N

HAL

open science

Eventual Consistency

Marc Shapiro, Bettina Kemme

» To cite this version:

Marc Shapiro, Bettina Kemme. Eventual Consistency. Ling Liu; M. Tamer Ozsu. Encyclopedia of
Database Systems, Springer, pp.1-2, 2017, 978-1-4899-7993-3.

inria-00444791v2

HAL 1d: inria-00444791
https://inria.hal.science/inria-00444791v2

Submitted on 26 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1007/978-1-4899-7993-3__1366-2 .


https://inria.hal.science/inria-00444791v2
https://hal.archives-ouvertes.fr

Encylopedia of Database Systems, 2016 edition

Eventual Consistency

Marc Shapiro
Sorbonne-Universités-UPMC-LIP6 & Inria Paris

Bettina Kemme
School of Computer Science, McGill University, Montreal, QC, Canada

2016

1 Synonyms

Lazy replication; Optimistic replication

2 Definition

In a replicated database, the consistency level defines whether and how the values of the
replicas of a logical object may diverge in the presence of updates. Eventual consistency
is the weakest consistency level that guarantees convergence. Informally, it requires that
all replicas of an object will eventually reach the same final value, assuming that no new
updates are submitted to the object.

3 Formal Definition and Usage

Eventual consistency is an important correctness criterion in systems with a lazy, update-
anywhere strategy, also referred to as optimistic replication. Update operations can
be submitted and executed on any node, and the propagation of updates occurs lazily
after they are committed. Conflict resolution and reconciliation must ensure that all
replicas (copies) of a logical object eventually converge to the same value. Different
objects are considered independent. Especially in wide-area settings, also referred to as
geo-replication, and mobile computing environments, eventual consistency is popular,
as it allows individual replicas to serve client requests and provide a response before
coordinating with other replicas. Conflict-free replicated data types (CRDTs) were
invented to encapsulate and hide the complexity of managing eventual consistency.



In a system where updates are continuously submitted, eventual consistency can be
defined by a weak form of schedule equivalence [1]. A schedule S¥ describes the sequence
of update operations that a node n performs on its replica of object . An element of
the schedule of the form w; represents the execution of an update to object x, submitted
by some user. S¥ contains an element of the form wj , if the update w; was received by
n, but either not executed, or aborted due to conflict resolution.

Typically, two schedules are defined equivalent by restricting how the order of
operations in the two schedules may differ. However, for eventual consistency, only the
final convergence of object values matters. Thus, equivalence is defined by comparing the
final state of the replicas. Two schedules are said state equivalent when, starting from
the same initial state, they produce the same final state. For instance, (i) schedules
S = wjwe and Sy = wow; are state-equivalent if w; and wy commute; (7i) schedules
S = wiwo and S’ = wy are state-equivalent if ws overwrites the state of the object to
a completely new value (e.g., = := 2). Eventual consistency of a replicated object z is
defined by the following conditions, which must hold at all times, at any node n with a
replica of x [1]. It is assumed that all replicas have the same initial state:

e There is a prefix of the schedule S¥ that is state equivalent to a prefix of the
schedule Sﬁl of any other node n’ holding a replica of x. Such a prefix is called a
committed prefix of S} .

e The committed prefix of S} grows monotonically over time, i.e., the set of operations
and their relative order remain unchanged.

e For every operation w; submitted by a user, either w; or w; eventually appears in
the committed prefix of S* (but not both and not more than once).

e An operation of the form w; in the committed prefix satisfies all its preconditions
(e.g., the state of the object immediately before the execution of the operation
fulfills certain conditions).

As an example, assume operation wy sets x to 2, and ws sets it to 5. Operation wy
is submitted and executed at node ni, while wy is first executed at ny. At this time,
the local schedules are S; = wy and S5 = w9 and the committed prefix at both nodes is
the empty schedule. Now w; is propagated to ns, and wy is propagated to n;. When
n1 receives ws, it detects that wy and we are concurrent and conflict. Say that conflict
reconciliation prioritizes one of the operations, e.g., wy. Then, ws is simply not executed
and the new schedule is ST = w1w;. At ng, when w; arrives, the conflict is also detected,
wo is undone, wy is executed and the final schedule is So = wawy. At this time, S and
Sy are themselves the committed prefixes. Note that further concurrent operations on x
might move the schedules further, but the extensions would still be tentative and only
become committed once they are reconciled at all replicas.

4 Cross-References

e Consistency Models for Replicated Data



e Optimistic Replication and Resolution
e Replicated Data Types
e WAN Replication

Recommended Reading

[1] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Computing Surveys,
37(1):42-81, March 2005. doi: 1057977.1057980. URL http://doi.acm.org/10.1145/
1057977.1057980.

[2] Doug Terry. Replicated data consistency explained through baseball. Communications
of the ACM, 56(12):82-89, December 2013. doi: 10.1145/2500500. URL http://doi
acm.org/10.1145/2500500.

[3] Werner Vogels. Eventually consistent. ACM Queue, 6(6):14-19, October 2008. doi:
http://doi.acm.org/10.1145/1466443.x.


http://doi.acm.org/10.1145/1057977.1057980
http://doi.acm.org/10.1145/1057977.1057980
http://doi.acm.org/10.1145/2500500
http://doi.acm.org/10.1145/2500500

	Synonyms
	Definition
	Formal Definition and Usage
	Cross-References

