L)

=1

weighted Fourier features

(e futeer)

Fourier features

T .\™
j=1

Sampling law A

P(L) 6*||L”F

=1
llewll?
P(w) o< w?(w)e™ 222

w3
P(w) x e Bva

Kernel x(z,x")

T _ /TH2
H:c:c |

exp(—A? [z — 2||3 /2)

exp (=X |l — /|3 /2)

Learning step

h = Learn(y) Low-rank recovery arg mln aénsin ) | Z a®(c)—yl2 | arg hmelﬁ |A(ms) — ¥,
Assumptions N/A mingp ||e — cplly > 2¢ mingp [ja — cplls > 26
max; |||, <R max; ||l < R
1/e = O (A//Iogk) known covariance ¥; = X, VI
[see Table 52 for expr. of €3]
Compat. Cs || O (\/E) O (\/_Rp) O (\/ERQ)
Concent. ¢x() || O(1) O (kdlog k) O (kM)
Covering dim. s || O (kd) O (kd) O (kd)
Sketch size m = || O (kd) O (k*d®logk - log(kdR/e)) O (k*dMy - log(kMxR/ex))

Ck S

[see Table for expr. of
M,

Bias term o(\/E) Reca(m0,h*) | O (VETogkR? Je)-RYE, (0, h*) | N/A
D(mo, Gx) [p = 2: assuming || X|[|, < R a.s.]
Table 1: Summary of the application of the framework on our three main examples (detailed in

Sections Bl @l and ) in Z = R9. Sj_; denotes the (k — 1)-dimensional simplex (i.e. the sphere with
respect to the £'-norm in the non-negative orthant of R¥), and ||z||s; = 7 £~z the Mahalanobis norm
associated to the positive definite covariance matrix 3. Stricly speaking we should write log(ek) =
1 + log k instead of log k to cover the case k = 1. For PCA, improved bounds can be obtained with
specialized arguments, see Section This suggests that improved constants may be achievable also
for the other considered tasks.

Definition of the learning task. The risk associated to the PCA learning problem is definedd

as Reca(m,h) = Exor || X — PLX|J5.

eigenvalues of the matrix 3, = Exo.XXT.

It is minimized by the subspace associated with the k largest

6for simplicity we assume centered distributions Ex X = 0 and don’t empirically recenter the data.
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It is well established [50] that matrices that are approximately low rank can be estimated from
partial linear observations under a certain Restricted Isometry Property (RIP). This leads to the
following natural way to perform Compressive PCA.

Choice of feature function. Choose (at random) a linear operator M : R?*4 — R™ satisfying
(with high probability) the following RIP on low-rank matrices: for any M € R%*? of rank at most
2k,

_ M3
T M

with ||-|| » the Frobenius norm and § < 1. This is feasible with m = O (kd), see e.g. [50]. Define the
feature function ® : Z = R? — R™ by ®(x) := M(zzT).

<1+56 (42)

Sketch computation. Given sample points z1,...,, in R? compute the sketch y as in (@), i.e.,
compute empirical estimates of random second moments of the distribution 7wy of X. These random
moments are well-defined provided that my admits second moments, i.e., that it is not too heavy-tailed.

Learning from a sketch. Given a sketch vector y, estimate a solution of the optimization problem
over semi-definite positive symmetric matrices (2 = 0)

Y :=ar min ME) —yl3. 43

B min M) -l (43)
This step estimates the rank-k matrix whose sketch best matches the sketch of the empirical matrix
of second moments, in the least squares sense. Compute the eigen-decomposition ¥ = UDU” and

output
h:=span(U(:,1 : k). (44)

In Annex [H we control the excess risk of PCA through the characterization of |7’ — 7|| c(w) and the
proof (cf Eq. [[Q9)) that ||7" — 7| z(5) < [[Zr — Zr ||, with [|-]|, the nuclear norm.

Theorem 3.1. Consider any probability distribution mg with finite second moments and any draw of
x;, 1 <14 <n (represented by the empirical distribution 7, ). Applying the above approach yields

Repca(m0, 1) — Rpca(mo, h*) < == C1Ropea(mo, B*) + Cs || A(mo — 7))l - (45)

where C1 = 2 + 4\5? V?‘ and Cy = \/\Q

Discussion

e Bias term. The first term in the right hand side of (@) is a bias term that vanishes when
the true risk is low. Remarkably, it is also proportional to the true risk, hence leading to a
(non-sharp) oracle inequality Rpca(70,2) < (1 + C1)Rpca(m0, B*) + Co || A(m — 70)||5. We will
show that this remarkable property also holds for Compressive k-medians (a variant of k-means).
For Compressive k-means we will prove similar properties where the bias term is essentially the
square root of the true risk.

e Sample complexity. Regarding the second term, if we further assume that the support of mg is
contained in a Euclidean ball of radius R, then by the RIP ([@2) we have a.s. || ® ()|, < 1+ §-R?
hence, by the vectorial Hoeffding’s inequality [74], we obtain with high probability w.r.t. data

sampling that Cs || A(mo — )|y S R2VE(L+6)/(1—6)/\/n.

17



Improved guarantees and practical algorithms for learning. Omne can consider several re-
laxations of the nonconvex optimization problem ([@3) in order to perform compressive PCA. Beside
convex relaxations using the minimization of the nuclear norm [50, Section 4.6], Kabanava et al. [61]
showed (in a complex setting) that the rank constraint in (@3] can be relaxed when M is made of
random rank one projections, i.e. when ®(z) = \/—%(| (aj, ) |*)j=1,m where a; € C? are independent
standard complex Gaussian vectors. In this setting, let

> = arggli% [M(Z) - YI|§ ; (46)

and the corresponding hypothesis h obtained through @). We have the following result ([6I, Theo-
rem 4 with p = 1] combined with Equation (I99) in Section [H): if m > Ckd where C is a universal
constant, then with high probability on the draw of the a;, for any x1,...,2,, we have the control

M = D1Rpea(m, h*) + D2 || A(T — 7)) ||,

where D1, D5 are positive universal constants that no longer depend on k.

Hence, the constant C; from Theorem Bl seems pessimistic as it grows with k. This may be
due to the generality of our approach, where we lose a factor (by using a RIP in the Frobenius norm)
compared to the more precise study of [61]. However, the general approach developed here permits the
study of the less trivial setting of compressive clustering and compressive Gaussian mixture estimation
as shown in the next sections.

4 Compressive clustering

We consider here two losses that measure clustering performance: the k-means and k-medians losses.

4.1 Application of the theoretical framework

Definition of the learning task. For k-means (resp. k-medians), we consider as sample space the
Euclidean space Z = R%, and hypotheses are sets of size lower than k : h = {c1,...,cx, } where ¢; € R?
are the so-called centers of clusters and k; < k . The loss function for the clustering task is

((z;h) = min [lz — el (47)

with p = 2 for k-means (resp. p =1 for k-medians) and Reiyst. (7, h) = Exr ming<j<i || X — cng.

Model set G4 and best hypothesis for 7 € &3. For compressive clustering with k-means or
k-medians with a hypothesis class H C (R%)¥, distributions such that Reciuse. (7, h*) = 0 are precisely
mixtures of k Diracs,

k
Gy = {Zaﬂscl c{a)_, eH,ae Skl} (48)

=1
where Sp_1 = {a eR*: a; >0, Zle o = 1} denotes the (k — 1)-dimensional simplex. Moreover,

for any distribution in this model set, 7 = Zle a1dc, € Gy, the optimum of minimization ([T is
h ={e1,...,cx} (hypothesis resulting from the probability density 7) .
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Separation assumption. Because one can show (see Section [[£8)) it is a necessary condition for
the derivation of theoretical risk control with smooth shift invariance kernels, we impose a minimum
separation between Diracs, as well as a bounded domain, hence we consider a particular set of k-tuples

Hier = {{cl}fil CR?: [k <k, 1;1;16111 ller —crlly > €, Inlax llelly < R}. (49)

The parameters € and R represent the resolution at which we cluster the data.

Choice of feature function: weighted random Fourier features. Given that the model set
G4 consists of mixture of Diracs, and by analogy with compressive sensing where random Fourier
sensing yields RIP guarantees, compressive clustering with random Fourier moments has been recently
proposed [64]. To establish our theoretical guarantees we rely on a reweighted version: sample m

random frequencies w1, .. .,w., in R? independently from the distribution with density
llwll?
Aw) = Ap A (W) x w?(w)e™ 227, (50)

with weights w(w) and scale parameter )\, and define the associated feature function ® : R? — C™:

N & ejw;rx
) = vm |:w(wj):|_j—17,,,7m. 51)
with
wlw) = 14 ”;Q; (52)
Cr = (4+2/d%)"? (53)

This sketching operator is based on a reweighting of Random Fourier Features x +— ew'e [73]. These
weights w(w) are mainly required for technical reasons (see general proof strategy in Section [6] and
proofs in Annex [[]) but may be an artefact of our proof technique. The constant scaling in front of ®
is of course irrelevant for the algorithm itself which is invariant by rescaling of ®, but is included for
coherence with the theory and in particular the bounds below which involve ®.

Sketch computation. Given sample points z1,...,z, in R% compute the sketch y as in (@), i.e.,
compute a weighted version of samples of the conjugate of the empirical characteristic function [49] of
the distribution 7 of X. In contrast to the case of Compressive PCA, the characteristic function and
its empirical counterpart are always well-defined, even if m( is very heavy-tailed.

Learning from a sketch. Given a sketch vector y and a class of hypotheses H, estimate a solution
of the following nonlinear least-squares problem

2

h = C1y...,Ck = ar min min P () , 54
{ et Z oY
2
This learn-from-sketch part finds the k-mixture of Diracs (under R-boundedness and centroid 2e-
separation constraints) whose sketch best matches the empirical sketch (in the least squares sense): it
corresponds exactly to the calculation of the minimizers of (B7)) and (B8] in Theorem We have
the following guarantees.
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Theorem 4.1. Build the sketching function as in (BIl) where the w; are drawn according to (B0).
Define ¢ := 1/(\oy,) where for k > 1, oy = (2.4(log(2k — 1) + 10))~'/2, and consider R > ¢ large
enough so that Hy 2 r 15 non-empty.

There is a universal constant C' > 0 such that, for any ¢,0 € (0,1), when the sketch size m satisfies

m > 06~ 2kd(1 + logk) - [kd - (1 +logkd + log £ + log ) + log ﬂ , (55)

we have with probability at least 1 — ( on the draw of the random Fourier frequencies (wj);»”:l : for any
H C Hioe,r, any source distribution my on Z = R4, any samples x; € R 1<i<n (represented by
the empirical distribution 7y, ), denoting h a k-vector of centroids obtained by minimization ([B4) and
h* € argmingey Reiust. (M0, h):

Rclust. (7T07 h) - Rclust. (7T07 h*) S Tin (56)
n S 2Dclust.(7T07 G'H) + \/% ||A(7T0 - ﬁn)”z (57)

where C, < 8\/6\/ERP, with p = 2 for k-means, resp. p = 1 for k-medians, and Dciysy. 1S the
instantiation of (@) for the norm [IQ) associated to the considered clustering task.

Remark 4.2. Note that this holds with the sample space Z = R?, i.e., we only restrict the centroids,
not the data to the Euclidean ball of radius R, Bga .|, (0, R).

Given X and k, Theorem [ T]sets a separation condition € = 1/(\oy,) sufficient to ensure compressive
statistical learning guarantees with the proposed sketching procedure. Vice-versa, to target a given
separation ¢ with a given number k of components, choosing A = 1/(co%) = O (/1 +1logk/e) is
sufficient.

Sketch of the proof of Theorem[]-1 We apply Theorem [Z0 The kernel resulting from the choice of
random features is i
k(x,2') = ex (—7A2||xx,|2>
9 - p 2 :

The control of the compatibility constant C, the concentration constant W,, and the covering numbers
N (do, S, 0) for the model &g := &, ,_, and its secant S is obtained with a general strategy for the
more general case of mixture models with e-separation that is described in Section[6land will be reused
for Gaussian mixtures. The specifics of this strategy for compressive clustering are proved in Annex [F]
and yield:

e Compatibility and concentration. The compatibility constant is bounded as
C.=0 (\/ERP) : (58)

with p = 2 for k-means (resp. p = 1 for k-medians). We also control the concentration constant

W, = O (V/kdlog(eh) ), (59)

yielding
¢x(6/2) = O (6 %kdlog(ek)) . (60)
e Covering numbers. We establish that the covering numbers satisfy
log N (do, S, 0) = O (kd - log (ekd - 5 - £)). (61)
Given these results, we can invoke Theorem to obtain that the sketching operator satisfies with
high probability the LRIP with the claimed constants for the model &y. Whenever H C Hy 2. r, We

have &3 C &( hence the LRIP also holds for all models &4 such that H C #Hj 2., g and the conclusion
follows as in Theorem O
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4.2 Sample complexity and distribution free result.

The second term in the bound (&) measures the estimation error and can be easily controlled since
|®(x)]l, < Ca < V6 by construction (EI). By the vectorial Hoeffding’s inequality [74], with high
probability w.r.t. data sampling it holds that || A(mo — )|y < Ca/v/n = O (1/y/n).

The first term in the bound (7)) is a bias term Dciyst. (70, &%) which means that the quality of
the bound depends on whether 7 is well modeled by &4 or not. However, in the case of Compressive
PCA we have shown that this bias term is in fact controlled by the risk of the optimal hypothesis,
R(mo, h*), yielding a (non-sharp) oracle inequality and a distribution free guarantee. Does this also
hold for Compressive Clustering ?

Since the loss is a power of a metric d(z,2’) = ||z — 2'[|,, we can leverage Lemma to bound
the bias term Dciyst. (70, S3¢) provided @ : (Z,-|l,) — (C™, ||-||5) is Lipschitz. This is indeed the case
thanks to the following lemma (proof in Annex [E.6]).

Lemma 4.3. Build the sketching function as in (BIl) where the w; are drawn according to ([B0). For
any 0 < ¢ <1, t >0 when the sketch size satisfies

m>Cit7? (2d+4+2-1) - log (?) (62)

we have: with probability at least 1 —  on the draw of the random Fourier frequencies (wj);-”:l, the
function @ : (Z,||||y) = (C™, ||-||5) is L-Lipschitz with L = \\/1 +t.

Combining with Lemma 210 and recalling that C 4 = O (\/ERP), we obtain for k-medians (p = 1)

and any 7o
Dkfmedia_ns (770; 67{) S Cl : 7?fkfmedia_ns (h)

with ) = O (1+\/E)\R) = O (VkTogkR/e), while for k-means (p = 2), under the additional

assumption that when X ~ 7y we have || X||, < R a.s., we get

Dk—means(ﬂ-m G’H) S 02 vV Rk—means(h)-
with Cy = O (RCy) = O (VEIogkR?/e).

Remark 4.4. Given the assumptions of LemmalZ10 we seem to require a bound B on the samples to
control the bias term for k-means (not k-medians).

Combined with Theorem [4.1], this yields with probability 1 — 2¢ a uniform, distribution free guar-
antee valid for any 7 (resp. for any mp such that X is a.s. bounded by B) provided m is large enough.
In particular for k-medians we obtain a (non-sharp) oracle inequality

R(mo, h) < R(mo, h*) + 1/+/n.

We leave possible tightening of the hidden constants (which may be large) to future work.

4.3 Learning algorithm ?

For compressive clustering, learning in the sketched domain means solving problem (B4, which is
analogous to the classical finite-dimensional least squares problem under a sparsity constraint. The
latter is NP-hard, yet, under RIP conditions, provably good and computationally efficient algorithms
(either greedy or based on convex relaxations) have been derived [50].

It was shown practically in [64] (with some reproduced results in Section [3)) that a heuristic based
on orthogonal matching pursuit (which neglects the separation and boundedness constraint associated
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to the class Hy 2¢,r) is able to recover sums of Diracs from sketches of the appropriate size. It must be
noted that recovering sums of Diracs from Fourier observations has been studied in the case of regular
low frequency measurements. In this problem, called super-resolution, it was shown that a convex
proxy (convexity in the space of distributions using total variation regularization) for the non-convex
optimization (54]) is able to recover sufficiently separated Diracs [19] B85 [41]. However, these methods
rely on semi-definite relaxation of dual optimization followed by root finding in dimension d and their
extension to weighted random Fourier measurements in not straigthforward. Consequently, we leave
this direction for future research.

4.4 Discussion

Improved sketch size guarantees? Although Theorem 1] only provides guarantees when m >
@ (k2d2) (up to logarithmic factors), the observed empirical phase transition pattern [64] strongly hints
that m > O (kd) is in fact sufficient. This is intuitively what one would expect the “dimensionality”
of the problem to be, since this is the number of parameters of the model Gy.

In fact, as the parameters live in the cartesian product of k balls of radius R in R? and the
“resolution” associated to the separation assumption is e, a naive approach to address the problem
would consist in discretizing the parameter space into N = O ((R/ s)d) bins. Standard intuition from
compressive sensing would suggest a sufficient number of measures m > O (klog N) = O (kdlog ?)

Given that the covering dimension captured by our results seems of the right order, we expect that
improved compressed statistical learning guarantees for compressive k-means should primarily result
from a more subtle control of the concentration function ¢, (t), to ideally obtain ¢.(6/2) = O (672)
instead of O (5’2kdlog k) We leave a possible refinement of our analysis, trying to capture the
empirically observed phase transition, for future work. This may also lead to improved estimates of
the compatibility constant removing certain logarithmic dependencies.

Role of separation Although the separation € is important in the definition of the sketch and in
the derivation of learning guarantees, its role is less stringent than it may appear at first sight. In
Theorem EI] both the estimated and optimal hypotheses h and h* are defined under a separation
(and boundedness) constraint Hy, 2. g. In fact, if the optimal hypothesis without separation constraint
(denote it h) happens to be indeed 2e-separated, then h* = h{§ and Theorem [£1] does provide guaran-
tees with respect to the corresponding risk Rciust. (70, hg). Besides, we can show that the separation
hypothesis causes a maximum deviation 2¢ in the risk estimation. We have the following Lemma:

Lemma 4.5. Let hy € argminpeyy,, o Relust. (7o, h) be an optimal hypothesis without separation con-
straint, and h* € arg Milpen, 5 p Relust. (mo, h) an optimal hypothesis with the separation constraint.

e For k-medians (p = 1) we have:
Rk—medians (7T07 h*) S Rk—medians (7T7 ha) + 2e. (63)

e For k-means (p = 2) we have:

Rk—means (7T07 h*) S \/ Rk—means (7T07 ha) + 2e. (64)

This Lemma, which is proved in a slightly more general version (Lemmal[[25]) in Section [E7, allows
to compare the risk of the separation-constrained estimation h (with method (54])) and the optimal
risk hf without separation, e.g. in the k-medians case,

Rclust. (7T07 h) - Rclust. (7T07 ha) S Tin + 2e. (65)
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Whether one can similarly relate the solutions A and ho of (B4) with and without separation constraint
is an interesting question left to future work.

Separation wvs sketch size vs range of frequencies Assume we seek a given number of clusters
k in a ball of given radius R in dimension d. Practically, given a reasonable minimium separation
between cluster centers € one has to chose a sketch size m > O (log(1/¢)). Conversely, if the maximum
sketch size m is fixed, learning guarantees are available for separations € > e~ (™). A linear increase
of the sketch size can thus be very valuable since it decreases exponentially one of the terms appearing
the excess risk, see (GH]). Since the distribution of frequencies w; to be considered is parameterized by
A = O (1/e), decreasing ¢ also means exploring higher frequencies.

5 Compressive Gaussian Mixture Modeling

We consider here Gaussian Mixture Modeling with known covariance.

5.1 Application of the framework

Definition of the learning task. We consider Gaussian Mixture Modeling on the sample space
Z = R%, with k Gaussian components with fized, known invertible covariance matrix ¥ € R? . We
denote m. = N(c, X).

An hypothesis h = (c1, ..., ¢k, @1, ..., ;) contains the means and weights of the components of a

GMM denoted 7, = Zle oyme,, with ¢ € R? and a € Sp_1. The loss function for a density fitting
problem is the negative log-likelihood:

l(x,h) = —logmy(x) (66)

and correspondingly Rem(m, h) = Ex.r(—logm(X)). As recalled in Annex [A3] the risk can also
be written Rew(m, h) = KL(7||7m) + H(w) with KL(-||-) the Kullback-Leibler divergence and H(-) the
differential entropy.

Model set 63 and best hypothesis for 7 € &3. A natural model set for density fitting maximum
log likelihood is precisely the model of all parametric densities:

GHZ{Wh:hEH} (67)

Separation assumption. Similar to the compressive clustering framework case of Section H we
enforce a minimum separation between the means of the components of a GMM. We denote

Hier = {(c1y s iy, yap) i €RY allg <R, e —cpllsy > @€ Spr} (68)

where

el :=V Iy le (69)

is the Mahalanobis norm associated to the known covariance ¥. Moreover, for any distribution 7 = mp,
in the model set G4, the optimum of minimization (7)) is h = hg as it corresponds up to an offset to
minimizing KL(#||mp,).
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Choice of feature function: random Fourier features. Compressive learning of GMMs with
random Fourier features has been recently studied [I7, [62]. Unlike compressive clustering we do not
need to define a reweighted version of the Fourier features, and we directly sample m frequencies
Wi,y Wh in R? ii.d from the distribution with density

A=Ay=N(0,NET (70)

with scale parameter \. Define the associate feature function ® : R4 — C™:

R O)\ Jw?x
o) = [eiv] (1)
with )
O = (14 2X2)4/* < dV7/2, (72)

The constant C\ multiplying Fourier features has no incidence on the recovery procedure but is included
for coherence with the theory. As we will see in Section [l with our approach both compressive
clustering and compressive GMM are dealt with using the same general mathematical tools.

Computing and learning from a sketch. Given sample points x1,...,z, in R? compute the
sketch y as in (@), i.e. a sampling of the conjugate of the empirical characteristic function [49] of the
distribution 7y of X. Then, given a vector y and a hypothesis class H, estimate a solution of the
following nonlinear least-squares problem:

b= arg gél,}r_% | A(ms) — Y||§ (73)

where A is defined as ([@). In particular, up to a scaling factor Cy/\/m, A(mp) is a sampling of
the conjugate characteristic function of the mixture of Gaussians 7, which has here a closed form

expression
k
C)\ 2 CYl@JwJTcL e—%ijij .
v m
=1 j=1,....m

Theorem 5.1. Build the sketching function as in ([Il) where the w; are drawn according to ([0).

Define the separation
2+1/)\2
ex = /“;72/ =0 (VT+1/3)log(ch) ) (74)
k

and consider R > ey large enough so that Hy oc, g 15 non-empty. Denote

A(mp) =

We have the following guarantees.

d
14+222)2F0  edV(1 4+ 2)2
M)\ = (E)\O)\)2 = ( )\20_]%) S ()\2013 ) (75)

There is a universal constant C > 0 such that, for any (,0 € (0,1), when the sketch size m satisfies
m > 6 2k2dM, - {log(ekMA) + log g +log 4| + 6 2kM, - 1og% (76)

we have with probability at least 1 — ( on the draw of the random Fourier frequencies (wj);»”:l : for any
H C Hioe,r, any source distribution my on Z = R4, any samples x; € R 1<i<n (represented by
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the empirical distribution 7, ), denoting h the parameters of a GMM obtained by minimization (T3
and h* € argminpey Rem(mo, h):

KL(WOHW;}) - KL(7TO||7Th*) = RGMM(WO, h) — RGMM(WO, h*) < Mn
where
M < 2Dewu(To, S3) + \/% Ao — )l (77)

where C,, = 4v/3VkR? and Dy is the instantiation of (@) for the norm (IO) associated to the

considered learning task.

Remark 5.2. Note that this holds with the sample space Z = R?, i.e., we only restrict the means of
the GMM, not the data, to the ball of radius R, BRd1||.||E(O,R).

The proof follows the same steps as for Compressive Clustering, exploiting the generic results for
mixtures that we detail in Section[Gl The details are provided in Annex[Gl The major elements are to
control the compatibility constant as C, < 4\/5\/%1%2, the concentration constant as W,, < 4ke ACh,
the concentration function as ¢.(6/2) = O (67 2W2) = O (672kM,), and the covering numbers as

logN (do,S,0) = O(kd-log (ekM)\ ) ? ) %))

5.2 Discussion

Estimation error. The second term in the bound () is easy to control: since from (7)) it holds
that ||®(z)||, = Ch, by applying the vectorial Hoeffding’s inequality [74], with high probability w.r.t.

data sampling it holds that C |[A(mg — 7,)[l, = O (C’A\/ERQ/\/E). To reach a given precision we

thus need n > CikR*. Notice that when A = O (1/d) we have C) = O (1). However Cy can grow
exponentially with d when A is of order one or more, potentially requiring n to grow exponentially
with d to have a small second term in ([Z7]).

Separation assumption. Given \ and k, Theorem [5.]] sets a separation condition e, sufficient to
ensure compressive statistical learning guarantees with the proposed sketching procedure, as well as
a sketch size driven by M. Contrary to the case of Compressive Clustering, one cannot target an

arbitrary small separation as we have £y > v/2/0} which is of the order of O (\/log(ek)). Reaching

guarantees for this level of separation requires choosing A of the order of one (1/A = O(1)). As we
have just seen, this may require exponentially many training samples to reach a small estimation error,
which is not necessarily surprising as such a level of separation is smaller that one can generally be
found in the litterature, see e.g. [Il B4} [83]. For smaller values of A the separation required for our
results to hold is larger.

Sketch size. Contrary to the case of Compressive Clustering, the choice of A also impacts the sketch
size required for the guarantees of Theorem [B5.] to hold, through the value of M. An easy function
study shows that M, is minimum when A = 1, leading to My < (d + 2)e/o} = O (dlog(ek)), and

Cy = O (1), however at the price of a larger separation condition €y = O («/dlog(ek)). For larger

values of A, the required separation is smaller, but the estimation error captured by C3 increases as
well as the sketch size under which we have guarantees. Choosing A2 < 1/d does not seem to pay off.
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Tradeoffs. Overall we observe a trade-off between the required sketch size, the required separation of
the means in the considered class of GMMSs, and the sample complexity. When A increases, more high
frequencies are sampled (or, equivalently, the analysis kernel is more precise), and the required separa-
tion of means decreases. As a price, more frequencies are required, and the sketch size increases as well

as the estimation error factor C3. Overall, parameterizing A\? = T we get ey =0 (, / (% +1) log(ek)),
C2=0(7/?), My =0 ((g 1) log(ek)67/2), and m > O (kzd(g +1)e"2polylog(k, d, v, d/fy)). We

Variance Separation Estimation error M), = (e,Cy)? Sketch size
A2 € factor C% k2dMy log(ekM))
1 o ( dlog(ek)) o) O (dlog(ek)) O (k2d*polylog(k, d))
loglek) 1l o ( d+ 1og(ek)) O (k) O (k(d +log(ek))) | O (K3d*polylog(k, d))
z O ( log(ek)) 24/2 O (2%/21og(ek)) | O (k2d? 2¢/2polylog(k, d))

Table 2: Some tradeoffs between separation assumption, estimation error factor, and sketch size guaran-
tees obtained using Theorem [5.1]for various values of the variance A? of the frequency distribution (Z0Q).

give some particular values for A in Table The regime A = 1/2 may be useful to resolve close
Gaussians in moderate dimensions (typically d < 10) where the factor 2%/ in sample complexity and
sketch size remains tractable.

Learning algorithm and improved sketch size guarantees ? Again, although Theorem [.]]
only provides guarantees when m > O (k2d2) (up to logarithmic factors), the observed empirical
phase transition pattern [63] (using an algorithm to adress (73) with a greedy heuristic) suggests that
m > O (kd), of the order of the covering dimension, is in fact sufficient. We expect that this can
be achieved theoretically with improved estimates of the concentration function ¢, (t), which is likely
to be O (1) rather than O (kd). Also, while Theorem [5.1] only handles mixtures of Gaussians with
fixed known covariance matrix, the same algorithm has been observed to behave well for mixtures of
Gaussians with unknown diagonal covariance.

Controlling the bias term 7 Controlling the bias term
Daw(mo, &x) = inf {Ilmo = Tll sy + Cat AGTo = m)ll } (78)
heGy

for Gaussian Mixture Modeling seems more delicate than for clustering, as we can no longer rely on our
Lemma [ZT0 As the sketching functions are uniformly bounded, using Pinsker’s inequality (see An-

nex [A.3)) we have || A(mo — m4) |y S |70 — 7allpy S v/ 2KL(7ol|74). Its infimum over A is thus bounded
by a constant times \/KL(mo||mp+). As Rew(mo, ) is, up to an additive offset, equal to KL(mo||ms),
this is reminiscent of the type of distribution free control obtained for k-means. Establishing such a
result would however require controlling the term ||mo — 7| £ (3,), Which is left to future work.

6 Recovery guarantees for general mixture models

Given the hypotheses of our main Theorem 2.9] for a loss class £(H) (see Section 2.4) and a model &
(see Section 2.0)), our goal is to find a kernel k along with its integral representation (@, A) such that
the compatibility constant C,; (see (2H)) is finite; the concentration constant W, (see [B0)) is finite;
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the normalized secant set S, (see ([B2)) has finite covering numbers. As the distance [|7 — 7’| is
the denominator of all these expressions, most difficulties arise when |7 —7’||, is small (7,7" € &
get “close” to each other) and we primarily have to control the ratio |7 — «’|| / ||= — 7’||,, for various
norms when |7 —7'||, — 0.

In this section, we develop a framework to control these quantities when the model & is a mixture
model, which covers mixtures of Diracs (see Section []) and mixtures of Gaussians (see Section [).

Definition 6.1 (Mixture model). Given T = {my : 0 € O} a family of probability distributions (e.g.
T may be a family of Diracs or of Gaussians), and an integer k > 0, we define the mixture model

k k
S (T) = {Zalm:alZO, Zal:l’ FlET}.
=1 =1

The existence of a finite compatibility constant means that for any 7,7’ € S (T) we must have
|7 =7l 23y < Cr [l — 7|, so in particular for any 6,6 € © and any loss function f(-) := £(,h), h €
H, we must have ‘Exwﬁef(X) - Exwﬁe,f(X)’ < |lmo — morll 30y < Cie llmo — mo ||, . For the particular
case of mixtures of Diracs this reads |f(0) — f(6')| < Crox(0,0") where 0.(0,0") := [|6g — do|| ., i.e.,
f is Lipschitz with respect to a certain metric g, (-, ) between parameters, which is Hilbertian after
embedding the parameters in an appropriate Hilbert space.

6.1 Bounded and Lipschitz functions “in expectation”

Vice-versa, for certain types of kernels (see Section [6.3), we will control the ratio |7 — «'|| / |7 — 7’|,
for various norms by controlling || — 7’| 5, / ||7 — 7'||,, where BL is the following class of functions.

Definition 6.2 (“Bounded and Lipschitz in expectation” functions). A function f : Z — C is
“bounded and Lipschitz (with respect to a metric o(-,-) on the parameter space ®) in expectation”
on the basic set T = {mg : 0 € O} if there exists D, L < 0o such that for all 6,0" € O,

|EX~779 .f(X)| < Da (79)
‘EXNWef(X)_EX/NWQ/f(X/)‘ < L'Q(9a9/>' (80)
We denote BL(D, L, T, o) (or in short BL(D, L)) the set of all functions satisfying ([T9)-(E0).

6.2 Separated mixtures models and dipoles

We will be interested in a restricted mixture model taking into account a notion of separation between
components. Given g be a metric on the parameter space ® of the form

0(6,6") = [[¢(6) — (6"l (81)

with ¢(-) a mapping from © to some Euclidean space, we define the mixture set with e-separation

k k
G0 (T) = {Z oymg, g > 0, Zal =1 m €T, 9(91,91/) >e Vil +# ll} (82)

1=1 1=1
or simply &y . (T) for short when there is no ambiguity on which metric g is used.

Remark 6.3. In the following, for lighter notations we will incorporate € into the metric and work with
a constant 2-separation, i.e., with Sy 2, (T). For example, in the case of Diracs, choosing o(c,c’) =
e = c'lly /e yields k2,0 (T) = S ac |-, (T) with the desired 2e-separation in Euclidean norm. In the
case of Gaussians, the same holds with o(c,c') = |c —c'||s /.
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The notion of dipoles will turn out to be particularly useful in our analysis.

Definition 6.4 (Dipoles, separation of dipoles). A finite signed measurdl v is called a dipole with
respect to the metric o and the set T if it admits a decomposition as v = aymg, — Qamy, where
To,, To, € T, such that

0(01,02) <1

and 0 < o; <1 fori = 1,2. Note that the coefficients a;’s are not normalized to 1, and that any of
them can be put to 0 to yield a monopole as a special case of dipole.
Two dipoles v,V are called 1-separated if they admit a decomposition v = ay1my, — aamg,, V' =

Q) me; — ey such that 0(0;,05) > 1 for all i, j € {1,2}.

With these definitions, elements of the secant set of the model &y 2 (7) are sums of 2k pairwise
1-separated dipoles.

Lemma 6.5. Let w,7" € Sy (T). It holds that

2k
T—7 = E 7
1=1
where the measures v; are dipoles that are pairwise 1-separated.

Proof. Using the 2-separation in 7 and 7’ and the triangle inequality, for the metric ¢ each parameter
0; in 7 is 1-close to at most one parameter 9;- in 7/, and 1-separated from all other components in both
7w and 7’. Hence m — 7’ can be decomposed into a sum of (at most) 2k dipoles (which may also be
monopoles). Adding zeros if needed, we obtain exactly 2k dipoles. |

6.3 RDBF-like Mean Map Embeddings
We focus on kernels (-, -) such that the Mean Map Embedding ([I8) can be expressed as:

K(W@,F@/) = K(g(ﬁ, 6‘/)), Vo, 0O (83)

where K : Ry — R,. For the particular case where p is the Euclidean distance, this corresponds
to assuming that x(mg, me) = K (||0 — 6']|,), i.e., the Mean Map Embedding is a radial basis function
(RBF) of the parameters. Hence, ([83)) characterizes a family of RBF-like Mean Map Embeddings. Such
embeddings can “distinguish” separated dipoles, under some assumptions on the function K(-).

Definition 6.6. The class E(A, B, C,c) consists of all functions K : Ry — Ry that satisfy
i) over the interval [0, 1]:
o K(0)=1;
° K(u)gl—%forallugl;
ii) over the interval [1,00):
o K is bounded: 0 < K(u) < A, for allu>1;
e K is differentiable with bounded derivative: |K'(u)| < B, for all u>1;
o K’ is C-Lipschitz: |K'(u) — K'(v)] < Clu—v|, for all u,v > 1.
7See Annex [A2]
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Definition 6.7. The class E,(c) consists of all functions K : Ry — Ry such that K(-) € £(A, B,C,¢)
for some A, B, C such that
3min(c, 1)

1<k<i .
=P 2F rmax(4,2(B+ 0))

(84)

For any integer k, one can indeed design a function K(-) € &, (1) using the Gaussian kernel. The
proof is in Annex [E.1l

Lemma 6.8. Define for any o >0 and any k > 1,

2

K, (u) = e 22, u>0 (85)
1
ol = (86)

2.4(log(2k — 1) +10)°

We have 0 < 07 <1/24 < 1, and for any 0 < 0 < oy, K,(-) € E,(1).

6.4 Mutual coherence between separated dipoles

The motivation for choosing RBF-like kernels in the class £ (c) is our first main technical lemma below
which bounds what can be considered as the mutual coherence (with respect to the inner product
defined by the RBF-like Mean Map Embedding) between any pair of dipoles that are 1-separated

and uses Gersgorin’s disc theorem to handle sums of mutually 1-separated dipoles. The proof is in
Annex

Lemma 6.9. Consider a function K(-) € E(A,B,C,c). For any kernel k(-,-) and any set T =
{mg : 0 € O} such that the Mean Map Embedding (A8) satisfies [B3]) with some metric p of the form
@), the following holds:

e for any two dipoles (with respect to T and o) that are 1-separated from each other, v,v', we havdl

k(v V)]

DT < M = M(A,B,C,c) = 8max(A,2(B+0)). (87)
il M1,

min(c,1) ’
e for any ¢ dipoles v that are pairwise 1-separated, we have

HZzgzl i i
1-M-(t-1)<i— e <1y M- (0-1). (88)
> Imll

Specializing to £ = 2k, condition B4) reads k < %(1+537) which is equivalent to 1— M - (2k—1) > 1/4.

Remark 6.10. The reader familiar with classic results on sparse recovery will find this lemma highly
reminiscent of the classical link between the coherence of a dictionary and its restricted isometry prop-
erty, see e.g. [50, Theorem 5.13]. To handle incoherence in a continuous “off the grid” setting (such
as mixtures of separated Diracs in section [F], which also appear in super-resolution imaging scenar-
ios [19, 35, [41]), the apparently new trick is to consider incoherence between dipoles rather than
between monopoles.

8We properly define in Annex the extension of the Mean Map Embedding to finite signed measures, to make
sense of the notation x(v,v’).
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6.5 Compatibility constant, concentration constant

Our main tool to control the compatibility constant C,, and concentration constant W, is a bound
on ||7—llgzp,ry/ Im—7'[l,, when m, 7" are separated mixtures. Then, on a case-by-case basis,
obtaining the desired results will amount to proving that:

a) the family of loss functions £(#) characterizing the learning task is a subset of BL(D,, L) for
some constants D, Lr;

b) the family of functions ® = {¢,,} used to define the random feature function ® in (20) is also a
subset of BL(Dg, Le) for some other constants Dg, Lo.

This will yield explicit bounds on the compatibility constant C); and the concentration constant W,.
We first bound |||z, (p, 7y / lIll,; for dipoles.

Lemma 6.11. Consider a function K(-) € E(A,B,C,c), a set T ={mg: 0 € O}, and a metric o on
© of the form @1). For any kernel k(-,-) such that the Mean Map Embedding [A8) satisfies [&3), the
following holds:

e for any dipole p and any D, L > 0 we have

[[ 2] o i
IRl < (L /c+2D%)" (89)

NB: the constants A, B,C from the definition of E(A, B,C,c¢) do not play a role in this lemma.

The proof is is Annex[E.3l Using the dipole decomposition of Lemma[6.5 and the bounded mutual
coherence between separated dipoles, we can obtain the desired bound.

Theorem 6.12. Consider K(-) € Er(c) with k the number of mizture components, a set T =
{mg: 0 € ®}, and a metric o on O of the form [I). For any kernel k(-,-) such that the Mean
Map Embedding [I8) satisfies [B3)), the following holds:

e for all 2-separated mixtures w, @' € G2, (T) and any D, L > 0, we have
1
7= llse(p.17.g < 2(L7/c+2D?)? V2k || — o'l (90)

Proof. Let m, m' € &2, (T). Using Lemma [6.5] we obtain a decomposition 7 — 7/ = Zfﬁl v; where

the v;’s are dipoles that are pairwise 1-separated. By the triangle inequality and Lemma [6.11] we have

1
2%k
[m—m ||B£(D L) < Z HVZHBE D,L) (L2/0+ 2D2 Z il < L2/C+ 2D2 (Z [l )

i=1 i=1

Since K € & (c), (&) holds which is equivalent to 1 — M (2k — 1) > 1/4. By Lemma [6.9 we have

Zl/z

1

(L?/c+2D?)>

1
2 (L?/e+2D?)% V2k|m — 7|,
1— Mk -

Im = lgeip,L) <

O

In Annex [ (resp. Annex [G) we characterize Ly, Dy, Lo, Do, for mixtures of Diracs (resp. of
Gaussians), leading to bounds on the compatibility constant C,, and the concentration constant W.
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6.6 Covering numbers of the secant set

Thanks again to the decomposition of m — 7’ into separated dipoles, it is sufficient to control the
covering numbers (with respect to the metric [|-||, instead of de) of the set of normalized dipoles.

D:= {ﬁ : v is a dipole, |lv|[, > 0} (91)
v K

Theorem 6.13. Consider k(-,-), T = {mg : 6 € O}, and a metric ¢ of the form (&I) such that
1. the Mean Map Embedding ([I8) satisfies [83) with some K(-) € Ex(c);
2. the kernel k(z,2") admits an integral representation (1)) (®,A) with ® C BL(D, L, T, o).

With W := (L*/c+ 2D2)%, we have for any 6 > 0

N (do, Sy (G2 (T)),8) < [N(H-Hq, D, CA) - max (1, %)]% (92)

where Cy := 64kW , C := 256kW?2.

The proof is in Annex [E.4]

Controlling the covering numbers of the set D of normalized dipoles can be done in part for dipoles
associated to m and 7’ “far away” from one another. This leads to a control in terms of the covering
numbers of ®, which are often relatively easy to characterize. Getting a complete control requires a
finer study of the kernel metric |9 — 7o/ ||, when 6 and 6’ are close to each other with respect to the
metric 0(6,60"). A relevant notion is that of a tangent approximation.

Definition 6.14 (Tangent approximation). Consider a kernel k(-,-) and a norm ||| on finite signed
measures. The set V made of tempered distributions is said to be a tangent approximation to the set of
normalized dipoles D with respect to the metrics ||-||,., |||, with constants t,T > 0 if for any 6,6 € ©
such that ||mg — me||,, < t, there is v € V such that

We have the following Theorem.

9 — Tor

— —v
o — o],

< T|mg — o, - (93)

Theorem 6.15. Under the assumptions of Theorem [G13, assume that V is a tangent approxi-
mation to the set of normalized dipoles D with constants t,T° > 0 with respect to ||-||o. Denote

W= (L2/c+2D?)* and
Vi={av+p8mg: veV,0e® 0<a<2 0< <1}, (94)

For any 6 < 16T min(3/4,t/2), we have
2\ 2 2
N(Hlp.D,8) < N (20.8) max(1,(5)°) + N (o .V &) (95)

with Cy == 256W LT, Cy := 16VWDT, Cy := 4.

The proof is in Annex In Sections [[] and [Gl we prove on a case-by-case basis for Diracs and
Gaussians the existence of such a tangent approximation, with ||-|| = ||-|| the metric associated to a
representation (@, A) of the kernel. We further control the needed covering numbers.
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6.7 Summary

Given a separated mixture model set Sy 2, (7) with basic distributions 7 = {mg : € ©}, bounding
the compability and concentration constants and covering numbers (i.e. obtaining learning guarantees)
amounts to finding a kernel (-, -) with an integral representation (® = {¢,, : w € 2} ,A) and a metric
o of the form (I such that

1. the Mean Map embedding satisfies k(mg, mp:) = K (0(0,0")) where K € &;(c);

2. the random features ¢,, are Bounded and Lipschitz in expectation: ® C BL(Dw, Lo, T, 0);

3. the loss functions £(-, h) are also Bounded and Lipschitz in expectation: L(H) C BL(Dz, L., T, 0);

4. the parameter set © has controlled covering numbers N (g, ©,4);

5. the dipole set D has a tangent approximation V with controlled covering numbers N (|||, , V, ).
As a consequence we get:

e applying Theorem on the class @ of random features, the concentration constant is finite
W, = 2V2k(2D2 + L% /¢); (96)
e applying Theorem on the loss class £(H), the compatibility constant is finite
C,. = 2V2k(2D2 + L% /c)?; (97)

e applying Theorems B.I3G.TD] the secant set Sj. (Sy,2,, (7)) has controlled covering numbers
with respect to do.

This allows us to leverage Theorem This is precisely the strategy we follow in Annexes [EHG to
establish concrete results for compressive clustering and compressive Gaussian Mixture Modeling.

7 Conclusion and perspectives

The principle of compressive statistical learning is to learn from large-scale collections by first sum-
marizing the collection into a sketch vector made of empirical (random) moments, before solving a
nonlinear least squares problem. The main contribution of this paper is to setup a general mathemati-
cal framework for compressive statistical learning and to demonstrate on three examples (compressive
PCA, compressive clustering and compressive Gaussian mixture estimation —with fixed known covari-
ance) that the excess risk of this procedure can be controlled, as well as the sketch size. In a sense,
the random feature moments that constitute the sketch vector play the role of sufficient statistics for
the considered learning task.

Sharpened estimates 7 Our demonstration of the validity of the compressive statistical learning
framework for certain tasks is, in a sense, qualitative, and we expect that many bounds and constants
are sub-optimal. This is the case for example of the estimated sketch sizes for which statistical learning
guarantees have been established, and an immediate theoretical challenge is to sharpen these guar-
antees to match the empirical phase transitions observed empirically for compressive clustering and
compressive GMM [63], [64]. As our control of the sketch size combines an estimate of the covering
dimension of the secant set —which seems to be of the right order of magnitude— with a concentra-
tion constant ([271)), such a tightening will likely follow from better concentration estimates for mixture
models.
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A number of non-sharp oracle inequalities have been established in the course of our endeavor.
For mixture models, as our proof technique involves Geshgorin’s disc theorem, it is natural to wonder
to what extent the involved constants can be tightened to get closer to sharp oracle inequalities,
possibly at the price of larger sketch sizes. A related problem is to obtain more explicit and/or tighter
control of the bias term D(mg, &), in particular for k-means and GMM, and to understand whether
Lemma 210 which relates this bias term to the optimal risk, can be tightened and/or extended to
other loss functions.

In the same vein, as fast rates (see e.g. [67] for the case of k-means) on the estimation error can
be established for certain classical statistical learning task (under appropriate margin conditions), it
is natural to wonder whether the same holds for compressive statistical learning.

Overall, an important question to benchmark the quality of the established bounds (on achievable
sketch sizes, on the separation assumptions used for k-mixtures, etc.) is of course to investigate
corresponding lower-bounds.

Provably-good algorithms of bounded complexity? As the control of the excess risk relies
on the minimizer of a nonlinear least-squares problem (1), the results in this paper are essentially
information-theoretic. Can we go beyond the heuristic optimization algorithms derived for compressive
K-means and compressive GMM [63], [64] and characterize provably good, computationally efficient
algorithms to obtain this minimizer ?

Promising directions revolve around recent advances in super-resolution imaging and low-rank
matrix recovery. For compressive clustering (resp. compressive GMM), the similarity between prob-
lem ([B4)) (resp. ([@3])) and super-resolution imaging suggests to explore TV-norm minimization —a convex
problem— techniques [19] 35, [41] and to seek generalized RIP guarantees [8I]. Further, to circumvent
the difficulties of optimization (convex or not) in the space of finite signed measures, it may also be
possible to adapt the recent guarantees obtained for certain nonconvex problems that directly leverage
a convex “lifted” problem [68] without incurring the cost of actually computing in the lifted domain.

Finally, the computational cost of sketching itself could be further controlled by replacing random
Gaussian weights where possible with fast approximations [66, 25 [15]. This is likely to also result
in accelerations of the learning stage wherever matrix multiplications are exploited. To conduct the
theoretical analysis of the resulting sketching procedure, one will need to analyze the kernels associated
to these fast approximations.

Links with convolutional neural networks. From an algorithmic perspective, the sketching tech-
niques we have explicitly characterized in this paper have a particular structure which is reminiscent
of one layer of a (random) convolutive neural network with average pooling. Indeed, when the sketch-
ing function ® corresponds to (weighted or not) random Fourier features, its computation for a given
vector x involves first multiplication by the matrix W € R™*? which rows are the selected frequencies
w; € R?, then pointwise application of the e/ nonlinearity.

Here we consider random Fourier moments, hence a subsequent awverage pooling operation com-
puting %Z?:l ®(x;). Up to the choice of nonlinearity and (random) weights, this is exactly the
computational structure of a convolutional neural network where the x; would be the collection of all
patches from an image or frames from a time series.

This suggests that our analysis could help analyze the tradeoffs between reduction of the information
flow (dimension reduction) across multiple layers of such networks and the preservation of statistical
information. For example, this could explain why the pooled output of a layer is rich enough to cluster
the input patches. Given the focus on drastic dimension reduction, this seems very complementary
to the recent work on the invertibility of deep networks and pooling representations with random

Gaussian weights [43], 55], [54].
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Privacy-aware learning via sketching ? The reader may have noticed that, while we have defined
sketching in (@] as the empirical average of (random) features ®(x;) over the training collection (or in
fact the training stream), the essential feature of the sketching procedure is to provide a good empirical
estimator of the sketch vector A(mg) = Ex.r, ®(X) of the underlying probability distribution. A
consequence is that one can envision other sketching mechanisms, in particular ones more compatible
with privacy-preservation constraints [39]. For example, one could average ®(x; + &;), or ®(z;) + &,
or D;®(z;), etc., where §; is a heavy-tailed random vector drawn independently from z;, and D; is
a diagonal “masking” matrix with random Bernoulli {0, 1} entries. An interesting perspective is to
characterize such schemes in terms of tradeoffs between differential privacy and ability to learn from
the resulting sketch.

Learning task vermal _ Random sketch

Loss £(z,h) Compatibility Representation | £oqtyre fonction @ ()
¢ » MMD |7 — 7| < > 4

Model &y Linear operator .A()

Learning guarantees

f

LRIP Conce_ntranon
Covering secant set

Figure 1: A representation of the links between different concepts in this paper.

Recipes to design sketches for other learning tasks through kernel design? Given the
apparent genericity of the proposed compressive statistical learning framework, a particular challenge
is to extend it beyond the learning tasks considered in this paper. Kernel versions of these tasks (kernel
PCA, kernel k-means, or spectral clustering) appear as the most likely immediate extensions. They
are expected to lead to sketching architectures reminiscent of two-layer convolutional neural networks
with additive pooling.

Compressive supervised classification and compressive regression seem more challenging. Given a
learning task, the main challenge is to find an adequate sketching function ®(-).

As illustrated on Figure [, this primarily relies on the quest for a compatible kernel, i.e., one
satisfying the Kernel LRIP (23)). Subsequent technical steps would rely on the identification of an
integral representation of this kernel using random features with the right concentration properties,
and establishing that the associated secant set has finite covering dimension with respect to the feature-
based metric (33). On a case by case basis, one may have to identify the analog of the separation
conditions apparently need for compressive k-means.

Vice-versa, one could wonder which family of learning tasks is compatible with a given kernel.
In other words, how “universal” is a kernel, and how much can be learned from a single sketched
representation of a database 7 We expect that tasks such as compressive ranking, which involve
pairs, triples, etc. of training samples, may require further extensions of the compressive statistical
learning framework, to design sketches based on U-statistics rather than plain moments. These would
be lead to sketches linear in the product probability my ® my instead of my. The investigation of such
extended scenarios is expected to benefit from analogies with the lifting techniques used in phaseless
reconstruction, see e.g. [18].
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Annex

We begin by introducing notations and useful results. We then provide general properties on covering
numbers, followed by properties that are shared by any model of mixtures of distributions that are
sufficiently separated & = & .. We then apply these results to mixtures of Diracs and both k-
medians and k-means risks, and to Gaussian Mixture Models with fixed known covariance for maximum
likelihood estimation. We conclude with the case of Compressive PCA.

A Notations, definitions

In this section we group all notations and some useful classical results.

A.1 Metrics and covering numbers

Definition A.1. A pseudometric d over a set X satisfies all the axioms of a metric, except that
d(xz,y) = 0 does not necessarily imply © = y. Similarly, a seminorm ||-|| over a vector space X
satisfies the axioms of a norm except that ||| = 0 does not necessarily imply x = 0.

The radius of a subset Y of a seminormed vector space (X, [|-||) is denoted rad. (Y) := sup ¢y [|z]|.
The diameter of a pseudometric set (X, d) is denoted diamg (X) := sup, ,/cx d(z,2").

Definition A.2 (Ball, j-covering, Covering number). Let (X,d) be a pseudometric space. For any
0 >0 and x € X, we denote Bx q(x,0) the ball of radius 6 centered at the point x:

Bxa(z,0) ={y e X, d(z,y) <d}.

Let Y C X be a subset of X. A subset Z C'Y is a d-covering of Y if Y C .., Bx.a(2,6). The
covering number N (d,Y,0) € NU{+oo} is the smallest k such that there exists an d-covering of Y
made of k elements z; € Y.

A.2 Finite signed measures

The space 91 of finite signed measures on the sample space Z is a linear space that contains the set of
probability distributions on Z. Any finite signed measure p € 9% can be decomposed into a positive
and a negative part, © = py — p—, where both py and p_ are non-negative finite measures on Z,
hence py = amy and p— = Br_ for some probability distributions 74, 7_, and non-negative scalars
a, B > 0. Noticing that the expectation of a bounded function f is linear in the considered probability
distribution, we adopt the inner product notation for expectations:

(m, f) = Exnn f(X).
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This notation extends to finite signed-measures: given a decomposition of u € 9 as u = ar — g’
with 7, 7’ two probability distributions and «, 3 > 0, we denote

<,u7f> Z:OA<7T,f>—ﬂ<7T/,f>

which can be checked to be independent of the particular choice of decomposition of u. With these
notations, given a class F of measurable functions f : Z — R or C we can define

]| 7 := sup [{u, £)]
feF

and check that this is a semi-norm as claimed when we introduced ([@). Similarly the metric B3] can
be extended to finite signed measures as

dr(ps ') = sup ||, I = (' P
feF

When the functions in F are smooth these quantities can be extended to tempered distributions.

The total variation norm is defined on M as |||y = |||z with B = {f : || f|l < 1} (see e.g. [79])
and yields a Banach structure on 9 (see e.g. [58]).

The mean kernel x (cf ([I8)) can naturally be extended from probability distributions to finite
signed measures. Let pi,pu2 € M and my, w4, w2, mh, a1, g, f1, B2 such that p; = agm — G} and
pa = aamay — Porh (decompositions as differences of probability measures). Provided that (-, ) is well
defined on the corresponding probability distributions, we can define

k1, po) = araek(m, m2) — aq Bak(mr, mh) — frask(m), m2) + B1B2k(m], 7h) (98)

which can be checked to be independent of the particular choices of decomposition.
By linearity of the integral and the definition of the kernel for probability distributions, we obtain
a pseudonorm |||, associated to the mean kernel:

Il = [ [ wtaa)uta)dna’) = st (99)
that coincides with the metric of the mean kernel (I9) for probability distributions.

A.3 Kullback-Leibler divergence and differential entropy

For two probability distributions 7, 7’ that admit probability densities with respect to the Lebesgue
measure, the Kullback-Leibler divergence is defined as

m(X)
KL(T(”T(’) = EXNﬂ- 10gm (100)
and the differential entropy is
H(7) := Exr — logm(X). (101)

A fundamental property of the Kullback-Leibler divergence is that KL(7||7") > 0 with equality if, and
only if 7 = 7. Details on these notions can be found, e.g., in [32, Chapter 9]. Pinsker’s inequality [45]
relates the Kullback-Leibler divergence to the total variation norm

||7T - 7TIHTV S v QKL(WHW/)' (102)
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B Generalities on covering numbers

In this section we formulate generic results on covering numbers.

B.1 Basic properties

The definition used in this paper is that of internal covering numbers, meaning that the centers z; of
the covering balls are required to be included in the set Y being covered. Somehow counter-intuitively
these covering numbers (for a fixed radius §) are not necessarily increasing with the inclusion of sets:
for instance, consider a set A formed by two points, included in set B which is a ball of radius 4.
Suppose those two points diametrically opposed in B. We have A C B, but two balls of radius §
are required to cover A (since their centers have to be in A), while only one such ball is sufficient to
cover B. Yet as shown by the following lemma the covering numbers of include sets still behave in a
controlled manner.

Lemma B.1. Let A C B C X be subsets of a pseudometric set (X,d), and § > 0. Then,
N (d,A,0) <N (d,B,d§/2) (103)

Proof. Let by,...,bn be a d-covering of B. We construct a d-covering a; of A in the following way.
Each b; is either: a) in the set A, in which case we take a; = b;; b) at distance less than §/2 of a point
a € A, in which case we take a; = a and note that the ball of radius § centered on a; covers at least as
much as the ball of radius 6/2 centered in b;, i.e. Bx q(bi,d/2) C Bx q(a;,d); ¢) in none of these cases
and we discard it. There are less a;’s than b;’s, and the union of balls of radius § with centers a; covers
A (and in fact even B): for any a € B, there is an index ¢ such that a € Bx 4(b;, 0/2); by construction
the corresponding ball Bx 4(a;,d) also contains a. Therefore the set of a;’s is a d-covering of B, and
of A. O

Lemma B.2. Let (X,d) and (X',d’) be two pseudometric sets, and Y C X, Y' C X'. If there exists
a surjective function f:Y — Y which is L-Lipschitz with L > 0, i.e. such that

Yo,y €Y, d(f(z), f(y)) < Ld(z,y),

then for all 6 > 0 we have
N (d,Y',§) <N (d,Y,5/L). (104)

Proof. Define 62 = §/L, denote N = N (d,Y,d2), and let y; € Y, i = 1,..., N be a dz-covering of Y.
Consider 3y’ € Y. There exists y € Y such that f(y) = ' since f is surjective. For some 1 <i < N
we have d(y, y;) < d2, hence we have

d'(y', f(yi) = d' (f(y), f(y:) < Ld(y,ys) < Loz = 6.
Thus {f(yi)}i=1,... n is a §-covering of Y, and we have N (d',Y’,§) < N. O
Lemma B.3. Let Y, Z be two subsets of a pseudometric set (X,d) such that the following holds:
VzeZ, yey, dz,y) <e (105)
where € > 0. Then for all 6 >0

N (d, Z,2(5 +¢€)) <N (d,Y,0). (106)
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Proof. Denote N = N (d,Y,0) and let y1,...,yn € Y be a §-covering of Y. For all z € Z, by the
assumption (I07]) there is y € Y such that d(z,y) < €, and subsequently there is an index ¢ such that

d(z,y;) < d(z,y)+ d(y,y;) <+ e. This implies Z C Uf\;l Bx a(yi,0 + €), hence by Lemma [B]

N
N, Z,2(6+¢€) <N (d, U Bx.a(yi, 0 +€),0 + e) < N.
1=1

O

Lemma B.4 ([33], Prop. 5). Let (X,||-||) be a Banach space of finite dimension d. Then for any
x € X and R > 0 we have for any § > 0

d
quﬁmuwangmm<L@§)> (107)

NB: The result in [33, Prop. 5] does not include max(1,-). This obviously cannot hold for § > 4R
since the left hand side is at least one. The proof of [33] Prop. 5] yields the result stated here.

B.2 “Extruded” Secant set

To control the covering numbers of the normalized secant set (B2) of certains model sets, it will be
convenient to control those of a subset which we propose to call the extruded normalized secant set.
Considering a subset Y of a seminormed vector space (X, ||-]|), its extruded normalized secant set is

y—y
Sily = {7, ’ vy €Y, lly—v >n},
ly — vl

The covering numbers of Sﬁ7_” can be controlled by those of Y itself when n > 0. In the following

Lemma, we deliberately control the covering numbers of a subset S of the extruded normalized secant
set Sﬁ_” (Y) instead of Sﬁ7_” (V) itself, to avoid the possible subsequent use of Lemma Bl
b b

Lemma B.5. Let X be a vector space and consider a subset Y C X and two seminorms |-||, [,
(possibly only defined on subspaces X, Xy C X ) such that, for some constants 0 < A < B < oo,

vy, y' €Y, Ally=y'll, <llv—9'll, < Blly =y, < 0. (108)

Letn >0, and S C Sﬁ’VH be a subset of the extruded normalized secant set of Y. For any 6 > 0 we
b

have
N (2 8:8) < A% (I, ¥s g (109
T © 41+ B/A) )
Proof. Define the (semi)norm on Y2

(w1, 92) = (Wi wa)ll, = llyr — vill, + lly2 — w3ll,

and note that we have trivially N ([|-||,,Y?,6) < N2 (||-[|,.Y,6/2). Consider the set:

Q:{(yl,yz)ew:|y1—y2||b>n,Mes}cy2. (110)
||ZJ1 _yQHb
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By definition the function f : (Q, [|'[l,) = (S, [|]l,) such that f(y1,42) = A=
show that f is Lipschitz continuous, and conclude with Lemma[B2l For (y1,v2), (v, y5) € Q, we have

is surjective. Let us

Y1 — Y2 yi —yé
If(y1,y2) — f(1,92) H -
b llyr — y2||b ||y’1 - yé”b
Y1 — Vs

H Y1 — Y2
Iy —well, ||y1 - y2|\b

H llyr — y2||b ly1 = vall,

a

Since [|y1 — y2||, > 7, the first term is bounded by

1 1
o (=9l + o = 9l ) =2 I02) = o)l

while the second term is bounded by

1 1

B 0 | lly: — wall,
—vlly, v —wall,

ly1 = vll,

B
< (=9l + D2 = il ).
(0s)
<

B
- 1\ < 21t~ 5l ~ s~ el

v — vall,

B

Iy (lyr = will, + lly2 — wall,)
B

:A_n ||(y17y2) - (y17y£)|‘a

Hence we have 14+ B/A
+
I1f(y1,92) — Fh,v)ll, £ ———

The function f is Lipshitz continuous with constant L = (1 + B/A)/n, and therefore for all § > 0:

(Y1, v2) = (1, 95)

Lemma-

mmam 25 5 )
N (M50 N 1 0.0/0) M E N (1,2 57 ) < (v )

B.3 Mixture set

Let (X,]|]]) be a vector space over R and Y € X, Y # (). Let k> 0 and W C R*. For k > 0 and a
bounded set W C RF, W # (), denote

k
Yk,W: {Zalyl T eW, ylEY} (111)

i=1

Lemma B.6. For all § > 0 the set Yy satisfies

. min . (d=7)0 y T
N<|||,Yk,w,a>g76]071[/v(||17w7radlvl(y)) <|||| radnul(W))' (112)

If the seminorm ||-|| is indeed a norm and 'Y and W are compact, then Yy is also compact.
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Proof. Let 6 > 0 and 7 €]0;1[. Denote 6; = 76/rad). (W) and 62 = (1 — 7)d/rad) (V). Also
denote Ny = N (||-]|,Y,61) and let C; = {x1,...,xn, } be a d;-covering of Y. Similarly, denote Ny =
N (|||l; W, 02), let Ca = {1, ...,an, } be a da-covering of W. The cardinality of the set

k
Z = Zajxj txj €Cr, a€Co (113)

j=1

is |Z| < NFNy. We will show that Z is a §-covering of Yy yy.
Consider y = Z?:l a;y; € Yi,w. By definition, there is & € Cy so that [ja — &l|; < 62, and for all
j = 1...k, there is g; € Cy so that |ly; — g;|| < 1. Denote § = E?Zl a;y; € Z. We have

k k k k k k
ly =9l =D sy = au|| < Doy — Y afs|[ + (1D ag; — > a5
i=1 =1 i=1 =1 =1 =

k k
< oyl lys = gl + > oy — al [l (114)
Jj=1 j=1
< ||OLH1 o1 + HOé — dHl radH,H (Y) < radH,”l (W) 01 + do rad”.” (Y) =0,
and Z is indeed a d-covering of Y yy. Therefore, we have the bound (for all 7)
N (Il Yiow, 8) < |Z] < NfNo.

Furthermore, in equation (II4]), we have shown in particular that the embedding (yi, ..., yx, @) —
Z?:l ajy; from Y* x W to Yy )y is continuous. Hence if Y and W are compact Y,y is the continuous
image of a compact set and is compact. O

C Proof of Theorem 2.9

We first prove Lemma 26 using Bernstein’s inequality in the following simple version[77]:

Lemma C.1 (Bernstein’s inequality ([77], Thm. 6)). Let X; € R, i =1,..., N bei.i.d. bounded random
variables such that EX; =0, | X;| < M and Var(X;) < o? for all i’s. Then for all t > 0 we have

1 & N2
Pl=S"X;>t] < SN LA 115
<N; = )-eXp( 202+2Mt/3> (115)

Proof of LemmalZ.d. Observe that
2
A — )l

-1=2= 3 Y (wj)
T 2Vl
with 5
|<7Ta ¢w> - <7T/7¢w>|

2
K

Y(w):= -1

[l — =

112
Observe that EyaY (w) = 0 and that —1 < Y (w) < l=="lly _ 1 which implies

[

7112 " 2
Y (w)] < max <1, I==="lly, _ 1) <M==l _ 2 (116)

[l = ==l
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Moreover, we have

, 2 o 4
Vo () Voo (L2200 ¢ B =)

_ 2 4
fle—m’1I% |7 — ||
2 2 2
BNkl T ) O ] PR 117)
[l =l [l =71l

Applying Bernstein’s inequality with the independant random variables Y (w) (Lemma [C1]) we obtain

for any t > 0
2
. O JAG = )ll5 _,

2
[l = 'l[

mt?
O

Lemma C.2. Let k and (A, ®) with concentration function c.(t). Consider m parameters (w;)j,
drawn i.i.d. according to A and the sketching operator

,A(W);::;%ﬁ[<w,¢wj>}3;1. (119)
Let S be a subset of the normalized secant set Sy (&). For any § > 0 such that
N :=N (do,S8,d/2) < o, (120)

we have, with probability at least 1 — 2N exp(—m/c,(0/2)):
sup |43~ 1| < 4. (121)
HES

Proof of Lemma[C2 Consider u = (7 — «')/ |7 — /||
tration function, for any ¢ > 0 and m > 1

P (|43 — 1| 2 ) < 2ex0 (—m/ealt)). (122)

This establishes a pointwise concentration result when p is on the normalized secant set SH-IIN' We
now use a standard argument to extend this to a uniform result on S. Let u;, 1 < i < N be the centers
of a §/2-covering (with respect to the metric dg) of S. Using (I22)) with ¢ = §/2, the probability that

there is an index ¢ such that } A |5 — 1‘ > 0/2 is at most ¢ = 2N exp(—m/c.(6/2)). Hence, with
probability at least 1 — ¢, we have: for any p € S, with ¢ an index chosen so that de (u, ;) < 0/2:

[AGIE = 1| < [ IAG 13 = IAI3] + [IAG)13 — 1]

with 7,7’ € &. By definition of the concen-

K

1

< LIS () P~ )|+ 072

m |4
j=1
<do(p,pi) +6/2 < 4.
O

Proof Theorem[2.9. Denote ¢ = 2N exp(—m/c(6/2)). By Lemma [C2] the assumptions imply that
with probability at least 1 — ¢ on the draw of w;, 1 < j < m, we have

inf  [|A(p)|2>1-24.
%%MH(MM

This implies 24) and since Cy; < oo, the LRIP (2) holds with respect to [|-[|; 4, and constant

Cy = \/%. As a result the ideal decoder ([I3]) satisfies the instance optimality property (IIl) with the

distance ([d), yielding (IH). Expliciting and specializing to my and #,, yields the result. O
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D Proof of Lemma

The proof exploits transport through connections between the considered norms and the norm [|[|y;, 7 4) =
L - ||*ltip(1,4)» Where Lip(L, d) denotes the class of functions f : (Z,d) — R that are L-Lipschitz.

For p =1 we have £L(H) C Lip(1, d) since by the triangle inequality |¢(z, &) — £(2', E)| < d(z, 2')
for any z,2’. For p > 1, since |a? — b?| < max(pa?~1,pb?~1) |a — b| we have |[0(z,Ex) — (2!, EL)| <
pBP~1ld(z, ') hence L£(H) C Lip(pBP~!,d). This implies that for any 7, 7" we have

I =7 ay <PBPHIm = 7 llpipa,ay -
Next, we have

[A(m = 7)lly = sup [(Alm =), u)| = sup |[Exorfu(X) = Exen fu(X)]

[lull,<1 llufl,<1
where fy(z) := (®(z),u). On the other hand, for |jul|, <1 and any =, 2":
[Fale) = ful@) = (@(@) = B(a), w)* < [|2(2) = B[ < L2 (, ')

L.e., fu(-) is L-Lipschitz with respect to d(-, -). It follows that for any =, 7', [[A(7 — 7")[l, < L {|7 — 7'[| 11,01 a)-
Gathering the above bounds we have for any my and o € Gy,

170 = oll 30y + 2Ca |A(m0 = 0)lly < (PBP™" +2C4L) - 1m0 = 0l ipa,0)
It is well-known that the Wasserstein distance between two distributions can be equivalently defined
in terms of transport (so-called “earth mover’s distance”) but also as
||7T - ﬂ-/HWasscrstcinl(d) = ||7T - ﬂ-/HLip(l,d)

as soon as (Z,d) is a separable metric space, see, e.g., [40, Theorem 11.8.2]. For a given mg, let 0 € Gy
be the distribution of Pg, X, where X ~ my and Pyx € argmingcy d(x,y) is the projectiorE onto &.
By the transport characterization of the Wasserstein distance, considering the transport plan that
sends = to Pg, x, we conclude

[0 —

@ < Exend(X, Pe, (X)) = Exond(X, &).

O'HWasscrstcinl

This yields the result for p = 1. The result for 1 < p < co is a consequence of Jensen’s inequality

1
Exrd(X,&) < [Exrd(X,EL)F]P .

E Proofs on mixtures of distributions

We gather here all proofs related to results stated in Section

E.1 Proof of Lemma

Consider 0% < 1/2. An easy function study of h(t) := (1—1/2) exp(5=z) shows that h is non-decreasing
on [0, 1] with ~(0) = 1, implying that 1 —u?/2 > K (u) for 0 < u < 1. This verifies (i) in the definition
of E(A, B,C,c) (Def. [6.0), with ¢ = 1.

9Ties are breaked arbitrarily in the argmin, and if needed the proof can we adapted with Pya a (1 + ¢)-minimizer.
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By an easy study of K”, K’ is negative and increasing for u? > ¢2. Thus, considering 02 < 1,

|K'(u)| is decreasing for u > 1 and we can set B = |K'(1)| = exp(—5t7)/0”. Since B > A = K(1) we
have max(A4,2(C + B)) = 2(C + B) and the condition (&) reads 2(B + C) < m.
Similarly, an easy study of K () shows that K" is positive and decreasing for u? > 302, Considering
0? <1/3, K" is positive decreasing for u > 1 and we can set C' = K”(1) = % (& — 1) exp(—55). As
aresult (B + C) = exp(—1/20?)/0* and for 0% < 1/3 the condition 2(B + C) < 3/(64(2k — 1)) reads
as:
exp(—q2z) /o < 3/(128(2k — 1)). (123)

As the left hand side is a increasing function of o when o2 < 1/2, and as o, defined by (B0)) satisfies
o? < 1/3, the result will be established provided we show that this oy, satisfies (I23) or equivalently

that ofel/29% > 128(2k — 1)/3.

To show this, we write o7 = %(a In(2k — 1) +b)~! and rewrite the desired property as
(2k — 1)%¢?
> 128(2k—1)/3
4(aln(2k — 1) +b)%2 — ( )/
(2k —1)2~t

>512¢7%/3

(aln(2k — 1) 4+ b)?

Consider f(t) :=In (¢t*"'/(alnt+b)?) = (a — 1)Int — 2In(alnt + b). A quick function study shows
that its derivative is positive if Int > 2/(a — 1) — b/a. As soon as 2/(a — 1) —b/a <0, i.e.,

b

> — 124

=y (124)

the function f is therefore increasing for ¢ > 1, with a minimum at ¢t = 1, f(1) = 1/b%, and the desired

property holds if and only if 1/b% > 512¢7°/3, i.e.,

b—2lnb—ln%20.

The latter holds true for b = 12, and (I24) holds for a > b/(b — 2) = 1.2, which proves the result.

E.2 Proof of Lemma

To prove, Lemma[6.9] we will need the following intermediary results.

Lemma E.1. Assume h : Ry — R s differentiable and that h'(t) is C-Lipschitz. Then for any
z,y > 0:
|h(0) = h(z) = h(y) + h(z + y)| < 22yC'".

Proof. Assume without loss of generality that = min(z,y). Write h(z) — h(0) = h/(¢q1)z for some
c1 € [0,z] and h(z +y) — h(y) = h'(c2)z for some ¢z € [y, z + y], thus

|h(0) = h(x) — h(y) + h(z +y)| = |2(h'(c2) = W' (1)) < Cx|c2 — e ,
bounded in absolute value by 2xyC', since |¢1 — co| <z +y < 2y. O

Lemma E.2. Let v = mg, — mg, and v/ = mg, — mp, be two dipoles (with unit coefficients) that are
1-separated, denote d;; = 0(0;,0;). Let K € E(A,B,C,c). Then we have:

K(dlg) — K(d23) — K(d14) + K(d24) < 2(B + C)d12d34 (125)
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Proof. Assume without loss of generality that dis5 = min(dis, das, d14, d24) and write

|K (dis) — K (das) — K (dis) + K (das)| < | K (dis) — K (das) — K (d1s) + K (das + dig — dis)]
+ | K (das) — K (d2s + dis — di3)]| . (126)
To bound the first term of the right hand side of (2], since we assumed without loss of generality

that d13 = min(d13, d23, d14, d24), we can apply Lemmamwith h(t) = K(dlg +t), X = d23 —d13 2 O,
y = dy4 — dy3 > 0, leading to

|K (d13) — K (da3) — K (d1a) + K (das + dia — d13)| < 2C |(dag — di3)(d1a — di3)| < 2Cd12d34 .

To bound the second term in ([I26), let g(u) := K(y/u) and note that ¢'(u) = K’'(y/u)/2+/u. Since
K € £(A,B,C,c), we have ¢'(u?) < B/2 for u > 1. By the separation assumption we have 1 < da3 <
d23 + d14 - d13 and 1 S d24. We write

K (dos) — K (dos + d1g — di3) = g(d3,) — 9((das + dua — d13)?) < 2 |d3, — (dos + dua — dus)?|
where the last inequality follows from Rolle’s theorem Now, it holds
diy — (daz + dig — di3)* = d3y — d33 — diy + diz — 2(dis — d23)(dis — dua)

and by the reversed triangle inequality |d;; — du| < dj for any 4,j,] so that the last product is
bounded in absolute value by 2di2dss. It is also easy to check by expanding the squared norms

d2; = ||4(0;) — w(0,)Il3 that
|d34 — d3g — diy + dis| = 2((1p(61) — 1(02), ¥(03) — ¥(04))] < 2124 .
Gathering everything we get the desired result. O
We can now prove Lemma
Proof of LemmalGd Denote v = aymy, — asmg, and V' = agmp, — aymy, two dipoles that are 1-

separated, and without lost of generality suppose that a1 = a3 =1, a2 =a <1, ay = b < 1. Our goal
<) is bounded. Denote d;; = 0(0;,0;) and K;; = K(d;j) = (e, , ;). We have

is to prove that ZINE

|I£(V7 I//)| - |K13 — CLKQg — bK14 + CLbK24|

il 11, V1= 2aK12 + a2y/1 — 20K34 + 02
B = Kos — K+ Koa| +[(1 — a) (Ko — Kpa)| +[(1 — 0)(Kh1a — Kog)[ + [(a = 1)(b — 1) Ko

V(1 —a)? +2a(1 — Ki2)1/(1 — b)2 +2b(1 — K34)
Applying Lemma [E.2] we get:
| K13 — Koz — K14 + Kay| <2(B + C)di12d34
and by Rolle’s theorem and the assumption on K we have as well as

|Ko3 — Koyg| < Bdsy (since doz > 1 and dag > 1)

|K14 — Koy4| < Bdya  (since dig > 1 and dag > 1)
| Koyl < A (since dog > 1)

2(1 — K1) > cd3,  (since dyp < 1)

2(1 — K34) > cd3, (since dzq < 1)
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Therefore, denoting D := max(2(B + C), A) and g(z,y) := ——2EL— for 0 < z,y < 1, we have

Va4 (1—z)y?
(KW oy dizdsa+ (1 —a)dza + (1 —b)diz + (1 —a)(1 —b)
||V||n HV/”n N \/(1 - a)2 + CLCd%Q\/(l - b)2 + de§4
dis+1—a dss+1-—0b

V(1 —a)? +acdiy /(1-b)+bedi,

D. d12+1—a ) d34—|—1—b
V/min(e, 1)/(1 — a)? + ad?, /min(c, 1)1/(1 — b)2 + bd3,
D

= ———— g(1 —a,di2)g(1 — b,d34).

min(c, 1)

As we have for any 0 < z,y <1

r+vy 5 r+vy <\/§. r+y

< N v J
2+ (1 —a)y? ~ T+ /(1 —2)y z+(1—2)y

g(z,y) =

gathering everything, we obtain
|k(v, V)| 8D

[0 1771l — min(e, 1)

The result for mixtures of k£ mutually separated dipoles is a simple application of Gersgorin’s disc
lemma, see e.g. [50, Theorem 5.3]. O

E.3 Proof of Lemma [6.17]

Let v = aymg, — aamg, be a 1-dipole, with p(61,602) < 1, and denote a := [y, ag]T and K the 2 x 2
matrix with entries K;; := r(mg,, m9,) = K(dij) where dij = 0(6;,0;).

Consider any f € BL(D, L) and denote F the 2 x 2 matrix with entries F}; := f;f; where f; :=
Exwﬁeif(X). By the assumptions on f we have |f;| < D and |f1 — fa| < Ldi2. For any W > 0 we
have

W2 wlf = v, ) = " (W?K - Fev.
Therefore it is sufficient to prove that there is some real value W, that does not depend on the choice
of function f € BL(D, L), such that the matrix Q := W?K — F is positive semi-definite. It is the case
if its trace and determinant are non-negative. We have tr(Q) = 2W?2 — | f1|> — | f2|* > 2(W2 — D?). A
sufficient condition for tr(Q) > 0 is therefore

W >D (127)
We further have:
det(Q) = (W2 = [£[*) (W2 = |£o) = (WK (di2) — T2

W= W2 (1P +181) + 1P 1 — (WK (di2) = Re (A7) = (m (A7)

}2

2 2
sing 4?12l = § (1A +11%) = (1A = 12P) ). we o

aet(@ = (W2 =4 (1R +151)) — (WK (d2) - Re (173))°
=1 [(0 - 1) 1 (1))
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On the one hand, we have

2

(W2 =3 (18P +10)) " = (W2 i) = Re (7)) = (W2 = § (1A + 1) = WK (dha) + e (1T5))
X (W2 -1 (|f1|2 + |f2|2) + W2K(di2) — Re (flﬁ))
S (W2 (1= K(d)) - $ 11— o) (W2 —2D%)
=y (wre—12) (5 - 0?)

d

where in (a) we used that K(-) > 0 and |f;| < D, and in (b) that K(d;2) <1 — c% and dy2 <1, and

|fi — f2| < Ldy2. On the other hand,

(52 = 152) + 4P 1RE — 4 (Re (1F2))°
2 2\ 2 -\ 2
(111 +152P) =4 (Re (£ F2)

(L51P + 12 = 2Re (1172) ) (1£2 + 1ol + 2Re (1172) )
= |h = RFIfi+ £ <4D?L2d},

(1A -152)" +4 (m (7))

since |f1 + f2| < 2D and |f1 — f2| < Ldi2. Gathering everything, we have

det(Q) > di, ((ch — 17 (W72 - DQ) - D2L2) = d2, W (W2~ [2/c - 2D?)

and therefore it is sufficient that )
W > (L?/c+2D?)* (128)

We conclude by observing that (I2])) implies (I21).

E.4 Proof of Theorem

First, we rely on the characterization of the normalized secant set as a mixture of dipoles.

Lemma E.3. Consider a function K(-) € E(A,B,C,c). For any kernel k(x,z') and any set T =
{mg : 0 € O} such that the Mean Map Embedding [A8) satisfies [B3) with some metric o of the form
(1), with the mutual coherence M defined in &0) we have: if M(2k — 1) < 1, then the normalized
secant of the set Sy o (T) of 2-separated miztures is made of mixtures of 2k normalized dipoles

2k
S)p,.(Gk,2(T)) C {Zazuz Hlally < (1-M@2k-1)7"2, e D} (129)
=1

Proof. By definition any u € Sy, (&2 (T)) can be written as p = (7 — ')/ |7 — 7’|, with 7, 7" €
Sk,2(T). By Lemma we have m — 1’ = Zle v; where the v, are non-zero dipoles that are 1-

llvell,e

—
. Vi
i=1 "]

separated from one another and ¢ < 2k. With «a; := = , =1/ ||v|,, we can write

Vi 4 J4
_ lel ! _Z ||Vl||,.; R _Za )
n= T = . T2l = )
Zl:l 4 =1 2121 v K =1
K K
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By construction y; € D, and by Lemma [6.9] we have |r(u, )| < M for I # 1’ and

Z il 1
||2 2 Z 1 5 S .
1—M-(2k—-1
HZz 1 Vi ( )
If needed, we add to p arbitrary normalized dipoles p; With ap=0forl=0+1...2k. O

We now begin the proof of Theorem [6.13] by establishing a few properties. By the assumption
K(-) € &(c), we have (84) which reads M (2k — 1) < 3/4, hence any a € R?* such that |||, <

(1 — M(2k — 1))~Y/2 satisfies |||, < V2k |||, < 2v/2k. By Lemma [£3] we thus have the inclusion
S)1,. (k2 (T)) C [Py, 5

where we recall that [Y]x  is the set of k-mixtures of elements in Y with weights in W (see (II1))),
and here B := Bgax ., (0,2v2k) is the closed ball of center 0 and radius 2v/2k with respect to [|-||, in
R2*. Furthermore, by Lemma [6.11 and the assumption that ® C BL(D, L, ®, ¢) we have

R= I“ad”.”1 (B) = 2V2k (130)
v 1/2
rad) (D) = sup Il = sup ||“U||||‘D <W = (L*/c+2D?) / (131)
neD v dipole "

and by Theorem [6.12] the representation (®, A) has concentration constant W, < 2v/2kW. Then, we
show that we can replace the metric do(-,-) by the metric ||-||4 using the following Lemma, which
holds beyond the case of mixture models.

Lemma E.4. Assume that the integral representation (®,A) of the kernel k(x,2") has finite concen-
tration constant W, with respect to the model &. Then for any § > 0,

N (do, S, (6),8) <N (I[lg Sy, (6),8/2W,) - (132)
Proof. By definition of Wy, for all = (7 — ')/ ||x — 7'[|,, € S (&) and all ¢, € ® we have
(s du)| < llm = 'l / |l = 7'l < W,
For pu; = (mi — m})/ lmi — mil ., i = 1,2 in S (&) we have
o (1, 12) = sup ||, 6 = [z, 60} | = sup | i, 60} + ({2, 6] | | Homn, @] = (a2, 0]

< sup2W, - |<,U1 - /L27¢w>| =2W, ”/Ll - .UQH(D .

We conclude using Lemma O
We are now ready to exploit our generic lemmas on covering numbers. For any § > 0,
Lemma [E.4]
N (do, Sy, (Sr2 (T)),9) < N (1Mo - S, (82 (T), 2-) (133)
Lemma [B]
kX N (o - [Plags - 77

Lemma [B.6] with T:%&m&

< (” Hl’ 78WW ) N2k (H H(Da 716\/5_16WN)
Lemma [B4] *
< e (1, S5 ) N (1 P )|
(134)

We conclude by using that W, = 2v2kEW.
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E.5 Proof of Theorem [6.15

For a constant 1 > 0, consider the following subset of normalized dipoles
v . .
D, = {W : v is a dipole, |lv|[,, > 77} (135)
v K

so that D = Dy. We bound the covering numbers of D by splitting it into two parts, D = D, U Dy
where Dy is the complementary of Dj in D for some n > 0 that we shall precise later. This yields for

any 0 > 0
N (g .D,8) <N (Illg Py, 8) + N (Il - D7, 6) (136)

First we establish some useful properties. Since ® C BL(D, L, ©, ) we have

rad., (T) := sup [[mellq < D. (137)
0cO

and the embedding ¢ : @ — T defined as ¢(#) = my is surjective and L-Lipschitz: for any 6,6’ € ©
76 — mor | < Lo(6,06"). (138)

Moreover, for any y,y' € T' :={amp:0<a <1, mg € T}, y —y' is a dipole hence by the fact that
(@, A) is a representation of the kernel, and by Lemma [6.11] we have

ly=9'll, < llv=vllo <Wly—91, (139)

with W = (L2/c + 2D2)1/2. Note that this implies W > 1.
The first term in ([I36) is bounded as

([T39) & Lemma [B5] 5 wz1
N(”'H(I)?Dn?&) S N2 (H.H(D’T/’ﬁl(lﬁW)) S N2 (H'”(baTl
Lemma B8 with Y=T,W=[0 1],k=1, =3 &@3 5 5
< A (I 0, 10 5885) N (Il T 587
Lemma [B4 with BleH'Hl(1/2’1/2):[071] r 16W D 5 2
< _max (1, 30 ) -N(H'H@,Taﬁ)}
([E8) & LemmdB.2l r 2
< max (1, 16};/5[)) N (9797 16(;7[7/L>}

where we used that rad).| (W) =1 for W=[0, 1].
To control the second term in (I30) we use the following representation.

Lemma E.5. Assume V is a tangent approximation to D with constants t,T > 0 with respect to
|-l. and ||-| where the kernel k is such that the Mean Map Embedding [A8) satisfies [&3) with some
K() € &(c). Consider n <min(3/4,t/2). For any nonzero element p € Dy, there exvistsv €V, ' € ©
and 0 < a<2,0< <1 such that

lw — av — Brgr|| < 4T. (141)

amg—a'my
llamg—a’mq/ |l "

Proof. By definition, there exists o, &’ > 0 and 6,6’ € ® with o(6,6") < 1 such that u =
Without loss of generality, a > o' and pu = % where 0 < 1 —¢€:=a'/a < 1. Since by

definition p ¢ D,), we have 1y = ||mg — (1 — €)me/ ||, < 7.
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As Ky := K(0(0,0")) <1 we have
m=1-2(1-e)Kia+1+e—2e=2(1—€)(1— Ki2)+ ¢
hence € < g < 7. Since n < 3/4, we have 1/(1 —n) < 4 and we further have

_ _ 2 2
2(1 2K12) S ’172 2(1 Klg) _ n S n <
5 20— Ky2)(1—¢€¢) 1—¢ = 1—1

o — o |2 = 2(1 — K12) = ¢

Since n < t/2, this yields ||mg — mg/||,, < 2n < t and by definition of a tangent approximation there is
v € V such that

g — Tor
] T )| < g — ol
o — morll,,
e mo—morll, - € _ € :
Observe that «a := Tro—(T=e)mor T and 8 := Tro=O=maT. = o satisfy a > 0, 0 < 8 < 1. Moreover we
also have
2(1 - K 1 1
a? = ( 12) < <4

20— Ki)(1—€)+e2 " 1—€¢~ 1—n—
hence o < 2, and since f/a =€/ |19 — 7o/ || .

g — Ty’

m9 — (1 — €)me g
7o — 7o I,

—v——my
o — mo|l,, o

2T Hﬂ'g — 7T9’||;< <A4Tn.

|l — av — Bre || =a- v

IN

Denote
Vii={av+Brg: veV, 0 e® 0<a<2 0<8<1}.

Applying the above with ||-|| = ||-||p, by Lemma B3l with ¢ = 4T, Z =D, Y =V’ (and X a space
of tempered distribution containing both Y and Z where ||-||4, is well defined) it follows that for any
¢’ > 0 and n < min(3/4,t/2), we obtain

N (Ilo . D7, 28" +4Tn)) <N ([llg , V', ")
As § < 16T min(3/4,¢/2) we have 1 := 12~ < min(3/4,¢/2), and we get with &' := 4Ty = §/4

N (o Dyasry8) < N (g V,6/4) (142)
Combining (I36), (I40) and ([I42)) with n := §/16T yields

2\ 2 2
N (g D6 <N (0,0, 8) -max (1,(9)") + N (o V', &)

with Cy := 256W LT, C5 := 16vVW DT, Cy := 4.
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F Proof of Theorem [4.1] on Compressive Clustering

The proof of Theorem ET] combines Theorem with the generic strategy of Section [6] applied the
specific case of separated mixtures of Diracs. For the reader’s convenience we recall that for a hypothesis
h={ci,....,ck, } € H C R? with ky <k, the loss function reads £(z, h) = mineep, ||z — c||5, where p = 2
for k-means and p = 1 for k-medians. The model set G4 is precisely the set of mixtures of Diracs with
location parameters in H.

Denote ©® = Bga .|, (0, R) the Euclidean ball of radius R and 7 = {mg = do; 0 € ©}. With the
separation assumption H C Hy, ¢ r, the model &y C Sy o |||, (T) = Sg2,0. (T) consists of mixtures
of Diracs that are 2e-separated for the Euclidean norm, or 2-separated with the metric o, where

0(6,6") == |6 — 6|l /8. (143)

F.1 Kernel and features

We recall that the sketching function is built with weighted random Fourier features where frequency
vectors w; are drawn according to the distribution with probability density function given by (B0),

w? (w)

Aw) =Apa(w) = oz “Pa(0,x21,) (W) where paro r21,)(w) denotes the Gaussian pdf and

Cp = \/EWNN(o,md)wQ(w) (144)

to ensure A is a proper probability density function.
T
Denoting K, the Gaussian kernel ) and ¢,,(z) := -2 - &9 @ we have for any 6,0’ € R?

(w)

—_— 2 Ting_p! w?(w
(o) = K(0,0) = Bunsdul0)7u0) = [ 5h5 O 2 o )
weR

T (o—0 (%) A2 60— 9’ 2

= EwNN(O-,AQId)eJ 6= = exXp <_ H 2 ”2
10 —¢") /<l /
= R ) = K 0.0

exp < 2(1/)\5)2 ﬁ(QE( ) ))

where (*) follows from the expression of the characteristic function of the Gaussian. The assumption
e = 1/(Aoy) implies 0 = (1/(Ae))? = o hence by Lemma 6.8 we have K € &(1). This holds for
any A, w(-) such that Cy is finite.

Below we control the compatibility constant, concentration constant, and covering numbers for any
weight w(-) that furthermore satisfies

1 2
Ay = sup—— < o00; By = supm <oo; Oy = supm < 0. (145)
w w(w) w w(w) w w(w)

At the end of the section we consider the specific choice of w(-) expressed in the Theorem.

F.2 Compatibility constant

Since the basic set is made of Diracs we have E,. 5, f(z) = f(6) hence the notion of “bounded and
Lipschitz property in expectation” boils down to standard boundedness and Lipschitz property.
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Lemma F.1. Denote B := Bga .|, (0, R). For any H C B and © C B, the loss class L(H) associated
to k-means (resp. k-medians) satisfies for any 8 > 0: L(H) C BL(Dg,Lc,®, 03) with

D, = (2R)? (146)
Ly = BARP! (147)
where p = 2 for k-means, p =1 for k-medians.

Proof. For any 6 € © and all h = {c1,...,cx, } € H, k1 < k, by the triangle inequality [|6 — ¢, <
6]l + lleilly < 2R, we have £(0,h) < (2R)? where we recall that p = 2 for k-means and p = 1 for
k-medians.

Consider now h = {c1,...,¢c5, } € H, k1 < k. Given 01,02 € O, let I* be an index such that
6(92, h) = minlglgkl H02 — Cng = ||92 — Cl* Hg = 6(92, {Cl* }) By deﬁnition, 6(91, h) = minlglgkl H91 — Cl”g S
61 — ci+||5 = £(61, {ci+ }) hence

001, h) — £(02,h) < £(61, {c-}) — £(02,h) = £(61, {cr-}) — £(02, {2+ })
=162 — iz = 162 — ci- I3 -

For k-medians, p = 1 and the reversed triangle inequality further yields
161 = cixlly = 1102 = cix[ly < (161 — b2, -
In the case of k-means, p = 2 and we use
161 = caell3 = 102 = coe 15 = (161 = ca- |y + 102 = coe o) (162 = cte [l = 1162 = cae|l,) < 4R |61 — O]l
By symmetry we obtain |£(61,h) — £(02, h)| < (AR)P~1 |61 — 02|, = (AR)P~ - B - 05(61, 65). O

Since we consider H C Hp,2:,r C BRd)”.HQ(O,R) with 0 < ¢ < R, we get with 8 =¢: Dy = 2PRP,
Ly < 4P~'RP. Moreover the model set G4 consists of 2e-separated mixtures with respect to the
Euclidean metric and therefore of 2-separated mixtures with respect to .. As K;/5. € & (1), we can
apply Theorem to bound the compatibility constant as

C. < 2V2ky/L% +2D% = 8V6kR. (148)

F.3 Concentration constant

The considered integral representation of the kernel x(x, z’) involves the class

O = {d)w(x) = % ' erTac;w € Rd}'
We have the following result.

Lemma F.2. Assume A, < oo and B, < co. Then for any ® C R? we have for any 3 > 0:
O C BE(DQJ,LQ), 0, Qﬁ) with

qu = AwCA (149)
Lo := BBuCh. (150)

Note that multiplying the weights w(w) by a constant factor rescales Cy accordingly, leading to un-
changed features and unchanged A,Cp, ByCh.
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Proof. It is immediate that sup,, supy |¢., ()| = A, Ca and since for any a < b, [ — e®| = ’ffjejudu’ <

f; [)e"*| du = b — a, we have

00(6) = ()] = 225 =

< BuCr [0~ 0']l, = BB.Cros(6,0').

T Tt
R el 7 M R

O

With 3 = ¢ we get the shorthand Wg := /L2 + 2D% = /A2 + 2e2B2 C, that will be reused in
several places, and we can again combine with Theorem [6.12 to bound the concentration constant as

W, < 2V2kWg = 21/2(A2 + 2¢2B2)k - Cy. (151)

F.4 Covering numbers

To control the covering numbers we need first to control those of the parameter set. Since @ =
Bga .y, (0, R) we have for all § > 0

Lemma[B4] d
N (0,,8) = N ([l /2,©,8) = N (I, ©,60) = max (1, (42)") = max (1, (=) ) -

(152)

We now establish the existence of a tangent approximation ) to the set of dipoles.
Consider a dipole 1 = mp — mpr where by definition we have o.(0,0") < 1. Given any tempered
distribution v we have, with f(w) := Cj /w(w):

erTG _ erTG’ erT(er’) -1 T
[ =, =m0 | vt = )| G mw)‘
(153)
where ¢, (w) = [ Idu( ) is the characteristic function of v. We will exploit the fact that, by a
Taylor expansmn forany y € R, ¢t >0
t 2
i —Jy’ < sup d—em L y2£. (154)
t 0<r<t 2 2

Setting ¢ := ||y — 7o/ ||,., A == (0 —0')/t, and y := wT A, we have w? (0 — 0') = yt. We seek v such
that ¢, (w) = e’ jwT A. Denote 04 the derivative of the Dirac function at position a along direction
u, which is defined by its action on test functions g — dt‘t Og(a + tu). Specializing to g(z) := el
we get s, , (w) = jwlu- e"a Considering v := g/ n> We get 1y (W) = e )W A

Since K 1 (-) € £(1) and 0-(8,8') < 1 we have |l — mo/[|% = 2(1 — K 1 (0:(6,6"))) > 0(8.6') i.e.

0:(0,0") < |lmp — mo/,, - (155)
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By Cauchy-Schwarz, 2 < ||w||3 ||A]|3, hence

JWT(H*G,) -1 , jwlat 1
sup f(w) - |S———— — ey (w)| = sup flw)- |2 —w'A
w o — mor |l . w t
¢
2 2
< supf()- [l 1A &
) 16 —o'l;
S Ao . i
Y
202(9,¢) (@D
= e 280 2 sy,

2 ||mo — merll,,

where in (*) we used that sup,, f(w) = C,Ca (recall the definition [[ZF) of C,, := sup,, [|wl|5 /w(w)).
As this holds with no constraint on ||mg — mg/||,. (other than the trivial bound ||my — me/||,. < 2),
and as ||Afl, = e0-(0,0") < e we have just proved that the set of tempered distributions

V = {v=0p_p: 0 €0, AcRL|A], <}
provides a tangent approximation to the set of dipoles, with constants ¢ = 2,

T = e%sup f(w)/2 = €2C,Cyr /2. (156)

In order to use Theorem [G.I5] we proceed to control the covering numbers (with respect to ||-||4,) of
V' = {ady,_a+Pme 0,00 €O, AcRY A, <e, 0<a<2, 0<B< 1},
Since adp,—a = do/,—an We can write
V' = {6p.a+PBmel 0,00 €O, AR [Al, <2, 0< B <1}

Consider the product space X := @2 x Bra .y, (0,2¢) x [0, 1]. Given z = (61,02, A, 5) € X, define the
function ¢ : X — V' by ¢(z) = &y, A + Bm,. For x = (61,02, A, ) and 2’ = (01,05, A", ') in X, we
have

lo(@) = o (@)l =||9%, a + B0, = 0y, ar = B'm,

D
<

! !
N 50;,AH(D +

TN 55;,&’ o T 1870 = B'moullo + [|8ma, — B'may |
We bound each of these terms, with f(w) := Cy/w(w):

i) We have

T Tl
e 01 v 01

5{91,A - 5{9’1,AH® =sup f(w) |WTA‘
w

<sup f(w) w3 - 2¢ |61 — 611, = L1 [161 — 63l

< sup f(w) |wTA| ‘wT(Hl — 9/1)|

where Ly = 2esup,, f(w) ||w||§ = 2eC,Ch.
ii) We have

where Ly = sup,, f(w) ||[w|ly = BuwCa.

Siyx = Gy ]|, =50 F@) [T (& = A)] < sup £(w) [l 14 = A, = L | A = &,
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iii) We have
1870, — B'mos |l < 1m0l 18 = B'| < L3 |5 — Fl
with L3 = qu = AwCA.

iv) Finally, we have

1870, = B'may |, < w) |w" (62 = 65)]

H7T92 — 7T0é ® :Sup f(w) erT92 _ erTe/
w

<sup f(w) [|lwlly 162 — 05|, = L4 162 — 65

where Ly = Lo.

Denote C; a ﬁ—covering of ®, Cy a 2—-covering of Bga,.11,(0,2¢), C3 a E-covering of [0, 1] and

4Ly
Cy a %—covering of ®. For any x € X there exists an element =’ € C; x Cy x C3 x C4 such that
llo(z) — ()] < 0. Thus, for any 6 > 0,

N (llllg »V';6) <ICal - [Ca| - [Cs] - |C4

o o
gN(u-u,e,El) -N(|-|2,e,4—LQ)

(|| ll2, Bra,.|, (0, 2¢), > <| 1,00 4L3>
Lcmr%ammax (1, (%)d) max (1 (16%2R)d) - max (1, (%)d) -max (1, %) . (157)

F.5 Summary: establishing the LRIP

We can now establish that with high probability on the draw of frequencies, the sketching operator A
satisfies the LRIP simultaneously for all models H C Hy 2, R-

Consider first H = Hy 2. r. The compatibility constant (I48) with respect to the model &y :=
6Hk 2¢,R is

C,. < 8V6VERP.

The above results hold for any weights satisfying Ay, By, Cyw < o0 (cf the definition ([[45]) of these
constants) and Cx < co. Without loss of generality we can normalize the weights so that A,, = 1 (the
constant C'y will be rescaled accordingly, and the features will not change; the products A,,Cy, B,,Cx
and C,,Cy will also be unchanged). Choosing

ww) = 1+ Lk (158)

yields A, = 1, By, = VA2d/2, and C,, = Ad. By (), as E, x0.221,) wlls = A2d and By, pr(o 21y) @]y =
Md(d + 2), we obtain

=1 2Bl Belels B < G = 0(1) (159)
hence A, Cx = A+ 2/@ < V6= 0 (1), BuCr = Way/1+ 55 = 0 (\Wd) and C,Cx = O (\24).
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We recall thafd Do = A,Ch = O(1), Lo = eByCx = O ()\5\/3) - o( dlog(ek)), 1<

Wo ::m:o(m).

The concentration constant (I51l) with respect to &g is thus

WK:O(\/EW):O(\/W).

Combined with (I56), the assumption ¢ = 1/Aoy and the fact that 1/07 = O (log(ek)) yields T :=
£2C,,Cr /2 = N2c2dC /)2 = %S4 = O (dlog(ek)). As op < 1 and Cy > 2 we have T > 1, and as t = 2

& =
20}

we obtain 167 min(3/4,t/2) = 12T = 6454 > 1. By Theorem [B.I5 we have: for any 0 < § < 1
k

N(llp.D,0) < N(Qa,&é—Z)Z)-max (1, (%)2) +N(||-|\q) ,V’,C%) (160)

with Cy 1= 256Wo Lo T = O ((dlog(ek))?), Cs := 16/WoDoT = O ((dlog(ek))3/?), Cy = 4.
By ([I52) we have for any 0 < § < 1, with C' > 1 denoting some universal constant that may change
from equation to equation,

N (0-,8,82/C) < max (1, (4C5)*(R/2)*(1/6%)%) < (dlog(ek))* (£)* (£)*".
hence for any 0 < § <1

(N (0:,©,82/C5))? - max (1, (C5/6)?) < (dlog(ek)) 3 (£) (£)"*? (161)

£

Further, as

LiR = 2eC,CAR=2C,CpE =0 (°N%dE) = O (dlog(ek) - &) ;
LR = BuCaR =eByCrhE =0 (sAVAE) = O (/dlog(eh) - £)
Loe = B,Cre=0 ( dlog(ek))

L3 = AwCA =0 (1) (and L3 Z 1)

we have (16L1R)(16LaR)(32L2e) = O ((dlog(ek))2 (?)2) By ([IE1) we have for any 0 <6 <1

N (g ,V'58/Ca) < (dlog(ek))® (£)* (£)***
= (dlog(ek))2=3(5/C) " (dlog(ek)) > (£)* (9)** (162)
<1 when 6<1
Combining (I60) with (I61)-[I62) we get for any 0 < § <1
N (g D, 8) < (dlog(ek)) 3 (£)* () (163)

By Theorem [6.13] we have for any § > 0

N (do 81y, (S12(T)).8) < [N (IFlg . D, 22) -max (1.5 (164)

10NB: All logarithms are expressed in base e. We write log ek instead of log k in the O (-) notations to cover the case
k = 1 where log k = 0 while logek = 1.
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where Cp := 64kWo > 1, Cy := 256kW3 > 1.
AsCh=0 (k\/dlog(ek)) and C1 = O (kdlog(ek)) we have C;*"2.Cy = O (k*4+3(dlog(ek))?4+2).
Moreover, for 0 < § < 1, we have §/C7 < 1 hence we can apply (I63) to obtain
2d ;¢\ 4d+2
N (g Do) -max (1,9) < (dlog(eh))'* (£)* (9)"*2. ¢+ ¢y /6

A3 (dlog(ek)) 040 (£) (£)1H (165)

IN

Overall this shows that the covering dimension of the normalized secant set if s = O (kd), and we get
forany 0 < ¢ <1

log 2N (dw, Sy (G2 (T)),6) /¢ =0 (kd- [1+logk +logd + loglog(ek) + log £ + log 1] + log %)

Using @I) with 0 < § < 1 we get ¢.(6/2) = O (672W2) = O (6 2kdlog(ek)). As loglog(ek) =
log(1 4 log k) = O (log k), by Theorem 2.9 for & = & we obtain for § < 1: if m > mg, where
mo = QO (5_2kdlog(ek) . [kd - (1 + log kd + log g +log §) + log %D

then with probability at least 1 — ¢ on the draw of frequencies (wj)m

=1
the LRIP (I2) on & with constant C4 = \/L =

the sketching operator satisfies

Extension to H C Hy 2., r. When H C Hj 2. r we have &y C &g and the LRIP for &y implies
the LRIP for G4. Hence, with probability at least 1 — ¢ the sketching operator satisfies the LRIP
simultaneously for all models associated to H C Hp 2¢,R-

F.6 Control of the bias term: Proof of Lemma

To control the Lipschitz constant L of ® we observe that

©(z) — @ ()| - Z

T,
e]w T _ QW

Jj=1
m 9 m 5
1 T |1 C T
< w2 wy W@ - =@ o) | 5w | @ - o)
j=1 j=1
m 2
1 C T 2
< |m D e S’ = =l
=1 252
Since
Cz T c? T w? T 2
Eonn grigyww / wrty o TG Par 01 (@)dw = Bynoperyww’ = N1y
weRd
2
we will show that, for large enough m, we have L? := H% Z;n:l %ijf < A? with high
i 252

probability. This will follow from a Bernstein-type matrix concentration inequality.

Theorem F.3 (Theorem 1.4,[82]). Consider a finite sequence {X; }jvzl of independent, random, self-

adjoint matrices with dimension d. Assume that each random matriz satisfies EX; = 0 and || X;l[,_,, <
M almost surely. Then, for all t > 0,

t2/2
P ij StS<d.e TEMIE yhere o2 = ZEX? , (166)

252 j=1 252
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To exploit this concentration inequality we let Y, := %ij and X; := Y, — A\%I; so that

J
EX; =0. As0<Y; < (R lile 1, and

Hw||§ r? 1 1 A%d
sup = sup = — = = Xd,
werd W2(W) 520 (14 £5)2  infrso(f + x55)? (%)2 !
we have —\I; < X; < \? (Cid 1) L4, hence | X, ,, < A? - max (1 - — ) < )\2$ =: M.

It follows that for any ¢ > 0

J H2~>2'

Moreover o2 := Hzgnzl IEX2H =m ||[EX?
2—2

E c3 T 2 2 - 2 e

52 2

P lls Y wywiw] — XL >\ =P Y X >mt\? p < d-e T TMmN/3 - (167)

252 J=1 252

Noticing that
m2t2\t )2 t2

—_—
o2 + MmtA2/3 (||EX2//\4||2H2 + CA t)

We now bound ||[EX?/\* We have EX? = EY? — (EY)? = EY? — \*I,; and

H2—>2'

C? 2 w?(w C?
EY? = / » (—wz(t))) lwolly w22 o031 (W)dw = Ewnno31) gty ol ™
we

4

w 2 1'T
= /\4Ci-Ew~N<o.,Id>(” e ) ey rexa ez Bunagguu’

I+l 13 /d)
1

_ 4,42 rd 1
= )\CA'ETNde'E

where in (*) we used Uy the uniform distribution on the unit sphere in R?. Furthermore

Emmmf S By, = d(d +2).

2
As a result [[EX2A~4|,_,, < C3(d+2) and 2 (|[EX2A~Y||,_,, + G%t) < €% (2d+4+ 4 1) Com-
bining the above it follows that L? < A\?(1 +t) with probability at least 1 — ¢ provided that

mZC?\t_2(2d+4+%-t)-log(?).

F.7 Link between risks with and without s-separation

We define a “distance” (not symmetric) between hypotheses h = {c1,..,cx} and b’ = {c],..,¢}} two
hypotheses.

N . B = i s
d(h,h") = max d(ci, h') max c?lelg/ ¢ — ¢ ||2 (168)
For any hypothesis class H, we further define
d(h = inf d(h,h"). 169
(h,H) = (h, 1) (169)

We have the following Lemma :
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Lemma F.4. Let R > 0. For any h € Hy0,r an hypothesis, there is h' € Hy - r such that d(h,h') <e.

Proof. We prove this statement by induction on k.

For k =1, consider h = {c1}. Taking h' := {c1} € Hi,e,r we have d(h,h') =0 <e.

Consider now k > 2 and suppose the statement true for k£ — 1.

Let h = {c1,...¢k, } € Hio,r, with k1 < k. If ky < k — 1, then indeed h € Hi_1,0,r hence by the
induction hypothesis there is A’ € Hy—1,.,r C Hi,e,r such that d(h, h') < e. Otherwise (that is to say
if ki =k > 2, and ¢; # ¢; for i # j), since {c1,...,¢x—1} € Hi—1,0,r, by the induction hypothesis
there is {¢},... ¢}, } € Hr-1cr (ky < k—1) such that d({c1,..,ck, 1}, {c],..¢},}) < e We now
distinguish two cases:

o If mini<j<g, Hc;€1 — c}H2 > ¢, set 0;924-1 :=cg, and b/ := {c’l, ..,C;CZ_H}. We have b/ € Hy, . r and
d(h, 1) < e.

o If mini<j<g, Hc;Cl —c;-H2 < e. Take b/ = {c’l,..,cﬁw}. We have h' € Hy—1r C Hi,e,r and
d(h, 1) < e.
O

Lemma F.5. Let h € argmingew, o p Reiust. (mo, h) be an optimal hypothesis without separation
constraint, and h* € argminge, .. Reiust. (70, h) an optimal hypothesis with the separation con-
straint.

e For k-medians (p = 1) we have:

7?rclust. (7T07 h*) S 7?rclust. (777 ha) + d(hS; Hk,QE,R) S 7?rclust. (7T, hS) + 2e. (170)

e For k-means (p = 2) we have:

Rclust. (7T07 h*) S \/ Rclust. (7TO; ha) + d(h’67 Hk,2s,R) S \/ 7?rclust. (7T07 ha) + 25- (171)

Proof. For any « > 0 there is b’ € Hy 2- r such that d(h§, h') < d(h§, Hy2- r) + . Considering any
T € Z, ¢, = argming,epy [|* — ¢ill, and ¢} € h' such that Hc;b - Cio||2 < d(h§,h'), with the reverse
triangle inequality we have

/

le = ciolly = llo = ¢y + ¢y —cinlly, 2 llz = ll, = [l = cully 2 lle = o ll, = d(hs, )
. / * /
> cr;nElE/ a:—chQ—d(hO,h).

e for p =1 it follows that

7?fclust.(TrOv hl) = EXNT"O 1,1161}11/ ||X - C;||2 S IE‘X’\’T"O Hél}?* ||X - Ci||2 + d(hB’ hl)
c; ciChg
S Rclust. (7T07 hg) + d(h67 Hk7257R) + a.

Now by definition of h*,
Rclust. (7T07 h*) S Rclust. (7T07 h/) S Rclust. (7T7 hS) + d(ha, Hk,Za,R) + a.

As this holds for any « > 0, this yields (I70).
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e for p = 2, we have instead
2
Rclust. (7T07 h/) S ]EXNTF() (Hél}?* ”X - ci||2 + d( 67 hl))
Cq 0
~ Rt (0. 5) 42 (Bxry i 1 = i, ) 3, 1)+ (15,
Cq 0
With Jensen’s inequality we have Ex~r, ming,epns [|[X — ¢illy < v/ Rerust. (70, hg), yielding

V 7?rclust. (770; h/) S \/ Rclust. (770; hs) + d(haa h/)

Similarly as the p = 1 case, this gives eventually (I7T]).
Finally, with Lemma [F4] we have d(h{, Hy 2-,r) < 2€. O

F.8 Necessity of the separation assumption for certain kernels

As we show now, the separation assumption for the Compressive Clustering method is in fact necessary
under mild smoothness assumption on the shift invariant kernel £(.) (including the Gaussian kernel
used in Section [)).

Lemma F.6. Consider a loss {(z,{c;}) = min ||z — ¢||5 with 0 < p < oo associated to a clustering task
(this includes k-means, p = 2, or k-medians, p = 1), and a shift invariant kernel k(x,2') = k(z — 2').
Assume that there is at least one direction 0y € R? such that f : t v k(ty) is twice differentiable at
zero. Then there is no finite constant C' < oo such that for all m,7" € &y, , , it holds that

17 =7l crgg gy < C i =l

Proof. Consider 0, := 56p,0_ = —0, (hence ||0] < R/2, ||6_|| < R/2 for small enough ¢). Observe
that & = |04 — 6_|,. Define two mixtures m = $(Jg, +6p_), ©" =069, +0_)/2 = 60 € S, 4 5. Setting
o= £, define the set of centroids h = {c;,c_} as

C+ :9++Oé(9+—9,), C_ :9,4—0[(97 —9+)

As 004, h) = L(6_,h) = (ae)? = (R/2)? and ¢ (%h) = (1/2+a)Pe? = (R/2)P (1 +¢/R)", we
have
[(m =" L h))| = (R/2)"|(1 +¢/R)” — 1] = (R/2)" ({e + o(e)) (172)

We also have ||cy|| < R, ||c—|| < R hence h € Hyo,r, and |7 — 7T/||£(,Hk’0,R) > |(m =7 4(-, h))|.
Now, since k is a kernel we have x(x,2’) = k(2/, z) for any z, 2/, hence f is an even function (f(t) =
f(=t)). Since f is differentiable, this implies f'(0) = 0. We have s(m, ) = 1 [26(0) + 2k(04 — 0_)] =
3 [5(0) + K(eb0)] = 5 [£(0) + f(e)], w(n',7") = £(0) = f(0), and k(m,7') = 5 [K((64 — 6-) /2) + K((0- — 04) /2)] =
k(01 —0-) /2) = k(eby/2) = f(g/2). Hence

i —'ll; = (. m) + (' 7') = 26(m, 1) = 31F(0) + f()] + £(0) —2f(c/2)
L7(e) = FO)] =20 (e/2) = FO)] = 3[E2e2 4 0(e?)] = 2[ L2 5 + 0(=?)] = o(=?).

As a result ||m —7'|| = o(e). Given [[T2) we obtain |7 — 7|z, , o)/ Ilm —7'll,; =, which
0, e—

contradicts the existence of a constant C such that compatibility holds. O
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G Proof of Theorem [5.1] on Compressive GMM

The proof of Theorem 1] combines Theorem with the generic strategy of Section [6] applied the
specific case of separated mixtures of Gaussians. Consider ¥ € R4*? a fixed known full-rank covari-
ance, ||-||s; the associated Mahalanobis norm (G9), and a set of Gaussian distributions 7 = {my =
N(0,%); 0 € O} where ©® = Bga (0, R) is the ball of radius R for the Mahalanobis norm. The
sample space is Z = R%.

For a hypothesis h = (61, ...,0,a) € H C ©F x S;_1, the loss function for density fitting is the
negative log-likelihood ¢(z, h) = — log Zle aymg, (z). The model set Gy, is precisely the set of mixtures
of Gaussians with parameters in H.

With the separation assumption, the hypothesis class is H C Hy, 2.,r Where for GMM we consider
Hp,2¢,r defined in (G8). The model set is Gy = Gy oc ||, (T) = Sp,2,0. (T), consisting of mixtures of
Gaussians that are 2e-separated for the Mahalanobis norm, or 2-separated with the metric o., where

03(6,6") =16 — 0"l /8. (173)

G.1 Kernel and features

We recall that the sketching function is built with scaled random Fourier features where frequency
vectors w; are drawn according to (Z0). With ¢, (z) := Cre™" we have for any z,z’ € RY

2
N Ty (%) z—a5_

A(2,3) = Euendu(@)du(@) = CF  Eypoaen—ne © 2 CFexp <_%>
where (*) follows from the expression of the characteristic function of the Gaussian. With the following
Lemma we can characterize the associated Mean Map kernel for Gaussian distributions that do not
necessarily have a fixed known covariance.

Lemma G.1. Consider a Gaussian kernel x(x,x’) := exp (—% |z — x’HQEJ where X, is an arbitrary

invertible covariance matriz. For any two Gaussians 71 = N(01,%1), m = N(62,X2), the mean

kernel (A8 is
det (X,)

Kk(my,m) = exp (=1 167 — 652 174
(mom) = et o0 (<4 161 = Gal, oz, (174)

Proof. We use a property from [2] on product of Gaussians:

1
- Jdet (27(2, £ 22))

exp (=4 101 = 02113, 1, ) (175)

/ 1 (x)mo (z)dx

We can write the kernel
k(z,x') = exp (—% |z — iZT/HQEN) =/det (27X,) - me(x — 2')

where 7, = N(0,X,,). Hence we have
k(m,me) =y/det (273,) / m1(z) (/ o (2" ) (z — x’)dw’) dx
=y/det (27%,,) / m1(x) e, (z)de,

by convolution, where 73 , = N (02, X5 + X,;). Using ([I7H) we get the desired result. O

60



According to Lemma [G] denoting K,(-) the Gaussian kernel (85), we have

,  /det(Z23:)
et (2+ A 2)D)

)\_2 4/2 1 0'2 2
—(2 - . k _ / — /
=C5 (2+ /\2> exp ( 207 TF A2 6 —6 |2> Koy, (0:(6,0"))

2
H(TFQ, o) =C' exp (_% ) ||9 - 91”(2+>\*2)2)

with e = ) := V2+ A"2/0}, and C) = (2)\? + 1)d/4. Notice that as o, < 1 we have ¢ > /2, and
that C > 1. By Lemma[6.8 we have K,, € &;(1) and we conclude that the Mean Map kernel has the
desired form r(mg, mo) = K (0:(0,0")) with K(-) € E,(1).

G.2 Concentration constant

The considered integral representation of the kernel k(x,2’) involves the class
D = {¢w(x) =C) - eJ“’Tx;w € Rd} .

Unlike for compressive clustering, no weights are needed on these features to establish that they are
bounded and Lipschitz in expectation.

Lemma G.2. For any 8 > 0 we have ® C BL(Do, Lo, T, 0p) with Do = Cy and Lo = C\[.

Proof. Using the expression of the characteristic function of a Gaussian, sup,, supg |Ez~r, dw ()| = Ch,
and by Lemma[G.3 and the definition of ||-||py = |||z with B = {f : || f|, < 1}, we have for any 6,6’

[(mo — Ter, Gu)| < Cx |9 — 7o/ ||y < O (10 — 0|5 = CrBop(6,6").
O

Lemma G.3. Consider two Gaussians with the same covariance 79 = N (0,%), mg: = N (0',X). We
have
g = morllpy < 16— 'l (176)

Proof. Using Pinsker’s inequality (I02) we have ||mg — 7o/ ||y < 1/2KL(7g||7mg:). The Kullback-Leibler
divergence has a closed form expression in the case of multivariate Gaussians [38]:

det (X _ —
KL(N (01, £1)|IN (62, 22)) = & |log ﬁzﬂ 0 (B308) —d+ (G —01) 23 (0 —01)| . (177)
In our case, with fixed covariance, it yields KL(mg||mg) = 3 |6 — G’HQE. O

We get with § = e: Dgp = Cy, Lo = eC). As we will use this constant in several places, we
introduce the shorthand W := /L% +2D2% = C\v2 + €2 < v/2eC), (since € > v/2). Moreover the
model set G consists of 2e-separated mixtures with respect to the Mahalanobis metric and therefore
of 2-separated mixtures with respect to g.. As K,, € E;(1), we can apply Theorem [6.12] to bound the
concentration constant as

W, < 2V2kWe = 21/4 4 2e2VkC), < 4VkeC). (178)
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G.3 Compatibility constant

Controlling the compatibility constant by showing that the loss function is bounded and Lipschitz in
expectation is a bit more delicate. In particular, in order to minimize the bounding constant D, we
will use the fact that the learning task (minimizing the risk) and the associated norm [|m — 7’| ; 5, are
unchanged when an offset is added to the loss ¢(-, h) = —logm,(+). The following lemma, which applies
to any family of probability distributions 7 = {my : # € @}, will be soon specialized to Gaussians with
fixed known covariance.

Lemma G.4. Consider a family of probability distributions T = {mg : 0 € ®}. Assume that

Huin := inf H(mg) > —o0 (179)
Hpax = sup H(mg) + KL(7mg]|me:) < 00. (180)
6,6'c®

For any T, 1= Ele Ty, , where o € S_1, 0; € © we have for any 0 € O:
Hpin < Exr, [—logmh(X)] < Hiax-
The lower and the upper bounds are both tight.
Proof. By the properties of the Kullback-Leibler divergence and the convexity of —log(-) we have

H(ﬂ'g) S H(ﬂ'g) + KL(ﬂ'g”Trh) = Exwﬂ-e [— 10g7Th(X)]
k

—log (Z Q| Ty, (X))
=1

k
< > a[H(mg) + KL(m| |, )] < H(mg) + sup KL (mg||mor)
=1 ‘€

= EXNTI'Q

k
<> B x e, [~ logme, (X))
=1

For a given 6, both the lower and the upper bound are tight. The conclusion immediately follows. O
This translates into a concrete result for Gaussian mixtures with fixed known covariance.

Lemma G.5. Consider T = {7@ 16 € Bga .. (0, R)}, where g := N (0,%). Consider loss functions

with an offset -
U(z,h) == —logmy(z) — % log det (2meX) — R?

The loss class L(H) = {€(-,h) : h € H} satisfies

L(H) C BL(Dg, Le, T, 08) (181)

with
Dy :=R? (182)
Lp :=2Rp. (183)

Proof. To control Dz we exploit Lemma [G4l The entropy of a Gaussian is H(mg) = 3 log det (2meX)
which is independent of 6, hence Hyi, = §logdet (2reX). The Kullback-Leibler divergence (I77) is
KL(TF@HT(Q/) = % ||9 — G/HQE AS a result Hmax = Hmin + sup979/63(07R7H,|‘2) % ||9 - 9’”; - Hmin + 2R2-
Hence -

lx,h) = —logmp(x) — 7}1“";1{“““
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and by Lemma [G.4] B
D/ := sup sup |IEXNM€(X, h)‘ = 71{“‘“;}1‘““‘ = R2.

For the Lipschitz part, since mg(:ijih;:(x —0) = mo(0 — ), denoting £, (z) := — log 7, (x) we have
£0) = Exeny(X) = [ m@n(o)ds = [ mol6 - 2)en (@) = [ mo(z)en 6 - z)da
Vi) — / o) V(0 — 2)de — / 700 = 2)VEn(2)de = Ex o, Vn(X)
Vin(z) = _2%1 Vg, (x) _Ef:l O‘kﬂrel (2)- v;;el(;m)) _ Z amg,(z) Vg, (2)
> i—1 e, () S um, () < S 1oal7rel( z) o, ()

k
= =) Bi(x)- Vg, (x)
=1

where §;(z) := % > 0 satisfies 3, Bi(x) = 1. Since Vlogmg, (z) = —X""(z — 6;), we have
k
Exen,Vlh(X) = Exen, Z Bi(X WX -6)=2"Exmn, (X -3 ﬁl(X)el>
=1

) (2)

with 7, == Exm, 1(X) >0, S2F_ v = 1. Tt follows that

k
20 Z% ) - Z”Yl -0
=1 =

were we used that 6,6; are in the ball of radius R with respect to [|-||s;. To conclude, given 6,¢’,
defining 6(t) := 0 4+ t(¢' — 6) we have

IV Ol = [=°10)], = <R

1

[ s = | [ wrowe -0 ] < [ 1956015 10 -l
OR||0' — 6|5, = 2RBos(6,6").

[£(0") = £(0)]

IN

O

As above we get with § = ¢: Dy = R?, Ly = 2Re < 2R? since R > ¢. Moreover the model set Gy
consists of 2e-separated mixtures with respect to the Mahalanobis metric and therefore of 2-separated
mixtures with respect to o.. As K,, € &(1), we can apply Theorem [6.12 to bound the compatibility
constant as

Ci < 2V2k\/L% +2D% < 4V3VER?. (184)

G.4 Covering numbers

To control the covering numbers we need first to control those of the parameter set. Since ® =
BRd,ME (0, R) we have for all § > 0, exactly as for the case of Diracs,

Lemma [B-4] c d
N (0:,0,0) = N (15 /2.©,6) = N ([, ©,05) < masx (1, (42)") = max (1, (4) ) -
(185)
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We now establish the existence of a tangent approximation ) to the set of dipoles.

Consider a dipole u = my — mp: where by definition we have o-(0,6’) < 1. The proof is a minor
variant of the technique used for Diracs: we primarily observe that given any tempered distribution v
we have

T T gt 2 T ’ 2
ew 0 _ w0 wlls_s elw  (0-0") _q , llwls—a
|| =] e T ) s | e e )
el o w I = 7o, w [l — 7o,
(186)
lwlg-—1
with f(w) :=Cxe” ~ 2 and ¢, the characteristic function of v (up to a normalization):
Considering v := 0y, _ o *mo the derivative of the Gaussian distribution with mean 6’ and covariance
;o el
Y along direction —A, we get ¢, (w) = e e 2 JjwTA. All the reasoning done with Diracs can

be adapted to show that the set of smooth functions
V o= {v=0) _axm: 00€0, AcRY A, <&}
is a tangent approximation to the set of dipoles, with constants ¢t = 2 and
T :=e?sup f(w)/2 = €2C\ /2. (187)
We remarked in Section that € > v/2 and C\ > 1 hence T > 1. Similarly, one can control the
covering numbers (with respect to ||-||4) of
V' = {ady,_axmo+Bmgl 0,0/ €O, AeRY|A|,<e, 0<a<2, 0<3<1}.

as in the case of Diracs, simply by replacing the bound |w?v| < [lw|l, [|v[|, with [w”v| < [[w[|g-1 [|V]/s
and using

L = 2esupf(w) ||w||2271 = 2eCysupue™ /2 = 4eCy /e, (188)
w u>0
Ly = supf()|wlg 1 =Crsupue /2= Cy/ve, (189)
w u>0
Ly = Do=0Cy (190)
Li = Lo (191)

This yields a control of the covering number of V' as in ([I57)) with these values of L;.

G.5 Summary: establishing the LRIP

With the above we can establish that with high probability on the draw of frequencies, the sketching
operator A satisfies the LRIP simultaneously for all models H C Hj 2 r-

Consider first H = Hy 2., r. The compatibility constant (I84]) with respect to &g := Syonery 18
Cr < 4V3VER?.

The concentration constant (I78) with respect to &y is
W, < 4VkeC).

and Do := Cy, Lo :=Cy, Wo < v2:C), and
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From (I8T) we have T := €2C)/2 > 1, hence 16T min(3/4,t/2) = 12T > 1, and by Theorem [6.15]
we have: for any 0 < § <1

2\ 2
Nl D:8) < N (020, 2) -max(1,(5)°) + N (1o V' &) (192)
with Cg = 256W(I)L(DT, Cg = 16\/ W(I)D(I)T, C4 = 4.

AsCy =0 (54C§) and € > 1, C\ > 1, by ([I88) we have for any 0 < 6 < 1, with C > 1 denoting
some universal constant that may change from equation to equation,

N (0:,0,6%/C5) < max (1, (4C2)*(R/e)*(1/6)*) < e™C34(R/2)*(C/8)*.

As C3 < 164/e3C3/vV2 = O ((eCy)/?), we get for any 0 < § < 1

(N (0:,©,6%/C5))? - max (1, (Cs/6)?) < 34303 (R/2)>1(C/5)*H+? (193)
Further, as
16LR = 2.0,-¢% &
16LR = 2..Cy-c- &
32L0e = \2/—55-0,\-5
8Ly = 23Cy.

we have (16L1R)(16LoR)(32Loc) = O (e*C3(R/2)?). By (I51) we obtain for any 0 < § < 1

N (Il V'56/Ca) < CYU(R/e)* - Cx - (C/6)*H
(874d73c;3d—2(6/c)d+1) .€8d+BC§d+3 (R/E)Qd(c/6)4d+2 (194)
<1
Combining (I93)-([194) with (I92), we obtain that for any 0 < § <1
N (lllg D, 6) < ¥3CYH3(R/e)(C /)" H? (195)

By Theorem [6.13] we have for any § > 0

N (da, S, (812 (T)),0) < [N (119D, & ) - max (1, S)

- }Qk (196)

where Cj := 64kWqe > 1, Cy := 256kW3 > 1.

As Cyp = O (keCy) and C; = O (kazOf), we have C’gd”Cl =0 (C4d+3k4d+354d+46’j\1d+4). More-
over, for 0 < § <1 we have 6/C; <1 hence we can apply (I95) to obtain

N (”'Hq) , D, CLU) - max (17 %)

IN

€8d+3cgd+3 (R/E)Qd(c/5)4d+2 . Cald-‘r2 . Cl /6
< k4d+3€12d+7c>1\0d+7(R/E)2d(0/5)4d+3 (197)

Overall this shows that the covering dimension of the normalized secant set if s = O (kd), and we get
for any 0 < ¢ < 1

log 2N (do, Sy (k2 (T)),0) /¢ = O (kd - [log(ek) + log £ + log(eCy)* + log 1] + log %)

65



Using @BI) with 0 < § < 1 we get ¢.(6/2) = O (6 2W2) = O (67 2k(sC»)?). By Theorem 2.9 for
S = 6y we obtain for § < 1: if m > mg, where

mo = O (5*2k2d(aCA)2 - [log(ek) 4 log % +log(eCy)? + log 3]+ 6§ 2k(eCy)? - log %)

then with probability at least 1 — ( on the draw of frequencies (wj)g-”:l, the sketching operator satisfies

the LRIP (I2) on &( with constant C 4 = \/L = \/7 VER?.

Extension to H C Hy 2., r. When H C Hj oo r we have &y C &g and the LRIP for &y implies
the LRIP for G4. Hence, with probability at least 1 — ¢ the sketching operator satisfies the LRIP
simultaneously for all models associated to H C Hp 2¢,R-

H Proof of Theorem [3.1] on Compressive PCA

For Compressive PCA, observe that Rpca(m, h) = Exr [| X —PhXﬂg = Tr(X,P,.) with ht the
orthogonal complement of the subspace h, and the minimum risk is

Reca(m, h*) = rank(lvll)ngfk,Mw 137 — M, . (198)

Model set G4 and best hypothesis for 7 € G3.  As Rpep(m, h*) = 0 if, and only if, the covariance
matrix ¥, := ExXX7T has rank at most k, the model set is G = {m: rank(X,;) <k}. For
7 € G4, the eigen-value decomposition X, = UDUT yields an optimum of ([IT7), h = span(U(:, 1 : k)).

Metric associated to the learning task. To design sketching operators satisfying the LRIP (I2)
on Gy, we leverage the well-established body of work on the recovery of low-rank matrices from
random projections and establish the apparently new inequality

d—Fk d—k
|7 — 7THL(H) = max (Z Ai(ZBr — X)), Z Ai(Bar — 2#)) < Zr — X, (199)

i=1 i=1
with [|-||, the nuclear norm.

Proof of ([99)). By the definition (I0), for any probability distributions 7, 7" with finite second mo-
ments

17" =7l g3 = = sup ITr (Brr — X)) Ppa)l - (200)

By the so-called Ky Fan Theorem [44], for a symmetric matrix M € R9*? and a positive integer ¢ < d,
one has

sup Tr(MPy) i
dim(V)<¢ Z

where \;(M) denote the eigenvalues, with multiplicity and ordered in nonincreasing sequence, of M.
As a result the seminorm defined in (200) is

d—k d—k
max (Z Ai(Br = B), Y NS — 27,)> .
=1

=1
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Denoting o;(M) the singular values, ordered in decreasing sequence, of a matrix M, we further have

d—k d
Z Ai(Br —3q) < Zai(zfr X)) =% - Eﬂ/”*'
i=1 i=1
This establishes ([T99). O

Compatibility constant. For any rank-r matrix M, we have | M|, < /r [[M|| where |-|| » denotes
the Frobenius norm. This implies that if 7,7’ € &3 then

I’ =7l ey < VR[S = Bl (201)

Hence any linear operator M on matrices having a lower RIP ([@2]) on matrices of rank lower than 2k
induces (in the way described in Section [3)) a sketching operator A : m — A(7w) := M(X,) that has

the lower RIP described in ([I2) with constant C'4 = \/‘/1%.

Concentration constant and covering dimension. It is well known that M (M) := ((L;, M) p)"
where L; has properly standardized i.i.d. (sub)Gaussian entries satisfy the required RIP with constant ¢
(M satisfies inequations ([@2))) with high probability provided the sketch size is of the order m 2 O(kd).
Technically this is proved by establishing that for a given 4, ¢.(6/2) = O(1) and that the covering
dimension of the normalized secant set is s = O(kd).

Ideal decoder and generic excess risk control. The ideal decoder (I3) writes

. 2 . 2
Aly] == argmil, ., | A(T) — Y||2 ‘= ArgINyy. pank(2)<k; =0 [M(Z) — YH2

which matches [@3]). By the lower RIP on A, this decoder is instance optimal yielding (IB) with the
bias term defined in (I4)), i.e., the excess risk of h from the procedure of Section Blis controlled with

M < 2D(m0, &) + 404 [A(m — 705 -

Control of the bias term. Using (I99) yields

D Gy) < inf —-% 2C DM
(ro. &) < inf (%0 = B, + 204 |M(Es - 2}

By the upper RIP (the rhs inequality in [@2])), we have for any M:
[M(Zr = M), < V1+0[[Z: — M|, (202)

Proof of [202). Decompose 3. — M as a sum of orthogonal rank-1 matrices ¥, — M = . M, (the
SVD of X, —M). With the triangle inequality and the upper RIP in ([@2), we have | M (2, — M)||, <
VI+63 [IMillp = VI+6]3: — M. O

As a result, the bias term is bounded by (1 +2C4V1 +0) infranksm)<k,zs0 [|Zr — Z|,. Given the

expression of the minimum risk (I98)) and the fact that C4 = \/‘/1%, we obtain

M < 201+ Z2E VT 8)Reoa(m, h*) + 425 | A(r — 7).

This proves Theorem 311
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