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Abstract. We present HyLeak, a tool for reasoning about the quantity of infor-
mation leakage in programs. The tool takes as input the source code of a program
and analyzes it to estimate the amount of leaked information measured by mu-
tual information. The leakage estimation is mainly based on a hybrid method
that combines precise program analysis with statistical analysis using stochastic
program simulation. This way, the tool combines the best of both symbolic and
randomized techniques to provide more accurate estimates with cheaper analysis,
in comparison with the previous tools using one of the analysis methods alone.
HyLeak is publicly available and is able to evaluate the information leakage of
randomized programs, even when the secret domain is large. We demonstrate with
examples that HyLeaks has the best performance among the tools that are able to
analyze randomized programs with similarly high precision of estimates.

1 Introduction

Automated security evaluation. With the increasing complexity of networked systems,
it is getting harder and harder for security engineers to analyze a system and give a
reasonable guarantee that the system does not jeopardize the security and privacy of
the users. A significant effort in research has been devoted towards techniques able
to (semi-)automatically identify leakage of confidential information in software and
hardware systems, allowing for more formal assurances of security and privacy.
Among automated techniques to quantify the information leakage of a system, we
distinguish the two approaches: precise program analysis providing a precise result
(e.g. [1,3,4]) and statistical analysis providing an approximate estimation (e.g. [5,6,7]).
The main difference between them is that precise analysis needs to explore the complete
behavior of the system to obtain the exact leakage values, while statistical analysis has
to cover only a statistically significant sample of the system’s behavior to produce their
estimation, and thus tends to scale better. However, when statistical analysis fails to
cover many rare events in the system, it does not produce an accurate estimation.
Recently, some researchers have been trying to bridge the gap between precise and
statistical techniques by introducing hybrid methods combining them [9, 11]. This paper
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presents the HyLeak tool, the first publicly available leakage computation tool lever-
aging both precise and statistical analyses. The implementation is based on the hybrid
method for estimating mutual information [9] while it also employs many optimization
techniques to enhance the estimation performance. As we explain in Section 4 the tool
has the best performance in computing leakage among the tools that are able to analyze
randomized programs with similarly high precision of estimates.

The HyLeak hybrid analysis strategy. The HyLeak tool takes as input a program written
in a simple imperative language (a slight extension of the input language used in the
QUALIL tool [3]) and computes its Shannon leakage, i.e., the mutual information between
the variables defined as secrets and those as observable outputs in the given source code.

More specifically, HyLeak divides a program code into (terminal) components and
decides for each of them whether to analyze it using precise or statistical analysis, by
applying heuristics that evaluate the analysis cost of each component. Then, following
the theoretical results in [9], HyLeak composes the analysis results of all components
into an approximate joint probability distribution of the secret and observable variables in
the program. Finally, the tool estimates the Shannon leakage and its confidence interval.

One of HyLeak’s technical novelties lies in the implementation of the code decompo-
sition. The procedure is based on the fact that the cost of analyzing a code fragment with
precise analysis is proportional to the amount of traces in the fragment (since precise
analysis has to analyze all traces), while the cost of statistical analysis is proportional
to the number of possible observable variables (since statistical analysis has to run
simulations for each value of the observable variables). Then the amount of traces and
observable variable values at each point in the program execution is statically estimated
via a heuristic approach. The tool locates in which part of the execution, if any, stochastic
simulation becomes more efficient than precise analysis, and records this by inserting a
simulate statement in the code.

The stochastic simulation usually has to run the code
const MAX:=14;

secret int32 sec := [251,750];

for each value of the secret; however, if in the code frag-
ment the observable variables do not depend on the secret,
it is sufficient to simulate the fragment with a single se-
cret value and to apply the results to all the other values
of the secret. This technique is called abstraction-then-
sampling in [9], and can significantly reduce the number
of simulations necessary to produce a good estimation,
particularly for programs with a large secret domain. If
the tool finds it can apply abstraction-then-sampling on
the code fragment, it inserts a simulate—-abs statement
instead. In the analysis of the program, when the tool
reaches a simulate ora simulate-abs statement in
the code, it switches precise program analysis to stochastic
simulation or abstraction-then sampling, respectively.

Motivating example. Consider the following random walk
problem (modeled in Fig. 1).

observable int32 obs:= 0;
public int32 time : H
public int32 loc :
public int32 seed ;
public int32 ran := 0;
if (sec <= 425) then
assign loc:=400;
elif (sec <= 475) then
assign loc:=450;
elif (sec <= 525) then
assign loc:=500;
elif (sec <= 575) then
assign loc:=550;
else
assign loc:=600;

fi
while (time < MAX) do
random ran := random(1,6);
if (ran <= 3) then
assign loc:=loc+10;
else
assign loc:=loc —10;
fi
assign time:=time+1;

o
assign obs:=loc;
return;

Fig. 1: Random walk.



The secret is the initial location of an agent, encoded by a single natural number
representing an approximate distance from a given point, e.g. in meters. Then the agent
takes a fixed number of steps. At each step the distance of the agent increases or decreases
by 10 meters with the same probability. After this fixed number of random walk, the
final location of the agent is revealed, and the attacker uses it to guess the initial location
of the agent.

This problem is too complicated to analyze by precise analysis, because the analysis
needs to explore every possible combination of random paths, amounting to an exponen-
tial number in the walking steps. It is also intractable to analyze with a fully statistical
approach, since there are hundreds of possible secret values and the program has to be
simulated many times for each of them to sufficiently observe the agent’s behavior.

As shown in Section 4, HyLeak’s hybrid approach computes the leakage significantly
faster than the fully precise analysis and more accurately than the fully statistical analysis.

2 HyLeak Implementation

We describe how HyLeak estimates the Shannon leakage of an input program. The
tool determines which component of the program to analyze with precise analysis and
which with randomized analysis, and inserts appropriate annotations in the code. The
components are analyzed with the chosen technique and the results are composed into a
joint probability distribution of the secret and observable variables. Finally, the Shannon
leakage and its confidence interval are computed. The tool implementation consists of
the following 4 steps. Steps 1 and 2 are implemented with different ANTLR parsers [13].
The implementation of Step 3 inherits a large amount of code from the QUAIL tool.
This means that QUAIL’s optimizations, i.e., parallel analysis of execution traces and
compact Markovian state representation, are inherited. However QUAIL’s restrictions
are inherited as well in HyLeak, meaning that the prior distribution on the secret is
assumed to be uniform and no private variable can appear in assignments.

Step 1: Preprocessing

Step la. Lexing, parsing and syntax checking. The tool starts by lexical analysis, macro
substitution and syntax analysis. In macro substitution the constants defined in the input
program are replaced with their declared values, and simple operations are resolved
immediately. The tool checks whether the input program correctly satisfies the language
syntax. In case of syntax errors, an error message describing the problem is produced.

Step 1b. Loop unrolling and array expansion. for loops ranging over fixed intervals are
unrolled to optimize the computation of variable ranges and thus program decomposition
in Step 2. Similarly, arrays are replaced with multiple variables indexed by their position
number in the array. Note that these techniques are used only to optimize program
decomposition and not required to compute the leakage in programs with arbitrary loops.



Step 2: Program Decomposition and Internal Code Generation

Ifasimulateor simulate—abs statement is present in the code, this step is skipped.
Otherwise, for each variable and each code line, an estimation of the number of possible
values of the variable at the specific code line is computed. This is used to evaluate at
each point in the input program whether it would be more expensive to use precise or
statistical analysis, as explained in Section 5 of [9]. The tool adds simulate and/or
simulate-abs statements in the code to signal which parts of the input program
should be analyzed with standard statistical sampling and with abstraction-then-sampling.
At the end, the input program is translated into a simplified internal language. Conditional
statements and loops (i f, for, and while) are rewritten into 1 f—got o statements.

Step 3: Program Analysis

In this step the tool analyzes the executions of the program using the two approaches.

Step 3a. Precise analysis. The tool performs a depth-first symbolic execution of all
possible execution traces of the input program, until it finds a return, simulate, or
simulate-abs statement. When reaching a return statement the tool recognizes
the execution trace as terminated and stores its secret and output values. In the cases of
simulate and simulate—abs statements it halts the execution of the trace, saves
the resulting program state, and schedules it for stochastic simulation or for abstraction-
then-sampling simulation, respectively, starting from the saved program state.

Step 3b. Randomized analysis. The tool performs all the standard stochastic simulations
and abstraction-then-sampling simulations, using the saved program states from Step
3a as starting point of each component to analyze stochastically. The sample size for
each simulation is automatically decided by using heuristics to have better accuracy with
less sample size. The results of each analysis is stored as an appropriate joint probability
sub-distribution between secret and observable values.

Step 4: Leakage Estimation

In this step the tool aggregates all the data collected by the program analysis (performed
in Steps 3) and estimates the Shannon leakage of the input program, together with
evaluation of the estimation. More specifically, it constructs an (approximate) joint
posterior distribution of the secret and observable values of the input program from
all the collected data produced by Step 3, as explained in Section 3.1 of [9]. Then the
tool estimates the Shannon leakage value from the joint distribution, including bias
correction (See more details in Section 4 of [9]). Finally, a 95% confidence interval for
the estimated leakage value is computed to roughly evaluate the quality of the analysis.

3 On Using HyLeak

HyLeak is freely available from https:/project.inria.fr/hyleak, in both source code and
artifact form. Multiple examples and the scripts to generate the results are also provided.


https://project.inria.fr/hyleak

We show how to use HyLeak to analyze the random walk example presented in
Section 1. The program code is shown in Fig. 1 on the left; assume it is contained in the
file random_walk_abs-sim.hyleak. We invoke the tool with the command:

./hyleak random_walk_abs-sim.hyleak

The tool generates various . pp text files with analysis information and the con-
trol flow graph of the program (Fig. 2). Finally, it outputs the prior and posterior
Shannon entropy estimates, the estimated leakage of the program before and after
bias correction, and its confidence interval. HyLeak can also print the channel matrix
and additional information; the full list of arguments is printed by . /hyleak -h.

4 Comparison with Other Tools

The HyLeak tool processes a simple impera-
tive language that is an extension of the lan-
guage used in the QUAIL tool version 2.0 [2].
The QUAIL tool implements only a precise
calculation of leakage that examines all exe-
cutions of programs. Hence the performance
of QUAIL does not scale, especially when the
program performs complicated computations
that yield a large number of execution traces.
On the other hand, HyLeak fully supports the
statistical approach and the hybrid approach.
Hence HyLeak can analyze large problems that
QUAIL cannot handle. Note that an approach
combining static and randomized analyses was
first proposed by Kopf and Rybalchenko [11]
differently. i

The stochastic simulation techniques im- ~——2— [}
plemented in HyLeak have also been devel- S
oped in the tools LeakiEst [6] (with its exten-
sion [10]) and LeakWatch [7, 8]. Below we
compare HyLeak’s analysis technique against
the full simulation technique implemented in
these tools.

The tool Moped-QLeak [4] computes the precise information leakage of a program
by transforming it into an algebraic decision diagram (ADD). As noted in [2], this
technique is efficient when the program under analysis is simple enough to be converted
into an ADD, and fails otherwise even when other tools including HyLeak can handle it.

Many information leakage tools restricted to deterministic input programs have been
released, including TEMU [12], squifc [14], jpf-qif [15], QILURA [16], nsqflow [17],
and SHARPPI [18]. Some of these tools have been proven to scale to programs of
thousands of lines written in common languages like C and Java. Such tools rely on
the fact that the Shannon leakage of a deterministic program is bounded from above

‘ assign (loc)=((loc)+(10)). ‘ ‘ assign (locy=((loc1(10)): ‘

assign (time):=((time)+(1))

Fig. 2: Control flow graph for the input
code of Fig. 1.
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Fig. 3: Random walk experimental results

by the logarithm of the number of possible outputs of the program. The number of
possible outputs is usually computed using model counting on a SMT-constraint-based
representation of the possible outputs, obtained by analyzing the program. Contrary to
these tools, HyLeak can analyze randomized programs* and provides a quite precise
estimation of the leakage of the program, not just an upper bound. As far as we know,
HyLeak is the most efficient tool that has this greater scope and higher precision.

Experimental Results

In this section we compare the performance of the tool HyLeak against the precise
analysis technique (implemented in version 2.0 of QUAIL) and the statistical technique
(used in LeakiEst and LeakWatch). In the experiments we use an option of HyLeak
that deactivates stochastic simulations and performs fully precise analysis, which has
basically an identical behavior to the QUAIL tool. As another comparison, we have
forced fully randomized analysis like LeakWatch.

The random walk example in Fig. 1 has a conditional branching inside the while
loop, and thus it has an exponential number of execution traces in the walking time
time. Hence precise analysis takes an exponential time while both HyLeak and fully
randomized analysis take much less time thanks to random sampling of traces (Fig. 3
on the left). Since HyLeak uses an abstraction-then-sampling technique, it has smaller
errors than fully randomized analysis with an identical sample size (Fig. 3 on the right).

See Appendix for other examples and the results of their experiments.
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A HyLeak imperative language

The input language for programs to be analyzed by HyLeak is almost identical to the
input language of the QUAIL tool [3] that HyLeak is based on. The only additions are
the bounded FOR loops described in Section A.9 and the Simulate statements described
in Section A.10. The rest of the input language semantics is reprinted here from the
Appendix of [3] for reference.

A.1 Variable declarations

All variables in HyLeak are fixed sized integers. They are declared at the beginning of
the program. Constants can be declared in the following manner:

const N := 4;
They are replaced by their value during the preprocessing step.

Public variables are either public or observable. In the latter case the attacker will be
able to distinguish their value. They are declared in the following manner:

public int4 var; orobservable int4 var;
declares a 4 bits integer variable whose name is var, either public or observable.

public int4 var := 5;
declares var and initializes it to value 5. Any expression can be used to initialized a
variable, provided that the variables used in the expression are public or constants and
have been previously declared. Variables not initialized are implicitly initialized to the
value 0.

Private variables are either private or secret. The attacker will only infer knowledge
on the latter. They are declared in the following manner:

private int4 var; orsecret int4 var;
declares a 4 bits integer variable whose name is var, either private or secret.

private int4 var := [0,1]1[2,5];
declares var and restricts its range to the two intervals [0,1] and [2,5]. Again any
expression can be used in the bounds of the intervals.

A.2 Arrays

Variables can also be arrays of integers and multi-dimensional arrays. Arrays are declared
in addition to the integer type of a variable.

public array[4] of int4 tab;
declares a public variable t ab that is an array of 4 bits integer of size 4 whose indices
range from O to 3, while

public array[l..4] of int4 tab;
declares t ab as an array of size 4 whose indices range from 1 to 4. The size of an array
can be any expression that evaluates to an integer.

Arrays are replaced during the preprocessing. Therefore, an array variable named
tab, whose indices range from O to 3, declares 4 variables, whose name are tab [0],
tab[1l], tab[2] and tab[3]. They have the same publicity and the same integer
type as the array.



An array may be initialized with a set of initial values:

public array([l..4] of int4 tab := {1,1,2,2};
initializes tab such that tab[1] and tab[2] are equal to 1, while tab[3] and
tab[4] are equal to 2. Private arrays can be initialized like any private variable, with a
set of intervals:

private array[l..4] of int4 tab := [0,1];
In that case all the variables in the array are initialized to the same range of integers.

A.3 Expressions

Expressions are used in guards, assignments, variables initialization and arrays indices.
Binary operators (| |,&&,”,+,—,*,/ and %) and unary operators (-, !) can used. Classical
operators precedence is assumed. For boolean operations integer variables are considered
as a true value if non null, and false if null. Only public variables, constants and integers
can be used in expressions.

A.4 Guards

Guards are limited to a single comparison between a variable on the left side (either
public, or private, or constant, or an integer value) and an expression on the right side.
Any comparison operator among <, >, <=, >=, == and ! = can be used.

A.5 Assignments

An assignment statement is written in the following manner:

assign var := expr;
where var is a public variable (possibly with indices) and expr is an expression
containing no private variables.

A.6 Random assignments

The program can used two types of random primitives to assign values to a variable.
random var := random(expr_min,exXpr_max);
assigns to a public variable var a random value, chosen between the values of expr._min
and expr._max, with a uniform probability distribution.
random var := randombit (p);
where p is a float value lower than 1, assigns to a public variable var a random bit value,
that is 0 with probability p, and 1 with probability 1 — p.

A.7 IF statements

IF conditional statements starts with the keyword 1 £, possibly followed by e11 f and
else, and ends with £1i. The consequent statements are listed after the keyword then.
For example the following structures are allowed:

if (h <= 1) then assign var:=1;



fi

if (h <= 1) then assign var:=1;
else assign var:=2;

assign var:=var+l;

fi

if (h <= 1) then assign var:=1;
elif (h==1) then assign var:=2;
fi

if (h <= 1) then assign var:=1;
elif (h==1) then assign var:=2;
elif (h==1+1) then assign var:=2;
else assign var:=2;

fi

A.8 WHILE statements

Conditional WHILE loop starts with the keyword whi1e, followed by a guard, and the
statements included in the loop are listed between the keywords do and od. For example
the following structure is allowed:

while (h <= 1) do

assign 1 := 1;

assign var := 2;

od

A.9 FOR statements

A FOR loop can be used to browse all the elements of an array. The syntax is:

for (var 1in tab) do

assign var := var+l;

od
The variable var is a local variable that must only be used inside the loop. It will take
successively each value in the array tab. Note that if tab is a multi-dimensional array
var is also an array.

A bounded FOR loop is also available to loop over commands while a variable takes
values from an interval. The syntax is:

for (var in interv) do

assign var := var+l;

od
The variable var is a local variable that must only be used inside the loop. It will take
successively each value in the interval interv. For instance, writing for (var in
[0,1-1]) will assign to variable var all values from O to the value of variable i
minus 1.

10



A.10 Simulate statements

A simulate statement indicates to the tool that at this point of the program the precise
analysis has to halt and statistical simulation has to be started instead. The syntax is:
simulate;
The simulate—-abs is similarly use to halt precise analysis and start abstraction-then-
sampling analysis, as described in Section 4.3 of [9]. The syntax is:
simulate-abs;
If no simulate nor simulate—abs is introduced in the input program by the user,
the tool decides heuristically which parts of the input program to analyze with statistical
simulation and with abstraction-then-sampling and inserts the statements accordingly, as
described in Section 2.

A.11 Return statements

The program ends when a return statement is reached. Its syntax is simply:
return;

B Control Flow Graphs

In this section we present in Figure 2 an example of the control flow graph generated by
HyLeak. Note that HyLeak has added simulate-abs statements to the code, visible
in the flow graph.

C Further Examples

In this section we present more application of the tool HyLeak.

C.1 Probabilistically Terminating Loop

The tool HyLeak can analyze programs that terminate only probabilistically. For instance,
the program shown in Fig. 4 has a loop that terminates depending on the randomly
generated value of the variable rand. No previous work has presented an automatic
measurement of information leakage by probabilistic termination, as precise analysis
cannot handle non-terminating programs, which typically causes non-termination of the
analysis of the program. On the other hand, the stochastic simulation of this program
supported in HyLeak terminates after some number of iterations in practice although
it may take long for some program executions to terminate. When the sample size is
50000 the Shannon leakage computed with HyLeak is about 0.4319 and the analysis
takes about 10 seconds.

11



const bound := 10;

secret int32 sec := [0,5];
observable int32 obs;
public int32 time := 0;
public int2 terminate := 0;
public int32 rand;
simulate;

random rand := random(0,9);

// probabilistically terminating
while (terminate != 1) do
random rand:= random(1,5);
if (sec <= rand) then
assign terminate = 1;
fi

assign time := time+1;
od
// output
if (time < bound) then
assign obs := time;
else
assign obs := bound;
fi
return;

Fig. 4: Probabilistically Terminating Loop.

C.2 Smart Grid Privacy

A smart grid is an energy network where users (like households) may consume or
produce energy. In Fig. 5 we describe a simple model of a smart grid using the HyLeak
language. This example is taken from [2]. The users periodically negotiate with a central
aggregator in charge of balancing the total consumption among several users. In practice
each user declares to the aggregator its consumption plan. The aggregator sums up the
consumptions of the users and checks if it falls within admitted bounds. If not it answers
to the users that the consumption is too low or too high by a certain amount, such that
they adapt their demand. This model raises some privacy issues as some attacker can try
to guess the consumption of a user, and for instance infer whether or not this particular
user is at home.

In Fig. 6 we present the experiment results of this smart grid example for different
numbers of users. HyLeak takes less time than both fully precise analysis and fully
randomized analysis (as shown in the left figure). Moreover it is closer to the true value
than fully randomized analysis especially when the number of users is larger (as shown
in the right figure).

C.3 Shifting Window

In the shifting window example (Fig .7, from [9]) the secret sec can take IV possible
values, and an interval (called a “window”) in the secret domain is randomly selected
from 1 to W. If the value of the secret is inside the window, then another window is
randomly chosen in a similar way and the program outputs a random value from this
second window. Otherwise, the program outputs a random value over the secret domain.

In Fig. 8 we present the results of experiments on the shifting window when in-
creasing the size of the secret domain. The execution time of precise analysis grows
proportionally to the secret domain size N while HyLeak and fully randomized analysis
do not require much time for a larger N. In the fully randomized analysis the error from
the true value grows rapidly while in using HyLeak the error is much smaller.

12



const N:=3; // N is the total number of users

const S:=1; // S isthe number of users we care about
const C:=3; // C is the possible consumptions level
const M:=0; // M is the consumption level of the attacker
const LOWT:=2; // LOWT is the lower threshold

const HIGHT:=9; // HIGHT is the upper treshold

// the observable is the order given by the control system
observable int32 order;

observable int1 ordersign;

/1 The secret is the consumption of each user we care about

secret array [S] of int32 secretconsumption:=[0,C—1];

/! The other consumptions are just private

private array [N—(S+1)] of int32 privateconsumption:=[0,C—1];

public int32 total:=M; // thisis the projected consumption
public int32 j:=0; // thisis justa counter

/! count the secret consumptions
for (i in [0,S—1]) do
while (j<C) do
if (secretconsumption[i]==j) then
assign total:=total+j;

fi
assign j:=j+1;
od
assign j:=0;
od
// count the private consumptions
assign i := 0;
assign j :=

0;
while (i<N—@S+1)) do
while (j<C) do
if (privateconsumption[i]==j) then
assign total:=total+j;
fi
assign ji=j+1;
od
assign j:=0;
assign i:=i+1;
od

if (total <LOWT) then
assign order := LOWT — total;
assign ordersign := 0;

elif (total > HIGHT) then
assign order := total — HIGHT;

assign ordersign := 1;
else

assign order := 0;

assign ordersign := 0;
fi
return;

Fig.5: Smart Grid Example.
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Fig. 6: Smart grid experimental results.
const N:=16;
const W:=14;
secret int32 sec := [0,N—1];
public int32 minS;
public int32 sizeS;
observable int32 obs;
public int32 minO;
public int32 sizeO;
random minS := random(0,N-W—1);
if (sec>=minS) then
random sizeS := random(1,W);
if (sec<=(minS+sizeS)) then
random minO := random(0,N-W—1);
random sizeO := random(1 W) ;
random obs := random(minO, minO+sizeO) ;
else
random obs := random(0,N—1);
fi
else
random obs := random(0,N—1);
fi
return;
Fig.7: Shifting Window Example.
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Fig. 8: Shifting window experimental results.
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