
HAL Id: hal-01549183
https://inria.hal.science/hal-01549183v2

Submitted on 30 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Type-based Analysis of Causality Loops in Hybrid
Systems Modelers

Albert Benveniste, Timothy Bourke, Benoît Caillaud, Bruno Pagano, Marc
Pouzet

To cite this version:
Albert Benveniste, Timothy Bourke, Benoît Caillaud, Bruno Pagano, Marc Pouzet. A Type-based
Analysis of Causality Loops in Hybrid Systems Modelers. Nonlinear Analysis: Hybrid Systems, 2017,
26, pp.168-189. �10.1016/j.nahs.2017.04.004�. �hal-01549183v2�

https://inria.hal.science/hal-01549183v2
https://hal.archives-ouvertes.fr

A Type-based Analysis of Causality Loops in Hybrid
Systems Modelers

Albert Benvenistea, Timothy Bourkeb,c, Benoit Caillauda, Bruno Paganoe,
Marc Pouzetd,c,b,∗

aInria Rennes-Bretagne Atlantique
bInria Paris

cDépartement d’Informatique, Ecole normale supérieure
dUniversité Pierre et Marie Curie

eANSYS/Esterel Technologies

Abstract

Explicit hybrid systems modelers like Simulink/Stateflow allow for programming
both discrete- and continuous-time behaviors with complex interactions between
them. An important step in their compilation is the static detection of algebraic
or causality loops. Such loops can cause simulations to deadlock and prevent
the generation of statically scheduled code.

This paper addresses this issue for a hybrid modeling language that combines
synchronous data-flow equations with Ordinary Differential Equations (ODEs).
We introduce the operator lastx for the left-limit of a signal x. The lastx
operator is used to break causality loops and permits a uniform treatment of
discrete and continuous state variables. The semantics of the language relies
on non-standard analysis, defining an execution as a sequence of infinitesimally
small steps. A signal is deemed causally correct when it can be computed se-
quentially and only changes infinitesimally outside of announced discrete events
like zero-crossings. The causality analysis takes the form of a type system that
expresses dependencies between signals. In well-typed programs, signals are
provably continuous during integration provided that imported external func-
tions are also continuous, and sequential code can be generated.

The effectiveness of the system is illustrated with several examples written
in Zélus, a Lustre-like synchronous language extended with ODEs.

Keywords: Hybrid systems, Synchronous programming languages, Type
systems

∗Corresponding author
Email addresses: Albert.Benveniste@inria.fr (Albert Benveniste),

Timothy.Bourke@inria.fr (Timothy Bourke), Benoit.Caillaud@inria.fr (Benoit
Caillaud), Bruno.Pagano@esterel-technologies.com (Bruno Pagano), Marc.Pouzet@ens.fr
(Marc Pouzet)

Preprint submitted to Elsevier March 1, 2017

1. Causality and Scheduling

Tools for modeling hybrid systems [1] such as Modelica,1 LabVIEW,2
and Simulink/Stateflow,3 are now rightly understood and studied as pro-
gramming languages. Indeed, models are used not only for simulation, but also
for test-case generation, formal verification and translation to embedded code.
This explains the need for formal operational semantics for specifying their im-
plementations [2].

The underlying mathematical model is the synchronous parallel composi-
tion of stream equations, Ordinary Differential Equations (ODEs), hierarchical
automata, and imperative features. While each of these taken separately is pre-
cisely understood, real languages allow them to be combined in sophisticated
ways. One major difficulty in such languages is the treatment of causality loops.

Causality or algebraic loops [3, 2-34] pose problems of well-definedness and
compilation. They can lead to mathematically unsound models, prevent simu-
lators from statically ensuring the existence and unicity of a least fixed point,
and compilers from generating statically scheduled code (typically sequential
code written in C). Statically scheduled code is the usual target for embedded
software. But it is also key to get efficient simulations of the whole system where
continous-time trajectories are approximated by a numerical solver. The static
detection of causality loops, termed causality analysis, has been studied and im-
plemented since the mid-1980s in synchronous language compilers [4, 5, 6, 7].
The classical and simplest solution is to reject instantaneous cycles or feed-back
loops, which do not cross a unit delay: at every instant, the value of a signal
x only depend on the current value of inputs and possibly some internal state,
but not of x itself. For instance, the Lustre-like equations:45

x = 0.0 -> pre y and y = if c then x + 1.0 else x

define the two sequences (xn)n∈N and (yn)n∈N such that:

x(0) = 0 y(n) = if c(n) thenx(n) + 1 elsex(n)

x(n) = y(n− 1)

They are causally correct since the feedback loop for x contains a unit delay
pre y (‘previous’). Replacing pre y with y gives two non-causal equations
that the Lustre detects and rejects. Causally correct equations are statically
scheduled to produce a sequential, loop-free step function. Below is an excerpt
of the C code generated by the Heptagon compiler [8] of Lustre:

1http://www.modelica.org
2http://www.ni.com/labview
3http://www.mathworks.com/products/simulink
4The unit delay 0 -> pre(·), initialized to 0, is sometimes written as 0 fby · (‘0 followed

by’), or in Simulink: 1
z
.

5Examples given in this paper together with more detailled ones are available at http:
//zelus.di.ens.fr/nahs2016/. Follow ♣ links.

2

http://www.modelica.org
http://www.ni.com/labview
http://www.mathworks.com/products/simulink
http://zelus.di.ens.fr/nahs2016/
http://zelus.di.ens.fr/nahs2016/

if (self->v_1) {x = 0;} else {x = self->v_2;};
if (c) {y = x+1;} else {y = x;};
self->v_2 = y; self->v_1 = false;

It computes current values of x and y from that of c. The internal memory of
function step is in self, with self->v_1 initialized to true and set to false (to
encode the Lustre operator ->) and self->v_2 storing the value of pre y.

ODEs with resets: Consider now the situation of a program defining continuous-
time signals only, made of ODEs and equations. For example:

der y = z init 4.0 and z = 10.0 - 0.1 * y and k = y + 1.0

defines signals y, z and k, where for all t ∈ R+, dy
dt (t) = z(t), y(0) = 4, z(t) =

10−0.1·y(t), and k(t) = y(t)+1.6 This program is causally correct since it is pos-
sible to generate a sequential function derivative(y) = let z = 10− 0.1 ∗ y in z
that returns the current derivative of y and an initial value 4 for y from which
a numeric solver [9] can compute a sequence of approximations y(tn) for in-
creasing values of time tn ∈ R+ and n ∈ N. Given a set of mutually recursive
equations {xi = ei}i∈[1..k] and {ẏj = e′j}j∈[1..m], the compiler has to produce
the derivative function that defines the current value of (ẏj)j∈[1..m] from current
inputs, discrete state variables and continuous state variables (yj)j∈[1..m]. Thus,
for equations between continuous-time signals, integrators break algebraic loops
just as delays do for equations over discrete-time signals.

Can we reuse the simple justification we used for data-flow equations to
justify that the above program is causal? Consider the value that y would have
if computed by an ideal solver taking an infinitesimal step of duration ∂ [10].
Writing ?y(n), ?z(n) and ?k(n) for the values of y, z and k at instant n∂, with
n ∈ ?N a non-standard integer, we have:

?y(0) = 4 ?z(n) = 10− 0.1 · ?y(n)
?y(n+ 1) = ?y(n) + ?z(n) · ∂ ?k(n) = ?y(n) + 1

where ?y(n) is defined sequentially from past values and ?y(n) and ?y(n+1) are
infinitesimally close, for all n ∈ ?N, yielding a unique solution for y, z and k.
The equations are thus causally correct.

Troubles arise when ODEs interact with discrete-time constructs, for exam-
ple when a reset occurs at every occurrence of an event. For example, consider
the sawtooth signal y : R+ 7→ R+ where dy

dt (t) = 1 and y(t) = 0 when t ∈ N.
One may try with an ODE and a reset

der y = 1.0 init 0.0 reset up(y - 1.0) -> 0.0

where y is initialized with 0.0, has derivative 1.0, and is reset to 0.0 every time
the zero-crossing up(y - 1.0) is true, that is, whenever y - 1.0 crosses 0.0

6der y = e init v0 stands for y = 1
s
(e) inititialized to v0 in Simulink.

3

from negative to positive. But is this program causal? Again, consider the
value y would have were it calculated by an ideal solver taking infinitesimal
steps of length ∂. The value of ?y(n) at instant n∂, for all n ∈ ?N would be:

?y(0) = 0 ?y(n) = if ?z(n) then 0.0 else ?ly(n)
?ly(n) = ?y(n− 1) + ∂ ?c(n) = (?y(n)− 1) ≥ 0
?z(0) = false ?z(n) = ?c(n) ∧ ¬?c(n− 1)

With the above interpretation, this set of equations is not causally correct: the
value of ?y(n) depends instantaneously on ?z(n) which itself depends on ?y(n).
There are two ways to break this cycle: (a) consider that the effect of the zero-
crossing is delayed by one cycle, that is, the test is made on ?z(n − 1) instead
of on z(n) — equivalently, that the test is made on ?z(n) but the effect is on
z(n+ 1), that is, one step later — or, (b) distinguish the current value of ?y(n)
from the value it would have had were it not reset, namely ?ly(n). Testing a
zero-crossing of ly (instead of y), that is,

?c(n) = (?ly(n)− 1) ≥ 0,

gives a program that is causal since ?y(n) no longer depends instantaneously on
itself. We propose writing this ♣7:

der y = 1.0 init 0.0 reset up(last y - 1.0) -> 0.0

where last y stands for ly , that is, the left-limit of y. In non-standard seman-
tics [10], it is infinitely close to the previous value of y, and written ?ly(n) ≈
?y(n − 1). The modeling of a bouncing ball is another prototypical example
where the left-limit is needed. Suppose that y0, y′0 and g are given constants.
The signal y is the height of the ball, with initial position y0 and speed y′0.

der y = y’ init y0
and der y’ = -g init y’0 reset up(-y) -> -0.8 * last y’

At the instant of the zero-crossing, ?y′(n) is reset with value −0.8 ·?y′(n−1).
Replacing last y′ by y′ would lead to a causality loop on y′: at the instant where
condition up(−y) is taken, the equation defining y′ would be y′ = −0.8 ∗ y′, so
with an instantaneous loop.

To solve this, a simple convention is that at a reset instant, y′ on the right-
hand-side of an equation implicitely denotes the left limit of y′, that is, y′ =
−0.8 ∗ y′ stands for y′ = −0.8 ∗ last y′. The other is to replace equations
by assignements, e.g., write y′ := −0.8 ∗ y′ and order the changes sequentially
when several have to be made. The later is precisely what is done in hybrid
automata [11]. These conventions may lead to ambiguities when systems are
composed in parallel: the two parallel equations y = −0.8 ∗ x and x = y (or

7The ♣’s link to http://zelus.di.ens.fr/nahs2016/.

4

http://zelus.di.ens.fr/nahs2016/index.html#sawtoothsignal
http://zelus.di.ens.fr/nahs2016/

y := −0.8∗x and x := y) would be interpreted as y = −0.8∗lastx and x = last y
but what if the designer has in mind y = −0.8 ∗ lastx and x = y whose result
differs? Instead, we propose to make the use of last . explicit and rely on a
static checking that there is no instantaneous feedback and that the code can
indeed be statically scheduled.

When a variable y is defined by its derivative, last y corresponds to the
so-called ‘state port’ of the integrator block 1

s of Simulink, which is introduced
expressly to break causality loops like the ones above ♣.8 According to the
documentation [12, 2-685]:

“The output of the state port is the same as the output of the block’s
standard output port except for the following case. If the block is
reset in the current time step, the output of the state port is the
value that would have appeared at the block’s standard output if
the block had not been reset.”

Simulink restricts the use of the state port. It is only defined for the integrator
block and cannot be returned as a subsystem output: it may only be referred
to in the same context as its integrator block and used to break algebraic loops.
The use of the state port reveals subtle bugs in the Simulink compiler. Consider
the Simulink model shown in Figure 1a with the simulation results given by
the tool for x and y in Figure 1b. The model contains two integrators. The one
at left, named ‘Integrator0’ and producing x, integrates the constant 1. The one
at right, named ‘Integrator1’ and producing y, integrates x; its state port is fed
back through a bias block to reset both integrators, and through a gain of −3
to provide a new value for Integrator0. The new value for Integrator1 comes
from the state port of Integrator0 multiplied by a gain of −4. In our syntax ♣:

der x = 1.0 init 0.0 reset z -> -3.0 * last y
and der y = x init 0.0 reset z -> -4.0 * last x
and z = up(last y - 2.0)

In the non-standard interpretation of signals, the equations above are perfectly
causal: the current values of ?x(n) and ?y(n) only depend on previous values,
that is:

?x(n) = if ?z(n) then−3 · ?y(n− 1) else ?x(n− 1) + ∂
?y(n) = if ?z(n) then−4 · ?x(n− 1)

else ?y(n− 1) + ∂ · ?x(n− 1)

?x(0) = 0 ?z(0) = false ?z(n) = ?c(n) ∧ ¬?c(n− 1)
?y(0) = 0 ?c(n) = (?y(n− 1)− 2) ≥ 0

8The Simulink integrator block outputs both an integrated signal and a state port. We
write (x, lx) = 1

s
(x0, up(z), x′) for the integral of x′, reset with value x0 every time z crosses

zero from negative to positive, with output x and state port lx . The first example would thus
be written: (y, ly) = 1

s
(0.0, up(ly − 1.0), 1.0).

5

http://zelus.di.ens.fr/nahs2016/index.html#sawtoothsignal
http://zelus.di.ens.fr/nahs2016/index.html#dder_loop_reset-zelus

1
s

1
s

u-2.0

1

-3

-4

Integrator0

Integrator1

ScopeBias

Constant

Gain0

Gain1

x0

x0

x

y

(a) Simulink model

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3

x

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3

Time

y

(b) Simulation results

Figure 1: A miscompiled Simulink model (R2009b) ♣

// P_0 = -2.0 P_1 = -3.0 P_2 = -4.0 P_3 = 1.0

static void mdlOutputs(SimStruct * S, int_T tid)
{ _rtX = (ssGetContStates(S));

...
_rtB = (_ssGetBlockIO(S));

_rtB->B_0_0_0 = _rtX->Integrator1_CSTATE + _rtP->P_0;
_rtB->B_0_1_0 = _rtP->P_1 * _rtX->Integrator1_CSTATE;

if (ssIsMajorTimeStep (S)) { ...
if (zcEvent || ...)

{ (ssGetContStates (S))->Integrator0_CSTATE =
_ssGetBlockIO (S)->B_0_1_0; } ...

}

(_ssGetBlockIO (S))->B_0_2_0 =
(ssGetContStates (S))->Integrator0_CSTATE;
_rtB->B_0_3_0 = _rtP->P_2 * _rtX->Integrator0_CSTATE;

if (ssIsMajorTimeStep (S)) { ...
if (zcEvent || ...)
{ (ssGetContStates (S))-> Integrator1_CSTATE =

(ssGetBlockIO (S))->B_0_3_0; } ...
} ...

}

Figure 2: Excerpt of C code produced by RTW (R2009b)

Yet, can you guess the behavior of the model and explain why the trajectories
computed by Simulink are wrong?

Initially, both x and y are 0. At time t = 2, the state port of Integrator1
becomes equal to 2 triggering resets at each integrator as the output of block
u− 2.0 crosses zero. The results show that Integrator0 is reset to −6 (= 2 · −3)
and that Integrator1 is reset to 24 (= −6 · −4). The latter result is surprising
since, at this instant, the state port of Integrator0 should also be equal to 2,
and we would thus expect Integrator1 to be reset to −8 (= 2 · −4)!

The Simulink implementation does not satisfy its documented behavior. In-
specting the C function which computes the current outputs, mdlOutput in Fig-
ure 2, reveals that the sequence of updates for the two integrators is incor-

6

http://zelus.di.ens.fr/nahs2016/index.html#dder_loop_reset

model scheduling
Real x(start = 0);
Real y(start = 0);

equation

der(x) = 1;
der(y) = x;

when y >= 2 then
reinit(x, −3 ∗ pre(y));

end when;

when y >= 2 then
reinit(y, −4 ∗ pre(x));

end when;

end scheduling;

(a) with pre

model scheduling
Real x(start = 0);
Real y(start = 0);

equation

der(x) = 1;
der(y) = x;

when y >= 2 then
reinit(x, −3 ∗ y);

end when;

when y >= 2 then
reinit(y, −4 ∗ x);

end when;

end scheduling;

(b) x before y

model scheduling
Real x(start = 0);
Real y(start = 0);

equation

der(x) = 1;
der(y) = x;

when y >= 2 then
reinit(y, −4 ∗ x);

end when;

when y >= 2 then
reinit(x, −3 ∗ y);

end when;

end scheduling;

(c) y before x

model scheduling
Real x(start = 0);
Real y(start = 0);

equation

der(x) = 1;
der(y) = x;

when y >= 2 then
reinit(x, −3 ∗ y);
reinit(y, −4 ∗ x);

end when;

end scheduling;

(d) single when

Figure 3: Hybrid causality in Modelica

rectly scheduled.9 At the instant when the zero-crossing is detected (conditions
ssIsMajorTimeStep(S) and zcEvent are true), the state port of Integrator0
(stored in sGetContStates(S)->Integrator0_CSTATE) is reset using the state
port value of Integrator1. Thus, Integrator1 does not read the value of Integra-
tor0’s state port (that is ?x(n−1)) but rather the current value (?x(n)) given an
incorrect output. The Simulink model is not correctly compiled—another vari-
able is required to store the value of ?x(n−1), just as a third variable is normally
needed to swap the values of two others. We argue that such a program should
either be scheduled correctly or trigger an error message. Providing a means to
statically detect and explain causality issues is a key motivation of this paper.
The static analysis presented in this paper accepts the Simulink example and
it is correctly translated to sequential code. The example is rejected if either
last y or last x are replaced, respectively, by y or x.

Reprogramming the model of Figure 1a in Modelica and simulating it in
OpenModelica or Dymola emphasizes the general nature and fundamental im-
portance of the treatment of causality in hybrid modelers. A direct translation
(Figure 3a) is accepted and correctly simulated by both tools.10 Perhaps sur-
prisingly, both compilers accept the program with its pre operators removed
(Figure 3b). Simulation then gives the same result as in Figure 1b, but chang-
ing the order of the reinitializations (Figure 3c) gives a different result (y reset
to -8 and x to 24).11 The same behaviors are observed when both reinitializa-
tions are placed under a single trigger condition (Figure 3d). Causal loops are
normal in Modelica, but it is questionable to allow them during a discrete step

9The same issue exists in release R2015a.
10In Modelica, pre x is the left-limit of x whereas it is the unit delay of Lustre, which is

only defined for streams (discrete-time signals). Zélus keeps the Lustre interpretation for
pre x and uses last x for the left limit.

11In Modelica, the ; denotes the parallel composition of two equations.

7

if simulation results then depend on the order, or layout, of conceptually simul-
taneous constraint declarations. In this paper, though, we do not address the
richer setting of Differential Algebraic Equations (DAEs), but limit ourselves to
programs that mix synchronous programming constructs and ODEs.

Any loop in Simulink, whether of discrete- or continuous-time signals, can
be broken by inserting the so-called memory block [12, 2-831].12 If x is a signal,
mem(x) is a piecewise constant signal which refers to the value of x at the previous
integration step (or major step). If those steps are taken at increasing instants
ti ∈ R, mem(x)(t0) = x0 where t0 = 0 and x0 is an explicitly defined initial value,
mem(x)(ti) = x(ti−1) for i > 0 and mem(x)(ti+ δ) = x(ti−1) for 0 ≤ δ < ti+1− ti.
As integration is performed globally, mem(y) may cause strange behaviors as the
previous value of a continuously changing signal x depends precisely on when the
solver decides to stop! ♣ Writing mem(y) is thus unsafe in general [13].13 There
is nonetheless a situation where the use of the memory block is mandatory
and still safe: the program only refers to the previous integration step during a
discrete step. This situation is not unusual. Consider, for example, a system
that produces a signal x through two continuous modes M1 and M2, where
on mode changes, the new mode restarts with the value computed previously
by the solver in the previous mode and passed via a mem(x) block ♣. Instead
of using the unsafe operator mem(x), it would be better to refer to the left
limit of x, writing it again as lastx. The unrestricted use of this operation
may, however, introduce a new kind of causality loop which has to be statically
rejected. Consider the following equation activated on a continuous time base:

y = -1.0 * (last y) and init y = 1.0

which defines, for all n ∈ ?N, the sequence ?y(n) such that:

?y(n) = − ?y(n− 1) ?y(0) = 1

Indeed, this differs little from the equation y = -1.0 * y. ?y(n) can be com-
puted sequentially from ?y(n− 1) but its value does not increase infinitesimally
at each step, that is, y is not left continuous even though no zero-crossing oc-
curs. For any time t ∈ R, the set {n∂ | n ∈ ?N ∧ n∂ ≈ t ∧ ?y(n) 6≈ ?y(n + 1)}
is infinite. Thus, the value of y(t) at any standard instant t ∈ R is undefined.
This is an example of chattering zeno [2] and would cause the simulation to loop
infinitely. In the analysis presented in the paper, we have chosen to statically
reject this program. More than simply require that all computations be stati-
cally schedulable, we impose that every state jump and discontinuity must be
aligned on a discrete event.

12In contrast, the application of a unit delay 1
z

to a continuous-time signal is statically
detected and results in a warning.

13The Simulink manual (http://www.mathworks.com/help/simulink/slref/memory.html)
states, “Avoid using the Memory block when both these conditions are true: - Your model uses
the variable-step solver ode15s or ode113. - The input to the block changes during simulation.”

8

http://zelus.di.ens.fr/nahs2016/index.html#integratorresetfrommemory
http://zelus.di.ens.fr/nahs2016/index.html#twomodes
http://www.mathworks.com/help/simulink/slref/memory.html

Contribution and organization of the paper: This paper presents the
causality problem for a core language that combines Lustre-like stream equa-
tions, ODEs with reset and a basic control structure. The operator lastx
stands for the previous value of x in non-standard semantics and coincides with
its left-limit when x is left-continuous. This operation plays the role of a delay
but is safer than the memory block mem(x) as its semantics does not depend on
when a particular solver decides to stop. When x is a continuous-state variable,
it coincides with the so-called Simulink state port. We develop a non-standard
semantics following [10] and a compile-time causality analysis in order to detect
possible instantaneous loops. The static analysis takes the form of a type sys-
tem, reminiscent of the simple Hindley-Milner type system for core ML [14]. A
type signature for a function expresses the instantaneous dependencies between
its inputs and outputs. We prove that well typed programs only progress by
infinitely small steps outside of zero-crossing events, that is, signals are con-
tinuous during integration provided imported operations applied point-wise are
continuous. We are not aware of such a correctness theorem based on a static
typing discipline for hybrid modelers.

The presented material is implemented in Zélus [15], a synchronous Lustre-
like language extended with ODEs. Moreover, all examples in the paper are
written in Zélus.

The paper is organized as follows. Section 2 introduces a core synchronous
language with ODEs. Section 3 presents its semantics based on non-standard
analysis. Section 4 presents a type system for causality and Section 5 a major
property: any well-typed program is proved not to have any discontinuities dur-
ing integration. Section 6 discusses related work and we conclude in Section 7.

2. A Synchronous Lustre-like Language with ODEs

We now introduce a minimal kernel language with data-flow equations, or-
dinary differential equations and some simple control structures. These are the
core elements of richer hybrid modeling languages, like, for instance, the Zélus
programming language [15], which contains additional control structures needed
for practical programming, including, notably, hierarchical automata. Working
with a minimal language allows us to precisely define a semantic model in Sec-
tion 3 and a causality analysis in Section 4. Its syntax is:

d ::= letx= e | let k f(p) = e whereE | d; d

e ::= x | v | op(e) | e fby e | lastx | f(e) | (e, e) | up(e)

p ::= (p, p) | x

E ::= () | x = e | init x = e | derx = e
| E and E | local x in E | if e thenE elseE
| present e then E else E

k ::= D | C | A

9

A program is a sequence of definitions (d), that either bind the value of ex-
pression e to x (letx= e) or define a function (let k f(p) = e whereE). In a
function definition, k is the kind of the function f , p denotes formal parameters,
and the result is the value of an expression e which may contain variables defined
in the auxiliary equations E. There are three kinds of function: k = A means
that f is a combinational function (typically a function imported from the host
language, for example, addition); k = D means that f is a sequential function
that must be activated at discrete instants (typically a Lustre function with
an internal discrete state); k = C denotes a hybrid function that may contain
ODEs and which must be activated continuously.

An expression e can be a variable (x), an immediate value (v), for exam-
ple, a boolean, integer or floating-point value, the point-wise application of
an imported function (op(e)) such as +, ∗ or not(·), an initialized unit delay
(e1 fby e2), the left-limit of a signal (lastx), a function application (f(e)), a
pair ((e, e)) or a rising zero-crossing detection (up(e)), which, in this language
kernel, is the only basic construct to produce an event from a continuous-time
signal (e). A pattern p is a tree structure of identifiers (x). A set of equations E
is either an empty equation (()); an equality stating that a pattern equals the
value of an expression at every instant (x = e); the initialization of a state vari-
able x with a value e (init x = e); or, the current value of the derivative of x
(derx = e). An equation can also be the conjunction of two sets of equations
(E1 and E2); the declaration that a variable x is defined within, and local to, a
set of equations (local x in E); a conditional that activates a branch according
to the value of a boolean expression (if e thenE1 elseE2), and a variant that
operates on an event expression (present e then E1 else E2).

Notational abbreviations:

(a) derx = e init e0
def
= init x = e0 and derx = e

(b) derx = e init e0 reset z → e1
def
=

init x = e0 and present z then x = e1 else derx = e

init x = e0 initialize the state variable lastx with the first value of e0.
When z is true, the current value of x is that of e1, otherwise its current deriva-
tive is the current value of e. Equations must be in Static Single Assignment
(SSA) form: every variable has a unique definition at every instant, e.g., the
two equations x = e1 and x = e2 are not valid.

2.1. Examples
This small language kernel is a subset of Zélus and allows for writting

synchronous Lustre-like programs. To start with, we give a few examples in
the concrete syntax of Zélus. 14

14Tutorial and reference manual at: http://zelus.di.ens.fr/man/.

10

http://zelus.di.ens.fr/man/

A combinatorial function with two inputs x and y which computes at every
instant n ∈ N, the minimum and maximum of the n-th values x(n) and y(n) is
written: 15

let fun min_max(x, y) = min(x, y), max(x, y)

The keyword fun is the concrete syntax for kind k = A. A function that counts
the number of instants where an input signal click is true and resets the counter
when res is true is written:

let node count_with_reset(x) = cpt where
rec if x then do v = 1.0 done else do v = 0.0 done
and cpt = (0.0 fby cpt) + v

The keyword node is the concrete syntax for kind k = D. It means that the func-
tion is stateful, i.e., its output at instant n may depend on previous inputs and
computed values. The keyword rec means that the set of equations, separated
by ands, are mutually recursive. 0 fby cpt is the unit delay initialized with 0.
It is such that (0 fby cpt)(0) = 0 and for n ≥ 1, (0 fby cpt)(n) = cpt(n − 1).
The do/done plays the role of parenthesis. An other typical example of a node
is the explicit forward Euler integration. Given x′ and xi, it computes x such
that x(0) = xi(0) and ∀n ≥ 1.x(n) = x(n − 1) + x′(n − 1) ∗ step(n − 1). The
node heat computes an approximation of ˙temp = gain1 − gain2 ∗ temp with
temp initialized to temp0(0). 16

let node integr(xi, x’) = x where
rec x = xi fby (x + x’ * step)

let node heat(temp0, gain1, gain2) = temp where
rec temp = integr(temp0, gain1 - gain2 * temp)

A continuous-time model for the heater is written:

let hybrid heat(temp0, gain1, gain2) = temp where
rec der temp = gain1 - gain2 * temp init temp0

The keyword hybrid is the concrete syntax for kind k = C. It means that the
function is continuous time, which will be interpreted as a function taking inputs
and output signals defined on a non standard base clock.

3. Non-standard Semantics

We now define the semantics of the kernel language introduced in the pre-
vious section. These details define the real object of study and underlie the

15In Zélus, the keyword fun is optional.
16In all the remaining examples, we write +/-/* for operations on floating point numbers.

In Zélus, those operators are normally written +./-./*..

11

causality analysis introduced in the next section, and the properties demon-
strated in Section 5. The semantics of a discrete synchronous language—that
is, one with data-flow equations and control structures but not ODEs—can be
modeled by infinite sequences of values synchronized on a ‘base clock’ indexed
by N. The basic idea [10] applied in this section is to introduce an infinitesi-
mal base clock indexed by ?N, the non-standard extension of N. The standard
definitions of discrete operators, like the unit delay fby, are lifted to the richer
context and it becomes possible to define differential equations, zero-crossings,
and the left-limits of signals.

3.1. Semantics
Let ?R and ?N be the non-standard extensions of R and N. ?N is totally

ordered and every set bounded from above (respectively below) has a unique
maximal (respectively minimal) element. Let ∂ ∈ ?R be an arbitrary but fixed
infinitesimal value, that is, ∂ > 0 and ∂ ≈ 0. We show later (Invariant 2 in
Section 3.3) that the precise choice of infinitesimal is unimportant. Let the
global time base or base clock be the infinite set of instants:

T∂ = {tn = n∂ | n ∈ ?N}

T∂ inherits a total order from ?N; in addition, for each element of R+ there exists
an infinitesimally close element of T∂ . Whenever possible we leave ∂ implicit
and write T instead of T∂ . Let T = {t′n | n ∈ ?N} ⊆ T. T (i) stands for t′i, the
i-th element of T . In the sequel, we only consider subsets of the time base T
obtained by sampling a time base on a boolean condition or a zero-crossing
event. Any element of a time base is thus of the form k∂ where k ∈ ?N. If
T ⊆ T, we write •T (t) for the immediate predecessor of t in T and T •(t) for
the immediate successor of t in T . For an instant t, we write its immediate
predecessor and successor as, respectively, •t and t•, rather than as •T(t) and
T•(t). For t ∈ T ⊆ T, neither •t nor t• necessarily belong to T . min(T) is the
minimal element of T and t ≤T t′ means that t is a predecessor of t′ in T .

Definition 1 (Signals). Let V⊥ = V + {⊥} where V is a set. The set of
signals, Signals(V), is the set of functions from T to V⊥, that is T 7→ V⊥. A
signal x : T 7→ V⊥ is a total function from a time base T ⊆ T to V⊥. Moreover,
for all t 6∈ T, x(t) = ⊥. If T is a time base, x(T (n)) and x(tn) are the value of
x at instant tn where n ∈ ?N is the n-th element of T . The clock of a signal x
is clock(x) = {t ∈ T | x(t) 6= ⊥}.

Sampling: Let bool = {false, true} and x : T 7→ bool⊥. The sampling of T
according to x, written T on x, is the subset of instants defined by:

T on x = {t | t ∈ T ∧ x(t) = true}

Note that as T on x ⊆ T , it is also totally ordered.

12

The zero-crossing of x : T 7→ ?R⊥ is up(x) : T 7→ bool⊥. To emphasize that
up(x) is defined only for t ∈ T , we write its value at time t as up(x)(T)(t). For
t /∈ T , up(x)(T)(t) = ⊥. In the definition below < is the total order on ?R.

up(x)(T)(t0) = false where t0 = min(T) and, otherwise,
up(x)(T)(t) = true if ∃n ∈ N, n≥1. ∧ (x(t−n∂) < 0)

∧ (x(t−(n−1)∂) = 0)
∧ · · · ∧ (x(t−∂) = 0)
∧ (x(t) > 0)

(1)

up(x)(T)(t) = false otherwise

The above definition means that a zero-crossing on x occurs when x goes from a
strictly negative to a strictly positive value, possibly with finitely many interme-
diate values equal to 0. With this definition, the output of up(x)(T)(t) depends
instantaneously on x(t). An alternative definition delays the effect of a zero-
crossing by one instant so that up(x)(T)(t) does not depend instantaneously on
x(t):

up(x)(T)(t) = true if ∃n ∈ N, n≥2. ∧ (x(t−n∂) < 0)
∧ (x(t−(n−1)∂) = 0)
∧ · · · ∧ (x(t−2∂) = 0)
∧ (x(t−∂)) > 0)

(2)

In Zélus [15], the expression up(e) detects a zero-crossing event and is
given the special type zero. Only a dedicated set of primitives produce a value
of that this type. They are used at simulation time to stop simulation [16].
In the statement present y then E1 else E2, y must be of type zero; E1

being executed when the event occurs; E2 being executed otherwise. Hence,
present up(e) then E1 else E2 executes equations in E1 at the instant where
e crosses zero. In if y thenE1 elseE2, y must be a boolean: E1 is activated
when y is true; E2 when y is false. Moreover, the language adopts the following
interpretation for up(·) which differs slightly from definitions (1) and (2): an
up(x) only detects zero-crossings that occur during integration. In non-standard
semantics, this means that x(t−n∂) ≈ x(t). Also, the effect of up(x) is delayed,
following the interpretation of (2). Another primitive disc(x) is in charge of
detecting when a discrete change on x occurs, with x(t− ∂) 6≈ x(t). The result
at instant t depends instantaneously on x(t).

Environments: Environments are functions associating names to values. They
are defined and used for the semantics of equations and expressions.

Let V be a set of values closed under product and sum, ?V be its non-
standard extension such that ?(V1 × V2) = ?V1 × ?V2. ?V = V when V is finite.
We define ?V ⊥ = ?V + {⊥}. Let L = {x1, lastx1, ..., xn, lastxn, ...} be a
set of variable names; lastx denotes a name that is distinct from x. Lg =
{f1, ..., fn, ...} stands for the set of identifiers for functions. A local environment

13

ρ and a global environment G map names, respectively, to signals and signal
functions:

ρ : L 7→ Signals(?V) G : Lg 7→ (Signals(?V) 7→ Signals(?V))

If ρ is an environment, ρ(x) returns its value in ρ if x ∈ Dom(ρ), and ⊥
otherwise. If ρ is an environment, ρ + [s/x] is its extension such that (ρ +
[s/x])(y) = s if x = y and ρ(y) otherwise. (ρ + [s/lastx])(lastx) = s and
(ρ+ [s/last y])(lastx) = ρ(lastx) if x 6= y, and ⊥ otherwise.

Given two local environments ρ1 and ρ2, we define their (exclusive) compo-
sition that is commutative and associative (ρ1+ρ2)(x) as ρ1(x) if x 6∈ Dom(ρ2),
ρ2(x) if x 6∈ Dom(ρ1), and ⊥ otherwise. The composition of environments is
used for defining the semantics of two parallel equations. If an equation x = e1
defines the environment [s1/x] and equation y = e2 the environment [s2/y],
then x = e1 and y = e2 defines [s1/x] + [s2/y].

The merge of two environments according to a signal s ∈ Signals(bool),
written ρ = merge (T) (s) (ρ1) (ρ2), is defined by:

ρ(x)(t) =



ρ1(x)(t) if s(t) = true and x ∈ Dom(ρ1)

ρ(lastx)(t) if s(t) = true and x ∈ Dom(ρ2) \Dom(ρ1)

ρ2(x)(t) if s(t) = false and x ∈ Dom(ρ2)

ρ(lastx)(t) if s(t) = false and x ∈ Dom(ρ1) \Dom(ρ2)

⊥ otherwise.

The second and fourth cases states that signals implicitly maintain their values
when not explicitly defined in a branch. If a variable x is defined in ρ1 but not
in ρ2, we implicitly add the equation x = lastx to the latter branch. For exam-
ple, consider ρ′ = ρ + merge (T) (s) ([s1/x]) ([s2/y]) with s(t) = false. Then,
ρ′(x)(t) = ρ(lastx)(t). The merge of two environments is used for defining the
semantics of if z thenx = e1 else y = e2. When z is true, no equation for x is
given; when z is false, no equation for y is given. We consider that when no
equation is given for a variable, its implicitly keep its previous value, that is, the
behavior is that of if z thenx = e1 and y = last y else y = e2 and x = lastx.
Said differently, x is constant between two instants where z is true. lastx
always contain the last computed value of signal x. The implicit completion
with last is followed by Scade 6 for all control structures, including activate
conditions and hierarchical automata and Zélus.

Expressions: The value of an expression is a signals (or tuple of signals)
whereas node definitions define functions from signals to signals. For an ex-
pression e, ?[[e]]ρG(T)(t) defines its semantics. It defines at instant t ∈ T both
the value of e and a Boolean value, true if e raises a zero-crossing event, false
otherwise. The definition is given in Figure 4 and explained below.

Considering each clause from the top: the value of expression e is considered
undefined outside of T . The current value of an immediate constant v is v and
no zero-crossing event is raised. The current value of x is the one stored in the

14

?[[e]]
ρ
G(T)(t) = ⊥,⊥ if t 6∈ T , and otherwise:

?[[v]]
ρ
G(T)(t) = v, false

?[[x]]
ρ
G(T)(t) = ρ(x)(t), false

?[[lastx]]
ρ
G(T)(t) = ρ(lastx)(t), false if lastx ∈ Dom(ρ)

?[[lastx]]
ρ
G(T)(t) = ρ(x)(•clock(x)(t)), false otherwise

?[[op(e)]]
ρ
G(T)(t) = let v, z = ?[[e]]

ρ
G(T)(t) in op(v), z

?[[(e1, e2)]]
ρ
G(T)(t) = let v1, z1 = ?[[e1]]

ρ
G(T)(t) in

let v2, z2 = ?[[e2]]
ρ
G(T)(t) in (v1, v2), (z1 ∨ z2)

?[[e1 fby e2]]
ρ
G(T)(t0) = ?[[e1]]

ρ
G(T)(t0) if t0 = min(T)

?[[e1 fby e2]]
ρ
G(T)(t) = ?[[e2]]

ρ
G(T)(

•T (t)) otherwise
?[[f(e)]]

ρ
G(T)(t) = let s(t′), z(t′) = ?[[e]]

ρ
G(T)(t

′) for all t′ ≤T t in
let v′, z′ = G(f)(s)(t) in v′, z(t) ∨ z′

?[[up(e)]]
ρ
G(T)(t) = let s(t′), z(t′) = ?[[e]]

ρ
G(T)(t

′) for all t′ ≤T t in
let v′ = up(s)(T)(t) in v′, z(t) ∨ v′

Figure 4: The non-standard semantics of expressions

environment ρ(x) and no event is raised. The value of lastx is either the value
associated to the entry lastx in ρ, if it exists, or the last computed value of x.
Remind that clock(x) define the sequence of instants where x is defined. Then,
ρ(x)(•clock(x)(t)) is the previous value of x, on the clock where x is defined.
The semantics of op(e) is obtained by applying the operation op to e at every
instant, an event is raised only if e raises one. An expression (e1, e2) returns
a pair at every instant and raises an event if either e1 or e2 does. The initial
value of a delay e1 fby e2 is that of e1. Afterward, it is the previous value of
e2 according to clock T . For example, the value of 0 fby x on clock T is the
value x had at the previous instant that T was active. This is not necessarily
the previous value of x. On the contrary, lastx is the previous value of x the
last time x was defined.

The detailed definitions of time bases allow us to precisely express this subtle
but important difference: •T (t) is the instant that precedes t on the clock T ,
which, due to an if or a present, may not be the previous instant of the base
clock; •clock(x)(t) is the instant that precedes t on the clock of variable x, that
is, the last instant when x was defined. Furthermore, the use of an infinitesimal
time base permits a definition of lastx that is valid in both discrete and contin-
uous contexts. The semantics of f(e) is the application of the function f to the
signal value of e, which raises an event at an instant when either e or the body
of f does. Note that f maps a complete input stream s (defined by quantifica-

15

?[[x = e]]
ρ
G(T) = [s/x], z where ∀t ∈ T, s(t), z(t) = ?[[e]]

ρ
G(T)(t)

?[[E1 and E2]]
ρ
G(T) = ρ1 + ρ2, z1 or z2 where ρ1, z1 = ?[[E1]]

ρ
G(T)

and ρ2, z2 = ?[[E2]]
ρ
G(T)

?[[present e then E1 else E2]]
ρ
G(T) = ρ′, z or z1 or z2

where ∀t ∈ T, s(t), z(t) = ?[[e]]
ρ
G(T)(t)

and ρ1, z1 = ?[[E1]]
ρ
G(T on s)

and ρ2, z2 = ?[[E2]]
ρ
G(T on not(s))

and ρ′ = merge (T) (s) (ρ1) (ρ2)

?[[if e thenE1 elseE2]]
ρ
G(T) = ρ′, z or z1 or z2 defined as above.

?[[init x = e]]
ρ
G(T) = [s/lastx], z where s(t0), z(t0) = ?[[e]]

ρ
G(T)(t0)

and t0 = min(T)

and ∀t 6= t0, s(t) = ρ(x)(•T (t))

and z(t) = false

?[[derx = e]]
ρ
G(T) = [s/x], z where ∀t ∈ T, s′(t), z(t) = ?[[e]]

ρ
G(T)(t)

and s(t) = s(•t) + ∂ × s′(•t)

Figure 5: The non-standard semantics of equations

tion over t′) to an output stream from which the value at instant t is extracted.
Typically for a Lustre-like language, the output stream inherits the clock T of
the input stream. Finally, the semantics of up(e) is given by the operator up(·),
which raises a zero-crossing event when either e does or up(s)(T)(t) is true.

Equations: If E is an equation, G is a global environment, ρ is a local envi-
ronment and T is a time base, ?[[E]]

ρ
G(T) = ρ′, z means that the evaluation of E

on the time base T returns a local environment ρ′ and a zero-crossing signal z.
As for expressions, the value of E is undefined outside of T , that is, for all
t 6∈ T , ρ′(x)(t) = ⊥ and z(t) = ⊥. For all t ∈ T , z(t) = true signals that a
zero-crossing occurs at instant t and z(t) = false means that no zero-crossing
occurs at that instant. The semantics of equations is given in Figure 5, where
the following notation is used: if z1 : T 7→ bool⊥ and z2 : T 7→ bool⊥ then
z1 or z2 : T 7→ bool⊥ and ∀t ∈ T, (z1 or z2)(t) = z1(t) ∨ z2(t) if z1(t) 6= ⊥ and
z2(t) 6= ⊥, and otherwise, (z1 or z2)(t) = ⊥.

Considering each clause from the top: a (basic) equation yields a singleton
environment, where x is associated with the stream s defined by the expression e,
and a boolean event stream. Combining equations amounts to combining their
(disjoint) environments, which themselves are inductively defined. A present
statement partitions a clock T into two sets according to the value of a signal s:

16

T on s and T on not(s). The equations in a branch are inductively defined rel-
ative to one clock or the other and the resulting environments are then merged
onto the original clock. An initialization equation init x = e defines an envi-
ronment [s/lastx] such that the first value of s (at time t0 = min(T)) is the
initial value of e. Then, the current value of s is the previous value of x. This
definition works both for a continuous state variable — whose value is defined
by an equation derx = e — or a discrete state variable — whose value is de-
fined by an equation x = e. For example, the following equations activated on
a set of instants T = {t0, t1, ...} define a counter x which is incremented by one
at every step. The associated environment is [s/x, s′/lastx] with s′(t0) = 0,
s′(ti+1) = s(ti), and s(ti) = s′(ti) + 1.

init x = 0.0 and x = last x + 1.0

Finally, derx = e defines the derivative of x using an explicit Euler scheme [10].

Function definitions: Function definition is our final concern: we must show
the existence of fixed points in the sense of Kahn process network semantics
based on Scott domains.

The prefix order on signals Signals(V) indexed by T is defined as: signal x
is a prefix of signal y, written x≤Signals(V) y, if x(t) 6= y(t) implies x(t′) = ⊥
for all t′ such that t ≤ t′. This order models that a signal must be computed
from left to right. As soon as there exist an instant t where x(t) and y(t) differs,
i.e, x(t) = ⊥ and y(t) 6= ⊥ (or the contrary), then x(t) is undefined for the
remaining instants. The minimum element is the undefined signal ⊥Signals(V)

for which ∀t ∈ T, ⊥Signals(V)(t) = ⊥. When possible, we write ⊥ for ⊥Signals(V)

and x ≤ y for x ≤Signals(V) y. The symbol
∨

denotes a supremum in the
prefix order. The set (Signals(V),≤Signals(V),⊥) is a complete partial order. A
function f : Signals(?V) 7→ Signals(?V) is continuous if

∨
i f(xi) = f(

∨
i xi) for

every increasing chain of signals, where increasing refers to the prefix order. If
f is continuous, then equation x = f(x) has a least solution denoted by fix (f),
and equal to

∨
i f

i(⊥) (Kleene fix-point theorem). We name such continuity on
the prefix order Kahn continuity [17]. Figure 6 illustrates this principle thanks
to a simple program of one variable x, which semantics defines a signal ?x as
the least fixed point of a continuous operator. The iteration of the operator
computes the signal step by step, advancing time by ∂ at each iteration.

The prefix order is lifted to environments so that ρ ≤ ρ′ iff for all x ∈
Dom(ρ) ∪ Dom(ρ′), ρ(x) ≤ ρ′(x), and to pairs such that (x, y) ≤ (x′, y′) iff
x ≤ x′ and y ≤ y′.

Property 1 (Kahn continuity). Let [s/p] be an environment, G a global en-
vironment of Kahn-continuous functions and T a clock. The function:

F : (L 7→ Signals(?V))× Signals(bool) 7→ (L 7→ Signals(?V))× Signals(bool)

such that:

F (ρ, z) = ρ′, (z or z′) where ρ′, z′ = ?[[E]]
ρ+[s/p]
G (T)

17

(a)

(b) (d)

zc(c)

t0 ∂

⊥

?x

⊥

n∂
(n+ 1)∂

(n+ 2)∂

t

1

⊥

0 ∂

?x

1

⊥

n∂
(n+ 1)∂

(n+ 2)∂

t

⊥

1
x = st(?x)

t

0 ∂

?x

1

n∂
(n+ 1)∂

(n+ 2)∂

Figure 6: Semantics of program der x = 1.0 init 0.0 reset up(x - 1.0) -> 0.0; (a) Sig-
nal ?x is defined up to date t = n∂, it takes value ⊥ after; dashed arrows represent the causal
dependencies between the last value of ?x and its current value; (b) using the definition of the
semantics of equation der x = ... (last two lines of Figure 5), the signal is extended by one
infinitesimal time-step, ?x((n + 1)∂) = ?x(n∂) + ∂; (c) the least fixed point is a signal with
no ⊥; remark the occurrence of a zero-crossing that triggers the reset of the signal, as defined
in Figure 5, lines 4–8; (d) standardization (see Section 3.2) of the signal yields a sawtooth
function.

is Kahn continuous, that is, for any sequence (ρi, zi)i≥0:

F (
∨
i∈I(ρi, zi)) =

∨
i∈I(F (ρi, zi))

ρ (and thus ρi) denotes an environment, that is, a mapping from a set of
names to signals. A set of names is of the form L = {x1, lastx1, ...xn, lastxn}.
z (and thus zi) denotes a boolean which is true when a zero-crossing occurs,
false otherwise.
Proof: We only provide a sketch. We first need to prove the result for ex-
pressions listed in Figure 4. We only review the expressions involving the non-
standard semantics in a nontrivial way, as the other cases are routine. Consider
e1 fby e2 and lastx. None of these expressions contributes to the second (zero-
crossing) field of the semantics, so only the first field matters. In fact, the Kahn
continuity of e1 fby e2 is proved exactly as for Lustre [18], since only the total
ordering of the underlying time index matters and the argument lifts without
change from N to T. The same holds for lastx, which corresponds to pre(x)
in Lustre in the lifting from N to T. The expression up(e) contributes to the
second field of the semantics. Formula (1) defining up(x) is causal and thereby
Kahn continuous. We then consider the equations of Figure 5. We discuss only
derx = e since the other cases pass as in Lustre (including the composition of
equations E1 and E2). Consider the first field of the semantics. If e returns the
value s′(t) at instant t, the value of x at instant t is s(•(t)) + ∂ × s′(•t). As the
sum of two Kahn continuous signals is continuous, x is also Kahn continuous.

�

As a consequence, an equation (ρ, z) = F (ρ, z) admits a least fixed point
fix (F) =

∨
i(F

i(⊥,⊥)).

18

The declaration of ?[[let k f(p) = e whereE]]G(T) defines a Kahn-continuous
function ?f such that

?[[let k f(p) = e whereE]]G(T)(s)(t) =
?f(T)(s)(t)

where
?f(T)(s)(t) = let s′(t′), z(t′) = ?[[e]]

ρ′+[s/p]
G (T)(t′) in

s′(t), z(t) ∨ z′(t)

and with
(ρ′, z′) = fix ((ρ, z) 7→ ?[[E]]

ρ+[s/p]
G (T))

Kahn-continuity of ?f does not mean that the function computes anything in-
teresting. In particular, the semantics gives a meaning to functions that become
‘stuck’, like17

let hybrid f(x) = y where rec y = y + x

The semantics of f is ?f(x) = ⊥ since the minimal solution of equation y = y+x
is ⊥. The purpose of the causality analysis is to statically reject this kind of
program.

3.2. Standardization
We now relate the non-standard semantics to the usual super-dense seman-

tics of hybrid systems. Following [11], the execution of a hybrid system alter-
nates between integration steps and discrete steps. Signals are now interpreted
as total functions from the time index S = R×N to V⊥. This time index is called
super-dense time [11, 2] and is ordered lexically, (t, n) <S (t′, n′) iff t <R t

′, or
t = t′ and n <N n′. Moreover, for any (t, n) and (t, n′) where n ≤N n′, if
x(t, n′) 6= ⊥ then x(t, n) 6= ⊥.

A timeline for a signal x is a function Nx : R+ 7→ N⊥. Nx(t) is the number
of instants of x that occur at a real date t and such timelines thus specify a
subset of super-dense time SNx

= {(t, n) ∈ S | n ≤N Nx(t)}. In particular, if Nx
is always 0, then SNx

is isomorphic to R+. For t ∈ R and T ⊆ T, define:

set(T)(t)
def
= {t′ ∈ T | t′ ≈ t} ⊆ T

that is, the set of all instants infinitely close to t. T is totally ordered and hence
so is set(T)(t). Let x : T 7→ ?V⊥.

We now proceed to the definition of the timeline Nx of x and the standard-
ization of x, written

st(x) : R× N 7→ V⊥,

17Remember that the keyword hybrid stands for k = C and node for k = D.

19

such that st(x)(t, n) = ⊥ for n > Nx(t).
Let T ′ def= set(T)(t) and consider

st(x(T ′))
def
= {st(x(t′)) | t′ ∈ T ′}.

(a) If st(x(T ′)) = {v} then, at instant t, x’s timeline is Nx(t) = 0 and its
standardization is st(x)(t, 0) = v.

(b) If st(x(T ′)) is not a singleton set, then let

Z
def
= {t′ | t′ ∈ T ′ ∧ x(t′) 6≈ x(T ′•(t′))}

that is, Z collects the instants at which x experiences a non-infinitesimal
change. Z is either finite or infinite:

(i) If Z = {tz0 , . . . , tzm} is finite, timeline Nx(t) = m and the standard
value of signal x at time t is:

∀n ∈ {0, . . . ,m}, st(x)(t, n) = st(x(tzn))

(ii) If Z is infinite (it may even lack a minimum element), let

Nx(t) = ⊥ and ∀n, st(x)(t, n) = ⊥

which corresponds to a Zeno behavior.

Our approach differs slightly from [2], where the value of a signal is frozen for
n > N(t). We decide instead to set it to the value ⊥. Each approach has
its merits. For ours, parts of signals that do not experience jumps are simply
indexed by (t, 0) which we identify with t. In turn, we squander the undefined
value ⊥ which is usually devoted to Scott-Kahn semantics and causality issues.

3.3. Key properties
We now define two main properties that “reasonable” programs should sat-

isfy. In a nutshell, the first one states that discontinuities do not occur outside
of zero-crossing events, that is, signals are continuous during integration. The
second one states that the semantics should not depend on the choice of the
infinitesimal. These two invariants are sufficient conditions to ensure that a
standardization exists. Proof that these properties are invariants of the seman-
tics (Theorem 1) and the precise statement of the assumptions under which they
hold (Assumptions 1 and 2) are detailed in Section 5. The Nonsmooth Program,
in page 29, is a typical example of an “unreasonable” program. It violates both
Assumption 1 and the first invariant, stated below.

Invariant 1 (Zero-crossings). An expression e evaluated under G, ρ and a
time base T has no discontinuities outside of zero-crossing events. Formally, we
define s(t), z(t) = ?[[e]]

ρ
G(T)(t), then ∀t, t′ ∈ T such that t ≤ t′:

t ≈ t′ ⇒ (∃t′′ ∈ T, t ≤ t′′ ≤ t′ ∧ z(t′′)) ∨ s(t) ≈ s(t′)

20

This invariant states that all discontinuities are aligned on zero-crossings, that
is, signals must evolve continuously during integration. Discrete changes must
be announced to the solver using up(·). Not all programs satisfy the invariant,
for example,

let hybrid f()= y where rec y = last y + 1.0 and init y = 0.0

f takes a single argument () of type unit and returns a value y. Writing
?y(n) for the value of y at instant n∂ with n ∈ ?N, we get ?y(0) = 0 and
?y(n) = ?y(n− 1)+1. Yet, ?y(n) 6≈ ?y(n− 1) while no zero-crossing is registered
for any instant n ∈ ?N. This program will be statically rejected using the type
system presented in the next section.

Invariant 2 (Independence from ∂). The semantics of e evaluated under
G, ρ and a base time T is independent of the infinitesimal time step. Formally,
we define two signals s(t) = fst(?[[e]]

ρ
G(T∂)(t)) and s′(t) = fst(?[[e]]

ρ
G(T∂′)(t)),

then:
∀t ∈ R, n ∈ N, st(s)(t, n) = st(s′)(t, n)

where fst(v1, v2) = v1 (first projection).

When satisfied, this invariant ensures that properties and values on non-standard
time carry over to standard time and values.

4. A Lustre-like Causality

Programs are statically typed. We adopt, for our language, the type sys-
tem presented in [13] and is not reminded here. Well-typed programs may still
exhibit causality issues, that is, the definition of a signal at instant t may in-
stantaneously depend on itself. A sufficient solution for programs to be causally
correct is to reject feedback loops which do not cross a delay. This ensures that
outputs can be computed sequentially from current inputs and an internal state,
and that programs can be statically scheduled. This is the solution used in the
academic Lustre compiler [4], Lucid Synchrone [19] and Scade 6.18 We
propose generalizing it to a language mixing stream equations, ODEs and their
synchronous composition. The causality analysis essentially amounts to check-
ing that every loop is broken either by a unit delay or an integrator, nothing
more.

The analysis gives sufficient conditions for invariants 1 and 2. We adopt the
convention quoted below [13, 10]. A signal is termed discrete if it only changes
on a discrete clock :

A clock is termed discrete if it has been declared so or if it is the result
of a zero-crossing or a sub-sampling of a discrete clock. Otherwise,
it is termed continuous.

18http://www.esterel-technologies.com/scade

21

http://www.esterel-technologies.com/scade

A discrete change on x at instant t ∈ T means that x(•t) 6≈ x(t) or x(t) 6≈ x(t•).
In other words, all discontinuities have to be announced using the construct
up(·).

Two classes of approaches exist to formalize causality analyses. In the first,
causality is defined as an abstract preorder relation on signal names. The causal-
ity preorder evolves dynamically at each reaction. A program is causally correct
if its associated causality preorder is provably a partial order at every reaction.
In the second class, causality is defined as the tagging of each event by a ‘stamp’
taken from some preordered set. The considered program is causally correct if
its set of stamps can be partially ordered—similarly to Lamport vector clocks.
Previous works [6, 10] belong to the first class whereas this paper belongs to
the second.

Our analysis associates a type to every expression and function via two
predicates: (typ-exp) states that, under constraints C, global environment G,
local environment H, and kind k ∈ {A, D, C}, an expression e has type ct; (typ-
env) states that under constraints C, global environment G, local environment
H, and kind k, the equation E produces the type environment H ′.

(typ-exp)
C | G,H `k e : ct

(typ-env)
C | G,H `k E : H ′

The type language is

σ ::= ∀α1, ..., αn : C, ct
k→ ct

ct ::= ct× ct | α
k ::= D | C | A

where σ defines type schemes, α1, ..., αn are type variables and C is a set of
constraints. A type is either a pair (ct× ct) or a type variable (α). Intuitively,
a type variable is a time stamp. The typing rules for causality are defined with
respect to an environment of causality types. G is a global environment mapping
each function name to a type scheme (σ). H is a local environment mapping
each variable x or lastx to its type ct:

G ::= [f1 : σ1, ..., fk : σk] H ::= ∅ | H + [x : ct] | H + [lastx : ct]

Precedence relation: C is a precedence relation between variables from
{α1, ..., αn}.

C ::= {α1 < α′1, ..., αn < α′n}

< must be a strict partial order: it must not be possible to deduce both α1 <
α2 and α2 < α1 from the transitive closure of C. If α1 is interpreted as a
time stamp, the intuition is this: all computation must be ordered stictly and
statically. If the predicate C | G,H `k e1 : α1 holds (that is, e1 has time stamp
α1), C | G,H `k e2 : α2 holds (that is, e2 has time stamp α2) and C is a
set of constraints such that α1 < α2 holds, this means that the result of e1 is
computed stictly before that of e2. The relation < is lifted to hold for types.

22

(trans)
C ` ct1 < ct′ C ` ct′ < ct2

C ` ct1 < ct2

(pair)
C ` ct1 < ct′1 C ` ct2 < ct′2

C ` ct1 × ct2 < ct′1 × ct′2

(taut)
C + α1 < α2 ` α1 < α2

(env-empty)
C ` ∅ < ∅

(env)
C ` H < H ′ C ` ct1 < ct2

C ` H + [x : ct1] < H ′ + [x : ct2]

(env-last)
C ` H < H ′ C ` ct1 < ct3 C ` ct2 < ct4 C ` ct1 < ct2 C ` ct3 < ct4

C ` H + [lastx : ct1] + [x : ct2] < H ′ + [lastx : ct3] + [x : ct4]

Figure 7: Constraints between types

The predicate C ` ct1 < ct2, defined in Figure 7, means that ct1 precedes ct2
according to C. All rules are simple distribution rules. The relation < can also
be lifted to environments. (env) is also a simple morphism. (env-last) is more
interesting: it states that the causality type for lastx must be less than that
of x. Said differently, lastx must always be computed before x is computed.

When a variable x is initialized (using an equation init x = e), H associates
a causality type to lastx. If H1 and H2 are environments, H1, H2 is their
concatenation, H +H2 is their union provided that their domains are disjoint,
and merge(α)(H1, H2) is the merge of two environments H1 and H2, which is
defined as:

merge(α)((H1 + [x : α]), (H2 + [x : α])) = (merge(α)(H1, H2)) + [x : α]

merge(α)((H1 + [x : α]), H2) = (merge(α)(H1, H2)) + [x : α]
if x 6∈ Dom(H2)

merge(α)(H1, (H2 + [x : α])) = (merge(α)(H1, H2)) + [x : α]
if x 6∈ Dom(H1)

The initial environment G0 gives type signatures to imported operators,
synchronous primitives and the zero-crossing function.

(+), (−), (∗), (/) : ∀α, α× α A→ α

pre(·) : ∀α1, α2 : {α2 < α1}, α1
D→ α2

· fby · : ∀α1, α2 : {α2 < α1}, α1 × α2
D→ α1

Example. The type signature for functions applied point-wise, e.g., x + y, is
illustrated below. Consider two variables x and y such that C | G,H ` x : α1

and C | G,H ` y : α2, that is, x is ready at instant α1, y at instant α2.
Provided C ` α1, α2 < α3, it is also the case that C | G,H ` x : α3, that is,
if x has time stamp α1, it can also be given time stamp α3. This corresponds
to a subtyping rule [14]. Applying the same for y, C | G,H ` y : α3. Now, the

23

time stamp for x + y, that is, the application of function (+) to (x, y) lead to
C | G,H ` x + y : α3. Precisely, if (+) : ∀α.α × α A→ α, it can be given the
particular instance α3 × α3

A→ α3, that is, the time stamp of the result is that
of the two arguments.

An uninitialized unit delay like pre(x) does not depend on x nor does the
initialized unit delay x1 fby x2 whose output depends instantaneously on x1
but not on x2. Indeed, if C | G,H ` x : α1 then C | G,H ` pre(x) : α2, with
C ` α2 < α1. This means that pre(x) can be read before x is computed. This
explains why the equation x = pre(x) has no causality loop while x = x has
one. Indeed, for it to be causally correct, we would have to prove C ` α1 < α1,
under the hypothesis that C | [x : α1] `k x : α1. This proof is impossible and
so the program is rejected.

For up(x), two policies can be considered that correspond to two signatures:

up(·) : ∀α1, α2 : {α2 < α1} : α1
C→ α2 up(·) : ∀α1 : α1

C→ α1

In the first one, the effect of a zero-crossing is delayed by one cycle. Hence, up(x)
does not depend instantaneously on x. In the second, the effect is instantaneous.

In the current version of Zélus, writting up(x) only detects zero-crossings
that happen during integration. So, the result of up(x) does not depend instan-
taneously on x. Hence, the type signature for up(.) is the one on the left.

Instantiation/Generalization The types of global definitions are generalized
to types schemes (σ) by quantifying over free variables.

Gen(C)(ct1
k→ ct2) = ∀α1, ..., αn : C.ct1

k→ ct2

where {α1, ..., αn} = Vars(C) ∪ Vars(ct1) ∪ Vars(ct2). The variables in a type
scheme σ can be instantiated, ct ∈ Inst(σ) means that ct is an instance of σ.
For ~α′ and k ≤ k′:

C[~α′/~α], ct1[~α′/~α]
k′→ ct2[~α′/~α] ∈ Inst(∀~α : C.ty1

k→ ty2)

Example. Consider a function f with type signature:

f : ∀α1, α2, α3 : {α1, α2 < α3}.α1 × α2
k→ α1 × α2 × α3

This signature summarises the following information: the first output depends
on the first input; the second output depends on the second input; the third
output depend on both inputs. As a consequence, equation (y1, y2, y3) = f(y2+
1, x1), for example is valid. Whereas equations (y1, y2, y3) = f(y3 + 1, x1) or
(y1, y2, y3) = f(y1 + 1, x2) are rejected.

Instantiation of a type signature consists in replacing universally quantified
variables by any variable. E.g., a type instance of the signature of f is any type
of the form α′1 × α′2

k→ α′1 × α′2 × α′3 provided a constraint C ′ = {α′1, α′2 < α′3}.

We now define the typing relation according to the syntactic constraints of
the language. It is given in Figure 8:

24

(var)
C | G,H `k x : H(x)

(last)
C | G,H `D lastx : H(lastx)

(const)
C | G,H `k v : ct

(app)

C, ct1
k→ ct2 ∈ Inst(G(f)) C | G,H `k e : ct1

C | G,H `k f(e) : ct2

(eq)
C | G,H `k x : ct C | G,H `k e : ct

C | G,H `k x = e : [x : ct]

(sub)
C | G,H `k e : ct C ` ct < ct′

C | G,H `k e : ct′

(der)
C | G,H `C e : ct1 C ` ct2 < ct1

C | G,H `C derx = e : [x : ct2]

(init)
C | G,H `k e : ct k ∈ {D, C}

C | G,H `k init x = e : [lastx : ct]

(sub-eq)
C | G,H,H ′ `k E : H ′′ C ` H ′′ < H ′

C | G,H `k E : H ′′

(present)
C | G,H `C e : α C | G,H `D E1 : H1 C | G,H `C E2 : H2

C | G,H `C present e then E1 else E2 : merge(α)(H1, H2)

(if)
C | G,H `k e : α ∀i ∈ {1, 2} : C | G,H `k Ei : Hi

C | G,H `k if e thenE1 elseE2 : merge(α)(H1, H2)

(and)
C | G,H `k E1 : H1 C | G,H `k E2 : H2

C | G,H `k E1 and E2 : H1 +H2

(local)
C | G,H + [x : ct1] `k E : H ′ + [x : ct2] C ` ct2 < ct1

C | G,H `k local x in E : H ′

(pair)
∀i ∈ {1, 2} : C | G,H `k ei : cti
C | G,H `k (e1, e2) : ct1 × ct2

(def)
C | G,H `k p : ct1 C | G,H,H ′ `k E : H ′′ C ` H ′′ < H ′ C | G,H,H ′′ `k e : ct2

` let k f(p) = e whereE : [f : Gen(C)(ct1
k→ ct2)]

Figure 8: The Causality Analysis

25

Rule (var). A variable x inherits the declared type ct.

Rule (last). lastx is the previous value of x. In this system, we only allow
lastx to appear during a discrete step (of kind D).

Rule (const). A constant v can have any causality type.

Rule (app). An application f(e) has type ct2 if f has type ct1
k→ ct2 from the

instantiation of a type scheme with a new set of constraints C, and e has type
ct1.

Rule (eq). An equation x = e defines an environment [ct/x] if x and e are of
type ct.

Rule (sub). If e is of type ct and ct < ct′ then e can also be given the type ct′.

Rule (sub-eq). If an equation E can be typed in an environment H +H ′ pro-
ducing a environment H ′′ such that H ′′ < H ′, then E defines the environment
H ′′. The intuition is the following. Let x be a variable defined in E by an
equation x = e. If H ′′(x) = ct′′x gives the date at which x is computed and
H ′(x) = ct′x is the date at which x can be read, it must be the case that
ct′′x < ct′x, that is, the write of x must precede any read of x.

Rule (der). In terms of causality, an integrator is similar to a unit delay: it
breaks dependencies during integration. If e : ct1 then any use of x does not
depend instantaneously on the computation of e and can thus be given a type
ct2.

Rule (init). An initialization defines the value of lastx. As x is a state variable,
an initialization must occur only in a context k = D or k = C.

Rules (present) and (if). The present statement returns an environment that
merges two environments, merge(α)(H1, H2). The first handler is activated
during discrete steps and the second one has kind C. The rule for conditionals
is the same except that the handlers and condition must all be of kind k.
merge(α)(H1, H2) forces all bindings in H1 and H2 to be of the form [x : α]
where α is the type of the conditional. Forcing variables defined in the two
branches to a single type α ensures that they all depend on the conditional. For
example, if C | G,H `k x : αx, then C | G,H `k ifx then y = 1 else y = 2 :
[y : αx]. Without this constraint, y could be wrongly computed before x.

Rule (local). The declaration of a local variable x is valid if E gives an equation
for x which is itself causal.

Rule (def). For a function f with parameter p and result e, the body E is first
typed under an environment H and constraints C. The resulting environment
H ′ must be strictly less than H. This forbids any direct use of variables in H
when typing E.

We can now illustrate the system on several examples presented in the con-
crete syntax of Zélus.

26

Examples. We start with the examples given in Section 2.1 on page 10. The
causality type signatures are: 19

val min_max: ’a * ’a -A-> ’a * ’a
val count_with_reset: ’a -D-> ’a
val integr : ’a * ’b -C-> ’a
val heat : ’a * ’b -C-> ’a

The signature for integr states that the output depends instantaneously on
its first argument but not the second one. The following program is statically
rejected because no proof derivation can be built.

let fun cycle() = (x, y) where rec y = x + 1.0 and x = y + 2.0

Consider environments H, G and constraint C such that:

(a) C | G,H `A x : αx and C | G,H `A y : αy

(b) Then, C | G,H `A x+ 1 : αx and C | G,H `A y + 2 : αy (by rule (app)).

For the body of function cycle to be well typed, we need to prove that the
result of x+1 is ready before y is read, and y+2 before x is read, that is, both
C ` αx < αy and C ` αy < αx hold. This is not possible, according to the
hypothesis that C must define a strict partial order.

Consider now a hybrid node. The following two functions are well typed.

let hybrid f(x) = o where
rec der y = 1.0 - x init 0.0 and o = y + 1.0

let hybrid loop(x) = y where rec y = f(y) + x

val f : ’a -C-> ’b
val loop : ’a -C-> ’a

The der construct plays the role of a unit delay. Consider the typing of func-
tion f . Let Hx = [x : αx] and H = [y : αy; o : αo]. Typing the body
der y = 1.0− x init 0.0 and o = y + 1.0 produces an environment H ′ = [y :
αy′ ; o : αo′] with a constraint C that must satisfy αy < αo′ , αy′ < αy and
αo′ < αo. The signature is thus ∀αx, αo : C.αx

C→ αo. Since variables αy, αo′ ,
αy′ do not appear as inputs or outputs, C can be reduced to the empty set. The
signature ∀αx, αo.αx

C→ αo expresses that there is no order constraint between
the input and output of f .

The following example is the so-called bouncing ball, starting with initial
height y0 and initial speed y’0 (g is a global constant). When y crosses zero
from positive to negative, the speed y’ is reset with -0.8 * last y’.

19as computed by the Zélus compiler.

27

let hybrid ball(y0, y’0) = y where
rec der y = y’ init y0
and der y’ = - g init y’0 reset up(- y) -> -0.8 * last y’

The causality type of ball is:

∀αy0 , αy′0 , αy : {αy0 < αy, αy′0 < αy′}.αy0 × αy′0
C→ αy

It expresses that the output y depends instantaneously on y0 but not on y’0.
This type can be further simplified into:

∀αy0 , αy′0 .αy0 × αy′0
C→ αy0

because any program that is accepted by giving the first type signature will also
be accepted if the second type signature is given. Indeed, consider the equation
y = ball(y0, y

′
0) and C | G,H `k y0 : αy0 , C | G,H `k y′0 : αy′0 . Taking the

first (verbose) signature for ball, the typing of the equation gives:

C | G,H `k y = ball(y0, y
′
0) : [y : αy] with {αy0 < αy, αy′0 < αy′}

Taking the second signature, ball(y0, y′0) gets type αy0 applying rule (app).
Thus, C | G,H `k y = ball(y0, y

′
0) : [y : αy0] with {αy0 < αy}.

As the rule (last) indicates, lastx can only appear in a discrete context.
Hence, the following program is rejected.

let hybrid g(x) = o where
rec der y = 1.0 init 0.0 and x = last x + y and init x = 0.0

In the following program, last o1 is used in a discrete context. This program
is causally correct. last o1 is initialized with the very first value of x, and so
depends on it. Hence, o depends on x too.

let node f(x) = o where
rec init o1 = x and o = last o1 + 1.0

val f: ’a -D-> ’a

In the following, the function loop is rejected as y instantaneously depends on itself.

let node loop(z) = y where rec y = f(y)

For loop to be well-typed, we would need to be able to prove that C ` αy < αy, which
is not possible.

Type simplification: The Zélus compiler implements a simplification algorithm
that eliminates superfluous constraints. Type simplification reduces the size of type
constraints and the number of different variables, without which typing would be
unpractible (the number of constraints can grow linearly with the size of the function
to type). A general solution is proposed in [20]. For Zélus, the simplification is
based on the computation of Input-Output relations [21]. Moreover, because causality

28

analysis is performed after typing, some causality relations are not necessary. For
example, the signatures of unit delays can be simply:

pre(·) : ∀α1, α2 : α1
D→ α2 · fby · : ∀α1, α2 : α1 × α2

D→ α1

They state that there is no dependency between the input and output of the operator
pre(·), and that the output of · fby · depends on its first argument only.

The State Port: The present causality analysis restricts the use of lastx to discrete
contexts. A minor extension implemented in the Zélus compiler allows lastx to
appear in a continuous context provided x is a continuous state variable, that is, it
is defined by an equation derx = e. Indeed, during integration lastx and x are
infinitely close to each other (?x(n− 1) ≈ ?x(n)).

5. The Main Theorem

We can now state the main result of this paper: The semantics of well-typed
programs satisfies Invariants 1 and 2. This theorem requires assumptions on primitive
operators and imported functions, as the following example shows.

A Nonsmooth Program ♣: Several modules, written in Zélus syntax, are required.
The first two are an integrator and a time base with a parameterized initial value t0:

let hybrid integrator(y0, x) = y where
rec init y = y0 and der y = x

let hybrid time(t0) = integrator(t0, 1.0)

We add a function dirac(d, t) producing a quasi-Dirac pulse (a Dirac with a
width strictly greater than 0), centered at t = 0, and such that

∫ +∞
−∞ dirac(d, t)dt = 1

for every constant d > 0:

let dirac(d, t) = (1.0 / pi) * d / (d * d + t * t)

Our goal is to produce, using a hybrid program, an infinitesimal value for d, so that
dirac(d, t) standardizes as a Dirac measure [22]. This is achieved by integrating a
pulse of magnitude 1 but of infinitesimal width. Such a pulse can be produced by
taking the difference of two variables that each change from 0 to 1, but at instants
separated by a ∂ time step:

let hybrid doublecrossing(t) = y - x where
rec init x = 0.0
and init y = 0.0
and present up(t) -> do y = 1.0 done else do der y = 0.0 done
and present (up(last y)) -> do x = 1.0 done

else do der x = 0.0 done

let hybrid infinitesimal(t) =
integrator(0.0, doublecrossing(t))

Let us assume that parameter t is an affine function of time with a constant
derivative equal to 1 and a strictly negative initial value. The first zero-crossing in
doublecrossing(t) occurs at some time n∂ when t crosses zero and causes a reset
of x from −1 to +1, at the following infinitesimal time step (n + 1)∂. This in turn

29

http://zelus.di.ens.fr/nahs2016/index.html#dirac_drond

triggers an immediate zero-crossing on x and a reset of x back to −1 at the next time
step (n+2)∂. The input of the integrator is thus one for exactly one ∂ time step, and
zero elsewhere. The output of the integrator, initially 0, changes to ∂ at time (n+2)∂
and remains unchanged afterward.

The main program is the following, where t0 < t1 < t2:

let hybrid nonsmooth(t0, t1, t2) = x where
rec t = time(t0) and d = infinitesimal(t - t1)
and x = integrator(0.0, dirac(d,(t - t2)))

What is the point of this example? It is causally correct and yet the standardization
of its semantics has a discontinuity at time t2 though no zero-crossing occurs at this
instant. This is because dirac standardizes to a Dirac mass centered at t2 and variable
x in nonsmooth jumps from 0 to 1 at this instant.

Discussion: This discontinuity happens only within the non-standard semantics,
where variables can take values from the non-standard reals and discretization is in-
finitesimal. In practice, the execution of this Zélus program produces a NaN (Not
a Number) value for variable x shortly before time t2. This comes from the fact
that variable d remains at 0 and function dirac(d,t) is singular at t = 0. However,
the same program behaves differently with the non-standard semantics, since function
dirac(d,t) is defined everywhere when d 6= 0. In particular, it is defined for d = ∂.

What assumptions are needed to reproduce the behavior observed in practice?
The solution seems clear: if a standard function f(x) of a real variable x is such
that f(x0) = ⊥ for some x0, then the semantics must enforce f(x) = ⊥ for any x
infinitesimally close to x0. Applying this to the function d 7→ d

d2+t2
where t = 0 is

fixed, gives ∂
∂2+t2

= ⊥. The reason is that when d = 0, the function evaluates to
⊥, and since ∂ is infinitesimal, the function must also evaluate to ⊥, when d = ∂.
This simple assumption precludes the possibility of generating a Dirac mass as seen
in the example above. This is formalized through the assumptions on operators and
functions given below.

Given x, y ∈ ?R, relation x ≈ y holds iff st(x− y) = 0. Recall that function
f : ?R 7→ ?R is microcontinuous iff for all x, y ∈ ?R, x ≈ y implies f(x) ≈ f(y). Recall
that the microcontinuity of f implies the uniform continuity of st(f) : R 7→ R [23].
Denote [t0, t1]T = {t ∈ T | t0 ≤ t ≤ t1}, with t0, t1 ∈ T finite.

Assumption 1. Operators op(·) of kind C are standard and satisfy the following de-
finedness, finiteness and continuity properties:

op(⊥) = ⊥
∀v, op(v) 6= ⊥ implies op(v)finite
∀u, v, u ≈ v and op(u) 6≈ op(v) implies op(u) = ⊥

Assumption 2. Environment G is assumed to satisfy the following, for all external
functions f of kind C, for any bounded interval K = [t1, t2]T, for any input u that is
defined, finite and microcontinuous on K, if function G(f)(u) is defined and produces

30

no zero-crossing in K, then it is assumed to be finite and microcontinuous on K:

∀t ∈ K,

{
fst(G(f)(u)(t)) 6= ⊥ and
snd(G(f)(u)(t)) = false

⇓
∀t ∈ K, fst(G(f)(u)(t))finite, and
∀t, t′ ∈ K, t ≈ t′ implies
fst(G(f)(u)(t)) ≈ fst(G(f)(u)(t′))

Assumption 1 has several implications on the definitions of the usual operators.

• For the square root function:
√
ε =
√
−ε =

√
0, for any ε ≈ 0, which yields two

meaningful solutions:
√
ε = ⊥ or

√
ε = 0.

• For the inverse operator: 1/ε = ⊥ for any infinitesimal, ε is the only solution.

• Consequently, the function sgn(x) = x/
√
x2 returning the sign of x must satisfy

sgn(ε) = sgn(−ε) = sgn(0) = ⊥, for any infinitesimal ε.

Theorem 1. Under Assumptions 1 and 2, the semantics of every causally correct
equation E (with respect to the typing rules of Section 4) satisfies Invariants 1 and 2
and is standardizable.

This is a direct consequence of the following lemmas.

Lemma 1. Assume that Assumptions 1 and 2 hold. For any activation clock T ⊆ T,
for any bounded interval K = [t1, t2]T, for any environment ρ that is defined, finite
and microcontinuous on K, if expression e, of kind A or C, is defined and produces no
zero-crossing on K, then it is finite and microcontinuous on K:

∀t ∈ K,

{
fst(?[[e]]ρG(T)(t)) 6= ⊥ and
snd(?[[e]]ρG(T)(t)) = false

⇓
∀t ∈ K, fst(?[[e]]ρG(T)(t))finite, and
∀t, t′ ∈ K, t ≈ t′ implies
fst(?[[e]]ρG(T)(t)) ≈ fst(?[[e]]ρG(T)(t

′))

Proof: Since ?[[e]]ρG(T)(t) = ⊥,⊥ for all t 6∈ T , we can assume that K ⊆ T . The
lemma is proved by induction on the structure of expression e. We prove that it holds
for all atomic expressions:

• The semantics of a constant v is a constant function ?[[v]]ρG(T)(t) = v, false.
Thus it is finite and microcontinuous.

• The semantics of expression x is a function of time defined in environment
ρ: ?[[x]]ρG(T)(t) = ρ(x)(t), false, which is by assumption defined, finite and
microcontinuous on K.

• ?[[lastx]]ρG(T)(t): lastx has kind D and is thus excluded by assumption.

Then, we assume that the Lemma holds for all causally correct expressions e, e1 and
e2 of kind A or C, and prove that it holds for expressions built from e, e1 and e2, using
one of the following constructors:

31

• ?[[(e1, e2)]]
ρ
G(T)(t) is finite and microcontinuous if and only if ?[[(ei)]]ρG(T)(t), for

i = 1, 2 are defined and microcontinuous.

• Consider the application of the operator op on expression e. Two cases must be
distinguished: (1) op is of kind D, in which case, the expression op(e) has the same
kind, which is forbidden by assumption. (2) op is of kind A, and by Assumption 1,
if defined, the semantics of op is a finite and microcontinuous function. Using
the induction hypothesis, ?[[op(e)]]ρG(T)(t) = op(v), z where v, z = ?[[e]]ρG(T)(t) is
also finite and microcontinuous.

• e1 fby e2 expressions have kind D and they can only appear in expressions of
the same kind.

• In A or C, expressions of the form f(e), f and e cannot have kind D. Therefore
Assumption 2 applies to the function f and the induction hypothesis applies to
the expression e. Assume ?[[f(e)]]ρG(T)(t) = v′, z(t)∨z′, where v′, z′ = G(f)(s)(t)
and ∀t′, s(t′), z(t′) = ?[[e]]ρG(T)(t

′) is defined and produces no zero-crossing in K.
It is then the composition of two finite and microcontinuous functions, and
therefore microcontinuous over K.

• ?[[up(e)]]ρG(T)(t) defined and producing no zero crossing for all t ∈ K implies
that it is constant and therefore microcontinuous over K.

This proves that the induction hypothesis holds for all causally correct expressions of
kind A or C. �

Consider the following non-standard system over a bounded interval T = [t0, t1]T,:

x(t0) = x0 finite
∀t ∈ T \ {t1}, x(t+ ∂) = x(t) + ∂ × f(t, x(t))

Lemma 2. If the solution x : T 7→ ?R of the dynamical system defined above is infinite
or discontinuous at t, then there exists t′ < t such that f(t′, x(t′)) is infinite.

Proof: We will be using the following property, for any t1 < t2:

∃t′∈T , t1≤t′≤t2, such that |x(t
′+∂)−x(t′)|

∂
≥ |x(t2)−x(t1)|

t2−t1
. (3)

First case: assume that x(t) is infinite, for some t ∈ T . Recall x(t0) is finite. Ap-
plying (3) with t1 = t0, t2 = t yields the existence of t′, t0 ≤ t′ ≤ t such that
|f(t′, x(t′))| ≥ |x(t)−x(t0)|

t−t0
is infinite.

Second case: assume x(t) is not continuous for some t ∈ T . There exists a t′ ∈ T ,
t′ ≈ t, such that x(t′) 6≈ x(t). Assume without loss of generality that t′ < t. Observe
that |x(t)−x(t

′)|
t−t′ is infinite since x(t) 6≈ x(t′) and t ≈ t′. Applying (3) with t1 = t′ and

t2 = t yields the existence of t′′, t′ ≤ t′′ ≤ t such that |f(t′′, x(t′′))| is also infinite. �

Under Assumptions 1 and 2, we have as corollary that the semantics of derx = e
are smooth if the expression e is defined and does not trigger any zero-crossings:

Corollary 1. Assume that Assumptions 1 and 2 hold, and that e is a causally correct
expression of kind A or C. For any activation clock T ⊆ T, for any bounded interval
K = [t1, t2]T, for any environment ρ that is defined, finite and microcontinuous on K,
if the least fixed point of the operator ρ′, z′ 7→ ?[[derx = e]]ρ

′+ρ
G (T) is defined and raises

no zero-crossings on K, then ρ′ is microcontinuous on K.

32

Proof: Assume that ρ′ is defined and that z′ is false on K, and also that ρ′ is infinite
or discontinuous at t ∈ K. Using Lemma 2, there exists t′ ∈ K, t′ < t where the
semantics of expression e, ?[[e]]ρ

′+ρ
G (T)(t′) is infinite, which contradicts Lemma 1. �

Lemma 3. Given Assumptions 1 and 2, for any activation clock T ⊆ T, any bounded
interval K = [t1, t2]T, and for any environment ρ that is defined, finite and microcon-
tinuous on K, if the semantics of E, a causally correct equation of kind C, is defined
and produces no zero-crossings on K, then it is finite and microcontinuous on K:

∀x,∀t ∈ K,

{
fst(?[[E]]ρG(T))(x)(t) 6= ⊥ and
snd(?[[E]]ρG(T))(t) = false

⇓
∀x, (∀t ∈ K, fst(?[[E]]ρG(T))(x)(t)finite, and
∀t, t′ ∈ K, t ≈ t′ implies
fst(?[[E]]ρG(T))(x)(t) ≈ fst(?[[E]]ρG(T))(x)(t

′))

Proof: By induction on the structure of equation E.

• Consider a causally correct equation of kind C and of the form x = e. The
finiteness and microcontinuity of fst(?[[x = e]]ρG(T)) = fst(?[[e]]ρG(T)) is a direct
consequence of Lemma 1.

• Equation init x = e defines the value of lastx to be initialized with the first
value of e and to be the previous value of x otherwise. In a context C and interval
K with no zero-crossings, the equation init x = e has no influence on the value
of x: either x is constant during the interval K (no derivative is given) or it is
defined by an equation derx = e′.

• For a causally correct equation of kind C and of the form derx = e, Corollary 1
gives that fst(?[[derx = e]]ρG(T)) is finite and microcontinuous.

We continue with compositions of equations. Assuming the lemma holds for equations
E1 and E2, we show that it holds for equations E1 and E2, present e then E1 else E2

and if e thenE1 elseE2:

• Consider a causally correct equation E = E1 and E2 of kind C. The finite-
ness and microcontinuity of the equation fst(?[[E]]ρG(T)) = fst(?[[E1]]

ρ
G(T)) +

fst(?[[E2]]
ρ
G(T)) are consequences of the induction hypothesis.

• Assume the equation E = present e then E1 else E2 is causally correct. Since
snd(?[[E]]ρG(T)) is equal to false at every t ∈ K, fst(?[[E]]ρG(T)) = fst(?[[E2]]

ρ
G(T))

is finite and microcontinuous by the induction hypothesis.

• Assume that E = if e thenE1 elseE2 is a causally correct equation of kind
C. Type correctness implies that expression e is a causally correct expression
with the same kind. By Lemma 1, it is microcontinuous on K, and since its
values are boolean, it is constant. Without loss of generality, assume the ex-
pression evaluates to true. Hence, fst(?[[E]]ρG(T)) = fst(?[[E1]]

ρ
G(T)) is finite and

microcontinuous by induction hypothesis. �

33

6. Discussion and Related Work

The present work continues that of Benveniste et al. [10] by exploiting non-standard
semantics to define causality in a hybrid program. The proposed analysis gives a
sufficient condition for the program to be statically scheduled.

Our work is related to Ptolemy [24] and the use of synchronous language concepts
to define the semantics of hybrid modelers [25]. We follow the same path, but replace
super-dense semantics by a non-standard one that we found more helpful for explaining
causality constraints and generalizing solutions adopted in synchronous compilers. The
presented material is implemented in Zélus, a synchronous language extended with
ODEs [15]. Zélus is more single-minded than Ptolemy but it allows programs to be
compiled into sequential code whereas Ptolemy only provides an interpreter.

Causality has been extensively studied in the synchronous languages Signal [6]
and Esterel [7]. Instead of imposing that every feedback loop cross a delay, con-
structive causality checks that the corresponding circuit is constructive. A circuit is
constructive if its outputs stabilize in bounded time when inputs are fed with a con-
stant input. In the present work, we adapted the simpler causality of Lustre and
Lucid Synchrone based on a precedence relation in order to focus on the specific
issues raised when mixing discrete and continuous-time signals. Schneider et al. [26]
have considered the causality problem for a hybrid extension of Quartz, a variant of
Esterel with ODEs. But, they did not address issues arising from the interaction of
discrete and continuous behaviors.

Regarding tools like Simulink, we think that the synchronous interpretation of
signals where time advances by infinitesimal steps can be helpful to define causality
constraints and safe interactions between mixed signals.

Finally, type signatures can express the way a component may be used. To specify
that an output instantaneously depends on an input—the direct feedthrough port of a
Simulink function,—it suffices to give them the same type variable. For example, the
signature ∀α1, α2.α1 × α1 → α1 × α2 states that the first output depends on the two
inputs and the second output does not depend on any input.

7. Conclusion

Causality in system modelers is a sufficient condition for ensuring that a hybrid
system can be implemented: general fix-point equations may have solutions or not, but
the subset of causally correct systems can definitely be computed sequentially using off-
the-shelf solvers. The notion of causality we propose is that of a synchronous language
where instantaneous feedback loops are statically rejected. An integrator plays the
role of a unit delay for continuous signals as the previous value is infinitesimally close
to the current value.

We introduced the construction lastx which stands for the previous value of a
signal and coincides with the left limit when the signal is left continuous. Then, we
introduced a causality analysis to check for the absence of instantaneous algebraic
loops. Finally, we established the main result: causally correct programs have no
discontinuous changes during integration.

The proposed material has been implemented in Zélus, a conservative extension
of a synchronous language with ODEs.

34

8. Acknowledgments

This work has been partially funded by the Sys2Soft, Briques Génériques du Logi-
ciel Embarqué, Investissements d’Avenir French national project.

References

[1] L. Carloni, R. Passerone, A. Pinto, A. Sangiovanni-Vincentelli, Languages and
tools for hybrid systems design, Foundations & Trends in EDA vol. 1.

[2] E. A. Lee, H. Zheng, Operational semantics of hybrid systems, in: Hybrid Sys-
tems: Computation and Control (HSCC), Zurich, Switzerland, 2005, pp. 25–53.

[3] The Mathworks, Natick, MA, U.S.A., Simulink 7—User’s Guide, 7th Edition
(2010).

[4] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous dataflow pro-
gramming language lustre, Proc. IEEE 79 (9) (1991) 1305–1320.

[5] N. Halbwachs, P. Raymond, C. Ratel, Generating efficient code from data-flow
programs, in: 3rd International Symposium on Programming Language Imple-
mentation and Logic Programming (PLILP), LNCS, Springer, Passau (Germany),
1991, pp. 207–218.

[6] T. Amagbegnon, L. Besnard, P. Le Guernic, Implementation of the data-flow
synchronous language Signal, in: Programming Languages Design and Imple-
mentation (PLDI), ACM, 1995, pp. 163–173.

[7] G. Berry, The constructive semantics of pure Esterel, unpublished (1999).

[8] L. Gérard, A. Guatto, C. Pasteur, M. Pouzet, A modular memory optimization
for synchronous data-flow languages: Application to arrays in a Lustre compiler,
in: Languages, Compilers and Tools for Embedded Systems (LCTES), ACM,
Beijing, 2012, pp. 51–60.

[9] G. Dahlquist, Å. Björck, Numerical Methods in Scientific Computing: Volume 1,
SIAM, 2008.

[10] A. Benveniste, T. Bourke, B. Caillaud, M. Pouzet, Non-Standard Semantics of
Hybrid Systems Modelers, Journal of Computer and System Sciences (JCSS)
78 (3) (2012) 877–910, special issue in honor of Amir Pnueli.

[11] O. Maler, Z. Manna, A. Pnueli, From Timed to Hybrid Systems, in: Real-Time:
Theory in Practice, Vol. 600 of LNCS, Springer, 1992, pp. 447–484.

[12] The Mathworks, Natick, MA, U.S.A., Simulink 7—Reference, 7th Edition (2010).

[13] A. Benveniste, T. Bourke, B. Caillaud, M. Pouzet, Divide and recycle: types and
compilation for a hybrid synchronous language, in: Languages, Compilers, Tools
and Theory for Embedded Systems (LCTES), Chicago, USA, 2011, pp. 61–70.

[14] B. C. Pierce, Types and Programming Languages, MIT Press, 2002.

35

[15] T. Bourke, M. Pouzet, Zélus: A synchronous language with ODEs, in: Hybrid
Systems: Computation and Control (HSCC), ACM, Philadelphia, USA, 2013, pp.
113–118.

[16] T. Bourke, J.-L. Colaço, B. Pagano, C. Pasteur, M. Pouzet, A Synchronous-
based Code Generator For Explicit Hybrid Systems Languages, in: Compiler
Construction (CC), LNCS, London, UK, 2015, pp. 69–88.

[17] G. Kahn, The semantics of a simple language for parallel programming, in: J. L.
Rosenfeld (Ed.), IFIP 74 Congress, North-Holland, 1974, pp. 471–475.

[18] A. Benveniste, P. Caspi, R. Lublinerman, S. Tripakis, Actors without directors: a
Kahnian view of heterogeneous systems, Tech. Rep. TR-2008-6, Verimag (2008).

[19] M. Pouzet, Lucid Synchrone, version 3. Tutorial and reference manual, Université
Paris-Sud, LRI (April 2006).

[20] F. Pottier, Simplifying subtyping constraints: A theory, Information and Com-
putation 170 (2) (2001) 153 – 183.

[21] M. Pouzet, P. Raymond, Modular static scheduling of synchronous data-flow net-
works: An efficient symbolic representation, in: Embedded Software (EMSOFT),
Grenoble, France, 2009, pp. 215–224.

[22] E. Palmgren, Constructive nonstandard representations of generalized functions,
Indagationes Mathematicae 11 (1) (2000) 129–138.

[23] T. Lindstrom, An invitation to nonstandard analysis, in: N. Cutland (Ed.), Non-
standard Analysis and its Applications, no. 10 in London Mathematical Society
Student Texts, Cambridge Univ. Press, 1988, pp. 1–105.

[24] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, Y. Xiong, Taming heterogeneity—the Ptolemy approach, Proc. IEEE
91 (1) (2003) 127–144.

[25] E. A. Lee, H. Zheng, Leveraging synchronous language principles for heteroge-
neous modeling and design of embedded systems, in: Embedded Software (EM-
SOFT), 2007, pp. 114–123.

[26] K. Bauer, K. Schneider, From synchronous programs to symbolic representations
of hybrid systems, in: Hybrid Systems: Computation and Control (HSCC), 2010,
pp. 41–50.

36

	Causality and Scheduling
	A Synchronous Lustre-like Language with ODEs
	Examples

	Non-standard Semantics
	Semantics
	Standardization
	Key properties

	A Lustre-like Causality
	The Main Theorem
	Discussion and Related Work
	Conclusion
	Acknowledgments

