
HAL Id: hal-01549685
https://inria.hal.science/hal-01549685

Submitted on 29 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tight Bounds for Online TSP on the Line
Antje Bjelde, Yann Disser, Jan Hackfeld, Christoph Hansknecht, Maarten
Lipmann, Julie Meissner, Kevin Schewior, Miriam Schlöter, Leen Stougie

To cite this version:
Antje Bjelde, Yann Disser, Jan Hackfeld, Christoph Hansknecht, Maarten Lipmann, et al.. Tight
Bounds for Online TSP on the Line. ACM-SIAM Symposium on Discrete Algorithms (SODA), Jan
2017, Barcelona, Spain. pp.994 - 1005, �10.1137/1.9781611974782.63�. �hal-01549685�

https://inria.hal.science/hal-01549685
https://hal.archives-ouvertes.fr

Tight Bounds for Online TSP on the Line

Antje Bjelde ∗† Yann Disser‡ Jan Hackfeld∗§ Christoph Hansknecht¶

Maarten Lipmann‖ Julie Meißner∗ ∗∗ Kevin Schewior†† ‡‡ Miriam Schlöter∗§

Leen Stougie§§

Abstract

We consider the online traveling salesperson problem
(TSP), where requests appear online over time on the
real line and need to be visited by a server initially
located at the origin. We distinguish between closed
and open online TSP, depending on whether the
server eventually needs to return to the origin or not.
While online TSP on the line is a very natural online
problem that was introduced more than two decades
ago, no tight competitive analysis was known to date.
We settle this problem by providing tight bounds on
the competitive ratios for both the closed and the
open variant of the problem. In particular, for closed
online TSP, we provide a 1.64-competitive algorithm,
thus matching a known lower bound. For open online
TSP, we give a new upper bound as well as a matching
lower bound that establish the remarkable competitive
ratio of 2.04.

Additionally, we consider the online Dial-A-Ride
problem on the line, where each request needs to be
transported to a specified destination. We provide an
improved non-preemptive lower bound of 1.75 for this
setting, as well as an improved preemptive algorithm
with competitive ratio 2.41.

Finally, we generalize known and give new com-
plexity results for the underlying offline problems.
In particular, we give an algorithm with running

∗TU Berlin, Institute of Mathematics, Germany.
†Supported by Einstein Foundation Berlin in the framework

of Matheon.
‡TU Darmstadt, Institute of Mathematics, Germany.
§Supported by DFG Priority Programme 1736 Algorithms

for Big Data.
¶TU Braunschweig, Institute for Mathematical Optimiza-

tion, Germany.
‖Amsterdam, Netherlands.
∗∗Supported by Einstein Foundation Berlin in the framework

of Matheon and by the German Science Foundation (DFG)
under contract ME 3825/1.
††Universidad de Chile, Santiago, Chile.
‡‡Partially supported by the Millennium Nucleus Information

and Coordination in Networks ICM/FIC RC130003.
§§Vrije Universiteit, Department of Econometrics and Opera-

tions Research & CWI, Amsterdam, Netherlands.

time O(n2) for closed offline TSP on the line with
release dates and show that both variants of offline
Dial-A-Ride on the line are NP-hard for any capac-
ity c ≥ 2 of the server.

1 Introduction

In the online Traveling Salesperson Problem (TSP)
on the line, we consider a server initially located at
the origin of the real line that has to serve requests
that appear over time. The server has unit speed
and serves requests (in any order) by moving to the
position of the corresponding request at some time
after its release. The objective in online TSP on the
line is to minimize the makespan, i.e., the time until
all requests have been served. In the closed variant of
the problem, the server needs to return to the origin
after serving all requests, while the open variant has
no such requirement.

Online TSP is a natural online problem similar
to the classical k-server problem [20]. In the latter,
the order in which requests need to be served is
prescribed, and the problem thus becomes trivial on
the line for k = 1 server. In contrast, online TSP
on the line is a non-trivial problem that arises in 1-
dimensional collection/delivery problems. Examples
include robotic welding/screwing/depositing material,
horizontal/vertical item delivery systems, and the
collection of objects from mass storage shelves. The
online Dial-A-Ride problem additionally allows
transportation requests that specify a source and
destination that need to be visited by the server in
this order. If the capacity of the server is finite, it
limits the number of requests that can be transported
simultaneously. The online Dial-A-Ride problem
on the line arises, e.g., when controlling industrial or
personal elevators.

While both online TSP and online Dial-A-
Ride on the line are among the most natural online
problems and have been studied extensively over the
last two decades [2, 4, 5, 6, 7, 10, 14, 15, 16, 17],
no satisfactory (tight) analysis was known for either
problem in terms of competitive ratios. We address

this shortcoming for TSP on the line by providing
a tight upper bound for the closed variant, as well
as tight bounds for the open variant. We emphasize
that our results for the open and closed variant of
the problem are independent and require substantially
different approaches. Aside from our results for online
TSP, we narrow the gaps for online Dial-A-Ride on
the line by giving improved bounds. In addition to
online results, we study the computational complexity
of the underlying offline problems.

1.1 Our results

We have the following results1 (cf. Tables 1 and 2) :
Tight bounds for online TSP on the line.

Our main results are best-possible online algorithms
for both the open and closed variant of online TSP on
the line, as well as a new (tight) lower bound for the
open variant. Our algorithm for the closed variant has
a competitive ratio of (9 +

√
17)/8 ≈ 1.64, matching

a lower bound of Ausiello et al. [6] and improving
on their 1.75-competitive algorithm. For open TSP
on the line, we give a lower bound of 2.04 on the
competitive ratio, which is the first bound strictly
greater than 2. We also provide an optimal online
algorithm matching this bound and improving on
the 2.33-competitive algorithm by Ausiello et al. [6].
Our results settle online TSP on the line from the
perspective of competitive analysis.

Improved bounds for online Dial-A-Ride
on the line. Our lower bounds for online TSP on
the line immediately apply to preemptive and non-
preemptive online Dial-A-Ride on the line. In partic-
ular, our lower bound of 2.04 is the first bound greater
than 2 for the open variant of the problem. Addition-
ally, we provide a simple preemptive 2.41-competitive
algorithm, which improves a (non-preemptive) 3.41-
competitive algorithm by Krumke [15]. For the closed
Dial-A-Ride variant, the lower bound of 1.64 by
Ausiello et al. [6] was improved for one server with
unit capacity without preemption to 1.71 by Ascheuer
et al. [2]. We improve this bound further to 1.75 for
any finite capacity c ≥ 1. The best known algorithm
for closed Dial-A-Ride on the line for finite capacity
c ≥ 1 is 2-competitive and was given by Ascheuer et
al. [2].

New offline complexity results. Regarding
offline TSP on the line with release times, Psaraftis
et al. [21] showed a dynamic program that solves
the open variant in quadratic time. We refute

1Parts of our results were already claimed in [19], but

mostly with weaker bounds and without a conclusive proof.
Nevertheless, some of our ideas are inspired by the approaches

described in [19].

their claim that all optimal closed tours have a very
simple structure with a counterexample, and we adapt
their algorithm to find an optimal closed tour in
quadratic time. For the non-preemptive offline Dial-
A-Ride problem on the line, results have previously
been obtained for the closed variant without release
times. For capacity c = 1 Gilmore and Gomory [12]
and Atallah and Kosaraju [3] gave polynomial time
algorithms, and Guan [13] proved hardness for the case
c = 2. We show that both the open and closed variant
of the problem are NP-hard for any capacity c ≥ 2.
Additionally, we show that the case with release times
and any c ≥ 1 is NP-hard. The complexity of offline
Dial-A-Ride on the line with unbounded capacity
remains open.

1.2 Further related work

For the online TSP problem in general metric spaces,
Ausiello et al. [6] show a lower bound of 2 on the
competitive ratio for the open version and a 1.64
lower bound for the closed version, both bounds being
achieved on the real line. For the open online TSP,
they present a 2.5-competitive algorithm, and for the
closed version they give a 2-competitive algorithm.
Jaillet and Wagner [14] give 2-competitive algorithms
for the closed version that can additionally deal with
precedence constraints or multiple servers. Blom et
al. [7] consider the closed online TSP problem on
the non-negative part of the real line and present a
best possible algorithm with competitive ratio 1.5.
They also study a “fair” setting where the optimum
does not travel outside the convex hull of the known
requests, and they derive an algorithm for the real
half-line with a better competitive ratio of 1.28 for
this setting. Krumke et al. [17] show that there cannot
be a competitive algorithm for open online TSP with
the objective of minimizing the maximum flow time
instead of minimizing the makespan. For the real
line they define a fair setting and give a competitive
algorithm for it.

The online repairperson problem is the open online
TSP problem with the objective of minimizing the
weighted sum of completion times. Feuerstein and
Stougie [10] show a lower bound of 5.83 on the best-
possible competitive ratio for this problem and provide
a 9-competitive algorithm for the real line. Krumke
et al. [16] give a best-possible online algorithm with
competitive ratio 5.83 for general metric spaces.

For the the closed online Dial-A-Ride problem
without preemption, Feuerstein and Stougie [10] show
a lower bound of 2 for the competitive ratio in
general, and present an algorithm with a best-possible
competitive ratio of 2 for the case that the server
has infinite capacity. Ascheuer et al. [2] analyze

Table 1: Overview of our results for online TSP on the line and online Dial-A-Ride on the line.

Online closed open
lower bound upper bound lower bound upper bound

online TSP on the line
new

1.64 [5, 6]
1.64 (Th. 3.1) 2.04 (Th. 4.1) 2.04 (Th. 5.1)

old 1.75 [5, 6] 2 [4, 6] 2.33 [4, 6]

Dial-A-Ride on the line
preemptive 1.64 [5, 6]

2 [2] 2.04 (Th. 4.1)
2.41 (Th. 6.1)

non-preemptive 1.75 (Th. 6.2) 3.41 [15]

Table 2: Overview of our results for offline TSP and Dial-A-Ride on the line with release times.

Offline closed open

TSP on the line O(n2) (Th. 7.2) O(n2) [21]

Dial-A-Ride on the line
non-preemptive NP-hard (Th. 7.3) NP-hard (Th. 7.3)

different algorithms for the same setting and present a
2-competitive algorithm for any finite capacity c ≥ 1.
For minimizing the sum of completion times instead
of the makespan, Feuerstein and Stougie [10] further
show a lower bound of 3 for a server with unit capacity
and a lower bound of 2.41 independent of the capacity.
Moreover, they provide a 15-competitive algorithm
for the real line and unlimited capacity. For the
same objective function, Krumke et al. [16] present an
algorithm with a competitive ratio of 5.83 for a server
with unit capacity in an arbitrary metric space.

The offline version of the TSP problem is a well-
studied NP-hard problem (e.g., see [18]). Afrati et
al. [1] show that the offline traveling repairperson
problem is NP-hard in general, but can be solved
in time O(n2) for the real line and unweighted sum
of completion times objective. There are many of-
fline variants of the Dial-A-Ride problem, differing
in capacities, the underlying metric space, release
times and deadlines, open versus closed tours, and
in whether preemption is allowed (e.g., see [9]). The
special case without release times and unit capac-
ity is known as the stacker crane problem. Attalah
and Kosaraju [3] present a polynomial algorithm for
the closed, non-preemptive stacker crane problem on
the real line. Frederickson and Guan [11] show that
this problem is NP-complete on trees. Guan [13]
shows that the Dial-A-Ride problem remains easy
on the line with capacities larger than one if pre-
emption is allowed, and that it remains hard on
trees. Finally, Charikar and Raghavachari [8] give
a O(

√
c log n log log n)-approximation for the closed

Dial-A-Ride problem in metric spaces with n points

and without preemption. In the same paper they
claim a 2-approximation for the problem on the line,
however this result seems to be incorrect (personal
communication).

2 Problem definition and notation

We consider a server that moves along the real line
with (at most) unit speed. We let pt denote the
position of the server at time t ≥ 0 and assume
(without loss of generality) that p0 = 0. With
this notation, the speed limitation of the server can
equivalently be expressed via |pt − pt′ | ≤ |t − t′| for
all t, t′ ≥ 0. A series of requests σ1, . . . , σn arrives
over time with σi = (ai, bi; ti), where ti ≥ 0 denotes
the release time of the request and ai, bi ∈ R denote
its source and target position, respectively. For TSP,
we have ai = bi and write σi = (ai; ti). If not stated
otherwise, we assume t1 ≤ t2 ≤ . . . ≤ tn. Moreover,
we assume without loss of generality that ti ≥ |ai|
holds because the server can not reach σi before
time |ai| and it only helps the algorithm to know
a request earlier. We further use the notation AR :=
maxi=1,...,n{ai, bi, 0} to denote the rightmost point
that needs to be visited by the server, and similarly
AL := mini=1,...,n{ai, bi, 0}. Here and throughout we
refer to the negative direction of the real line as left
and the positive direction as right.

In both TSP and Dial-A-Ride on the line, all
requests need to be served. For TSP, we consider a
request served if pt = ai for some time t ≥ ti. For
Dial-A-Ride, the server may collect request σi at
time t ≥ ti if pt = ai. In the preemptive Dial-A-
Ride problem, the server can drop off any request

it is carrying at its current location at any time. If
request σi is dropped off at point p at time t, we
consider it to be modified to the new request (p, bi; t).
In the non-preemptive Dial-A-Ride problem, the
server may only drop off a request at its target location.
We consider a request served if it is ever dropped off
at its target location.

In TSP on the line, the behavior of the server
in our algorithms at time t will mostly depend on
so-called extreme requests. For t ≥ 0, we denote by
σR(t) = (aR(t); tR(t)) the unserved request that is
rightmost of the position of the server pt, provided
such a request exists, i.e., the unserved request
σ = (a; t′) with t′ ≤ t, a > pt, and maximizing a.
Analogously, σL(t) = (aL(t); tL(t)) denotes unserved
request that is leftmost of the position of the server
pt. If there is more than one right-most (left-most)
request, we choose the one with the largest release
time.

If the server has finite capacity c ≥ 1, it can
carry at most c requests at any time. We assume
that no time is needed for picking up and dropping
off requests, so that the server can pick up and drop
off any number of requests at the same time, as long
as its capacity is not exceeded.

We refer to a valid trajectory of the server together
with the description of when it picks up and drops
requests as a tour T . If the tour ends at p0 = 0, we
call it closed, otherwise it is open. We denote the
makespan of the tour T by |T |. The objective in
the open (closed) version of both TSP and Dial-A-
Ride is to find an open (closed) tour T that serves
all requests and minimizes |T |.

In the offline setting, we assume all requests to
be known from the start. We let TOpt denote an
optimal offline tour. In the online setting, we assume
that request σi is revealed at its release time ti, at
which point the tour of the server until time ti must
already have been fixed irrevocably. Additionally, we
assume that the total number n of requests is unknown.
We measure the quality of an online algorithm via its
competitive ratio, i.e., the maximum over all sequences
of requests of the ratio between the makespan of the
tour it produces and |TOpt|.

In order to describe the trajectory of the server,
we use the notation “move(a)” for the tour that moves
the server from its current position with unit speed to
the point a ∈ R and the notation “waituntil(s)” for
the tour that keeps the server stationary until time s.
We use the operator ⊕ to concatenate tours. For
example, if T0 is a tour of the server that ends at time
t0 at position pt0 , then T0⊕move(a) describes the tour
that ends at time t0 + |a−pt0 |, is identical to the tour
T0 until time t0 and satisfies pt = pt0 +(a−pt0)(t−t0)

for t0 ≤ t ≤ t0 + |a− pt0 |. Similarly, T0 ⊕waituntil(s)
is the tour that ends at time max{t0, s}, is identical to
the tour T0 until time t0 and that satisfies pt0 = pt for
all s ∈ [t0, s]. For TSP on the line, we do not explicitly
specify when a request is served, but we assume that
the server serves a request whenever possible, i.e.,
whenever the server passes the location of a request
that is already released and not yet served.

We skip the proofs of our results as they are very
technical. They can be found in the full version of the
paper.

3 Algorithm for closed online TSP

In this section we consider the closed online TSP
problem and describe a best-possible algorithm with
competitive ratio ρ = (9 +

√
17)/8 ≈ 1.64, where ρ is

the nonnegative root of the polynomial 4x2 − 9x+ 4.
We start by developing some intuition for our

algorithm. In the following TAlg is the tour derived
by an algorithm Alg. Observe that the decision of
how to move the server at time t only depends on its
position pt and the location of the left- and rightmost
extreme requests σL(t) = (aL; tL(t)) and σR(t) =
(aR; tR(t)): All other requests can be served during any
tour serving σL(t) and σR(t). We will show that in this
setting we can assume that aL(t) ≤ 0 and aR(t) ≥ 0,
provided these extremes exist. If σR(t) (resp. σL(t))
does not exist we set aR(t) = tR(t) = 0 (resp.
aL(t) = tL(t) = 0). Thus, in contrast to the initial
definition of extreme requests, in our setting a leftmost
extreme is always left and a rightmost extreme is
always right of the origin. When both extremes exists,
we have, on a high level, three possible courses of
action at time t. Either we immediately decide to
serve σL(t) and σR(t) in one of the two possible orders,
or we wait for some time for additional information
to make a more informed decision. Intuitively, the
critical case for our competitiveness is the case where
we decide to serve σL(t) and σR(t) in a different order
than TOpt. Let TRL(t) and TLR(t) be the tours that
start at the origin at time 0 and then move as follows,

TRL(t) = waituntil(tR(t)− |aR(t)|)⊕move(aR(t))

⊕move(aL(t))⊕move(p0),

TLR(t) = waituntil(tL(t)− |aL(t)|)⊕move(aL(t))

⊕move(aR(t))⊕move(p0).

Note that |TRL(t)| (resp. |TLR(t)|) is a lower bound
for the length of the shortest tour serving σR(t)
before σL(t) (resp. σL(t) before σR(t)). Say that,
at time t, both extremes exist and we greedily
decide to immediately start serving the extremes
in the same order as TLR(t). To see how this
can fail, assume that TOpt initially follows the

tour TRL(t), but continues to move to the left af-
ter serving σL(t). The time when TOpt reaches aL(t)
is t′ = tR(t) + |aR(t)|+ |aL(t)|, since tR(t) ≥ |aR(t)|
by assumption. Let t0 be the time when we
reach the origin p0 after serving σL(t), and
assume that t′ ≤ t0. Now a new re-
quest σ′ = (p′; t0) may arrive at time t0 and posi-
tion p′ = −|aL(t)| − (t0 − t′) = −t0 + tR(t) + |aR(t)|,
that the optimum can serve immediately at time t0.
We then have

|TOpt| = t0 + |p′| = t0 + |aL(t)|+ (t0 − t′)
= 2t0 − tR(t)− |aR(t)|.

Our algorithm still needs to serve σ′ and σR at time t0,
and hence

|TAlg| = t0 + 2|p′|+ 2|aR(t)|
= 3t0 − 2tR(t).

For the algorithm to be ρ-competitive, we
need |TAlg|/|TOpt| ≤ ρ, and we thus obtain a con-
dition on the earliest time t0 we may return to the
origin.

Fact 3.1. If at time t a ρ-competitive algorithm
serves the leftmost extreme σL(t) first and t0 denotes
the first time the server returns to the origin after
having served σL(t), then

t0 ≥ tL0 (t) :=
ρ|aR(t)| − (2− ρ)tR(t)

2ρ− 3
.(3.1)

A symmetric statement with tR0 (t) holds if the algo-
rithm serves σR(t) first.

Fact 3.1 illustrates that waiting is sometimes necessary
in order to be competitive. On the other hand, we can
obviously not afford to wait too long. To quantify this,
we introduce a lower bound on the length of TOpt.

Definition 3.1. If both extreme request exist at time
t we define the greedy tour T greedy(t) at time t as

T greedy(t) :=

{
TLR(t), if |TLR(t)| ≤ |TRL(t)|,
TRL(t), else.

If only σL(t) exists, we set T greedy(t) := TLR(t) and
we set T greedy(t) := TRL(t) if only σR(t) exists.

Observation 3.1. We have

|TRL(t)| = tR(t) + |aR(t)|+ 2|aL(t)|,
|TLR(t)| = tL(t) + |aL(t)|+ 2|aR(t)|

and |T greedy(t)| = min{|TLR(t)|, |TRL(t)|} ≤ |TOpt| if
both extremes exist at time t.

Assume we are still waiting at the origin at time t,
i.e. pt = 0. From Observation 3.1, we conclude
that if t ≤ ρ|T greedy(t)| − 2|aR(t)| − 2|aL(t)|, we can
wait until time ρ|T greedy(t)| − 2|aR(t)| − 2|aL(t)|, and
then still serve σR(t) and σL(t) and return to the
origin p0 until time ρ|T greedy| ≤ ρ|TOpt|, i.e., we can
stay ρ-competitive. Formally, we make the following
definition.

Definition 3.2. Let the safe tour T safe(t) at time t
be defined as

T safe(t) :=

{
Twait ⊕ TLR(t), if |aL(t)| ≥ |aR(t)|,
Twait ⊕ TRL(t), else,

with

Twait := waituntil(ρ|T greedy(t)| − 2|aR(t)| − 2|aL(t)|).

We still have to ensure that the definition
of T safe(t) is compatible with the requirement from
Fact 3.1 regarding the time t0 when the tour first
returns to the origin. In case |aL(t)| ≥ |aR(t)|, we
get t0 ≥ tL0 (t) with t0 = ρ|T greedy(t)| − 2|aR(t)| ≥
(4ρ − 2)|aR(t)|. Symmetrically, for |aL(t)| < |aR(t)|,
we get (4ρ− 2)|aL(t)| ≥ tR0 (t). In either case, we can
derive the following condition on ρ.

Fact 3.2. The safe tour T safe(t) fulfills inequality

(3.1) in Fact 3.1 if and only if 2 ≥ ρ ≥ 9+
√
17

8 .

We are now ready to describe our algorithm
(cf. Algorithm 1). We argued that it is a safe option to
follow T safe(t) in order to stay ρ-competitive, provided
no further requests appear. It will turn out that it
is indeed always good enough to follow T safe(t), if
possible. However, at time t, we may be too far from
the extreme that T safe(t) serves first in order to catch
up with the safe tour, in which case we have to resort
to secondary strategies. If at time t the server cannot
reach T safe(t), it instead bases its behavior on the
greedy tour as an estimate for TOpt. Surprisingly,
this estimate turns out to be sufficient to obtain an
optimal online algorithm. There are three situations
that can occur if the safe tour cannot be reached at
time t. If the online server is on the same side of the
origin as the extreme that T greedy(t) serves first, our
algorithm decides to follow the greedy tour. If the
online server is on the other side of the origin than
the extreme that T greedy(t) serves first, we have to
ensure that the condition of Fact 3.1 is not violated.
If the tour serving the nearer extreme first satisfies
(3.1), the algorithm serves this extreme first, i.e., it
serves the extremes in a different order than T greedy(t).
Otherwise, we can deduce from (3.1) being violated
that we can afford to serve the opposite extreme first,
i.e., to follow T greedy(t).

Algorithm 1: Update(t, σL(t), σR(t), pt) for the closed online TSP Problem

this function is called upon release of a new extreme request

Input: time t, unserved extreme requests σR(t) and σL(t), position pt of the server
Output: closed Online TSP tour serving all unserved requests
A← argmaxg∈{aR(t),aL(t)} |g|; a← argming∈{aR(t),aL(t)} |g|
if T greedy(t) = TLR(t) then

(a1(t); t1)← σL(t); (a2(t); t2)← σR(t)
else

(a1(t); t1)← σR(t); (a2(t), t2)← σL(t)
end

if twait := ρ|T greedy(t)| − (|pt −A|+ |A|+ 2|a|) ≥ t then // T safe(t) can be reached

(A) TAlg ← waituntil(twait)⊕move(A)⊕move(a)⊕move(p0)

else if sign(pt) = sign(a1(t)) or t+ |pt − a2(t)|+ |a2(t)| < ρ|a1(t)|−(2−ρ)t1
2ρ−3 then

(B1,B2) TAlg ← move(a1(t))⊕move(a2(t))⊕move(p0)
else

(C) TAlg ← move(a2(t))⊕move(a1(t))⊕move(p0)
end

return TAlg

Theorem 3.1. There is a (9 +
√

17)/8 ≈ 1.64-
competitive algorithm for closed online TSP on the
line.

We obtain the main result of this section by analyzing
each of the above cases.

4 Lower Bound for open online TSP

In this section, we consider open online TSP on the
line and give a tight lower bound on the best-possible
competitive ratio. Note that a lower bound of 2
is obvious: At time 1, we present a request either
at −1 or 1, whichever is further away from the online
server. The online tour has length at least 2 while the
optimum tour has length 1. Remarkably, we are able
to show a slightly larger bound that turns out to be
tight.

Theorem 4.1. Let ρ ≈ 2.04 be the second-largest
root (out of the four real roots) of 9ρ4− 18ρ3− 78ρ2 +
210ρ− 107. There is no (ρ− ε)-competitive algorithm
for open TSP on the line for any ε > 0.

In the following, we fix any online algorithm Alg
and ρ′ ∈ (2, ρ) and describe an adversarial strategy
that forces |TAlg| to be larger than |TOpt| by a factor
of at least ρ′. After the first request σR

0 , which is to the
right2 of the origin, we alternatingly present leftmost
and rightmost extreme requests, in the i-th iteration
called σL

i and σR
i , respectively, depending on Alg’s

behavior. Roughly, a new leftmost request σL
i appears

2We assume p1 ≤ 0; the other case is symmetrical.

whenever the last rightmost request σR
i−1 is served, and

a new rightmost request σR
i appears when Alg has

moved close enough to σL
i . Importantly, we will show

that some pair (σL
i , σ

R
i) is critical, in the following

sense.

Definition 4.1. We call the last two requests σ?0 =
(a?0; |a?0|) and σ?1 = (a?1; |a?1|) of a request sequence
with sign(a?0) 6= sign(a?1) and 0 < |a?0| ≤ |a?1| critical
for Alg if the following conditions hold:

(i) Both tours move(a?0)⊕move(a?1) and move(a?1)⊕
move(a?0) serve all the requests presented until
time |a?1|.

(ii) Alg serves both σ?0 and σ?1 after time |a?1|,
and p|a?1 | lies between a?0 and a?1.

(iii) Let k ∈ {0, 1} be such that Alg serves σ?k
before σ?1−k. Then Alg serves σ?k no earlier
than t? := (2ρ′ − 2) · |a?1−k|+ (ρ′ − 2) · |a?k|.

(iv) It holds that |a?1−k|/|a?k| ≤ 2.

Indeed, we have the following lemma.

Lemma 4.1. If there is a request sequence with two
critical requests for Alg, we can release additional
requests such that Alg is not (ρ− ε)-competitive on
the resulting instance.

In the proof, we use the notation from Defini-
tion 4.1. We assume that sign(a?k) ≥ 0; the other
case is symmetric. For the sake of readability, we de-
fine σL = (aL;−aL) := σ?1−k and σR = (aR; aR) := σ?k.

Conceptually, we want to present additional
requests after |a∗1| so that Alg serves σR before σL.
However, it will turn out that serving σR first is a

mistake for Alg, compared with using the tour TLR :=
move(σL)⊕move(σR). Roughly, we make Opt follow
the tour TLR and then let it continue moving to the
right until all requests are served by Alg. Accordingly,
we will ensure that all additional requests we introduce
coincide with Opt’s position at their release time.

Assume that we could force Alg to serve σL

immediately after σR, before serving any additional
requests. In this case, we could simply introduce
another request at aR at time |TLR|, and, by Defini-
tion 4.1 (iii), we would have

|TAlg| ≥ t? + 2(|aR|+ |aL|)
= (2ρ′ − 2) · |aL|+ (ρ′ − 2) · |aR|

+ 2(|aR|+ |aL|)
= ρ′(2|aL|+ |aR|) = ρ′|TOpt|,

(4.2)

as claimed.
In general, however, Alg may not serve σL

immediately after σR, for example by waiting for a
while at aR – which forces us to postpone the release
of additional requests. Of course, Alg needs to start
moving towards σL at some point to stay competitve if
no new requests appear. Our goal is to balance these
two effects by introducing one or two new requests.

The additional requests we use depend on the tour
that Alg takes after time |a?1|. Towards this, let t??

be the earliest possible time that a server starting
in aR at time t? could serve σL, that is,

t?? := t? + |aR|+ |aL|
= (2ρ′ − 2) · |aL|+ (ρ′ − 2) · |aR|+ |aR|+ |aL|
= (2ρ′ − 1) · |aL|+ (ρ′ − 1) · |aR|.

We characterize the trajectory of Alg at time t ≥
|a?1| by the difference between t?? and the earliest
possible time that Alg can still serve σL, if it
aborts its tour at time t and takes the shortest
tour serving σR (if needed) and then σL. Formally,
for t ≥ |a?1|, we define

delay(t) :=



t+ 2|aR|+ |aL| − pt − t??,
if σR not served at t,

t+ |aL|+pt − t??,
if σR served at t but σL not,

undefined, else.

It is easy to see that the following properties hold.

Fact 4.1. Consider some t such that delay(t) is
defined. Let T be the set of tours that start in
position pt at time t and, if Alg has not served σR at
time t, that do not visit aL before aR. The following
is true:

(i) There is no tour T ∈ T that arrives at aL earlier
than t?? + delay(t).

(ii) There is a tour T ∈ T that arrives at aL at
time t?? + delay(t).

The following two lemmata state useful properties
of the delay function that will be used to define the
additional requests.

Lemma 4.2. There exists W ≥ 0 with

(4.3) delay

(
|TLR|+

W

ρ′ − 1

)
= W.

Lemma 4.3. With W as in Lemma 4.2, Alg
serves σR no later than time |TLR|+ W

ρ′−1 .

We will show that if we present an additional
request at time |TLR| + W/(ρ′ − 1) (at a distance
of W/(ρ′ − 1) to the right of σR) and Alg decides to
serve σL before the new request, the ratio between
Alg’s and Opt’s additional costs (Inequality (4.2))
is at least ρ′. If Alg can save time by serving the
new request first and does so, we need to present yet
another request.

It remains to show that we can define a request
sequence (depending on Alg) that ends with a pair
of critical requests. We use the following strategy:

• W.l.o.g. p1 ≤ 0. The first request is σR
0 := (1, 1).

• Whenever, at some time, called tLi in the follow-
ing, a request at σR

i−1 gets served, we present the
new request σL

i := (aLi = −tLi ; tLi). Based on tLi ,
we define for t ≥ tLi the two functions

`Li (t) := (2ρ′ − 3) · t− (3− ρ′) · tLi ,
`Ri (t) := (4− ρ′) · t− (2ρ′ − 2) · tLi ,

which can as well be viewed as lines in the path-
time diagram.

• If at some time tRi after tLi Alg crosses `Li (t) or
`Ri (t), we present the request σR

i := (aRi = tRi ; tRi).

• We stop the procedure when one of the following
cases occurs. (The pair (σL

i , σ
R
i) will be shown

to be critical in these cases.)

Case 1: Alg serves σL
i before σR

i if no new
requests appear.

Case 2: Alg serves σR
i not before

time (2ρ′ − 2) · tLi + (ρ′ − 2) · tRi if
no new requests appear.

The intuition behind the lines `Li and `Ri is the
following: Suppose the position of Alg at tRi is on
or to the right of `Li and Alg decides to serve σL

i

before σR
i in case no new requests appear after tRi .

Then the pair (σL
i , σ

R
i) satisfies Definition 4.1 (iii).

The symmetric statement holds for `Ri . The following
lemma ensures that, in each iteration, we obtain a
(non necessarily critical) pair of unserved requests
(σL
i , σ

R
i) and that Definition 4.1 (iv) is fulfilled.

Lemma 4.4. Let i ≥ 1. At time tLi , Alg is to the
right of `Li and `Ri and crosses one of them after tLi
and before it serves σL

i . We also have that tRi ≤ 2tLi .

In the proof of Theorem 4.1, we show that Case 1
or 2 eventually occurs, and we formalize the above
intuition to show along with Lemma 4.4 that the
requests (σL

i , σ
R
i) are indeed critical.

5 Algorithm for open online TSP

In Algorithm 2, we describe an algorithm for the open
online TSP on the line which achieves a competitive
ratio of ρ ≈ 2.04, matching the lower bound presented
in Section 4.

Theorem 5.1. Algorithm 2 is ρ-competitive with ρ ≈
2.04 being the second-largest root of the polynomial
9ρ4 − 18ρ3 − 78ρ2 + 210ρ− 107.

In the following, we discuss the different cases
that can occur in Algorithm 2 and give an intuition
of their interplay. Algorithm 2 is called every time
a new extreme request is released. It then computes
a new tour serving the current extreme requests and
thus also all other requests between these extremes.
It is important that we wait in certain cases to protect
against the release of new extremes that force us to
serve the extremes in a different order than we initially
chose. Algorithm 2 lets the server return to the origin
and wait there whenever possible, and moves to the
extremes as late as possible. Intuitively, staying as
close to the origin as possible has the benefit that
the algorithm can delay the choice in which order to
serve the extremes for as long as possible. We observe
in the lower bound construction (Section 4), that a
ρ-competitive algorithm may not serve a request too
early, i.e., |pt|/t is bounded when a request is served.
The exact bound on this ratio is computed in the
proof of Lemma 4.4 and coincides with the bound in
Lemma 5.1 for Algorithm 2.

Lemma 5.1. The position of the server in a tour
computed by Algorithm 2 satisfies

|pt|
t
≤ 3ρ− 5

−3ρ2 + 9ρ− 4
≈ 0.58

for all times t ≥ 0.

We decide the order in which we serve the
extremes and possibly wait based on the current
position pt of the server, the current time t and the
release times and positions of the single or the two
extremes. The server always tries to move back to the
origin and wait there as long as possible, i.e., it follows
the tour T0 := move(0)⊕ waituntil(∞) for as long as
possible. We use the notation “T0.until(condition(τ))”
to denote the tour that follows T0 until the first time
t0 that satisfies “condition(t0)”. Note that this may
happen before the server reaches the origin.

We now discuss the different cases of the algorithm
step-by-step. Let us first consider the simplest case
where only one extreme request σ1 = (a1; t1) is present
(cases (P1) and (E1) in Algorithm 2). The offline
optimum Opt obviously cannot finish before time t1
in this case. In order to guarantee ρ-competitiveness
it is therefore sufficient to serve σ1 at time ρt1. Hence,
we can afford to move to the origin and wait until the
equation t+ |pt − a1| = ρt1 is satisfied for the current
time t and position pt. This ensures that |pt|/t is
bounded as stated in Lemma 5.1 (this is not clear and
formally proved in the full version of the paper) and
that we have the option to change our tour without
much additional cost if an extreme on the other side
is released later on. We call the resulting tour in this
case, the preferred tour (case (P1)). It can happen,
however, that we are only able to serve σ1 later than
time ρt1, i.e. t + |pt − a1| > ρt1. This means that
the until-condition is already satisfied and the server
serves σ1 immediately. We call this tour the enforced
tour (case (E1)). The makespan of Algorithm 2 in this
case is |TAlg| = t1+|pt1−a1|. But we have |TOpt| ≥ t1
and also |TOpt| ≥ |pt − a1| as Algorithm 2 only visits
points on the real line that must also be visited by
Opt at some time. Overall, we have |TAlg| ≤ 2 ·Opt,
implying ρ-competitiveness.

Now, consider the case where two extremes σ1 =
(a1; t1) and σ2 = (a2; t2) are present. The two
extremes define an interval

[aL(t), aR(t)] = [min{a1, a2},max{a1, a2}].

Note that aL(t) < pt < aR(t) holds by definition of
extreme requests.

If 0 /∈ [aL(t), aR(t)] (case (O) in Algorithm 2),
we let σ1 denote the request closer to the origin, i.e.,
|a1| ≤ |a2|. We then immediately serve σ1 in order to
ensure that Lemma 5.1 holds and |pt|/t stays small.
We know that the offline optimum Opt cannot finish
before time t2. After serving σ1 it is therefore safe
to return to the origin and wait as long as we can to
reach a2 at time ρt2. We can thus follow the tour T0
after serving σ1 at time t+ |pt − a2| ≥ ρt2. Possibly,
this equation is already satisfied from the start and

Algorithm 2: For the open online TSP problem on the line.

This function is called every time a new extreme request is released.
Input: Current time t, current extremes, current position pt
Output: The next part of the tour for the server
T0 := move(0)⊕ waituntil(∞)
if ∃ only single extreme σ1 = (a1; t1) then

(P1)(E1)(P1),(E1) return T0.until(τ + |pτ − a1| ≥ ρt1)⊕move(a1)
end

if 0 6∈ [aL(t), aR(t)] then
(σ1 = (a1; t1), σ2 = (a2; t2))← extremes such that |a1| ≤ |a2|

(O) return move(a1)⊕ T0.until(τ + |pτ − a2| ≥ ρt2)⊕move(a2)

else
(σ1 = (a1; t1), σ2 = (a2; t2))← extremes such that t1 ≤ t2
if t+ |pt − a1| ≤ Lσ1,σ2 then

(P2) return T0.until(τ + |pτ − a1| = Lσ1,σ2)⊕move(a1)⊕move(a2)

else if t+ |pt − a2| ≤ Lσ2,σ1 and |a2| ≤ 3ρ−5
(2ρ−2)(7−3ρ) (ρt1 + (ρ− 2)|a1|) then

(A2) return T0.until(τ + |pτ − a2| = Lσ2,σ1)⊕move(a2)⊕move(a1)
else

(E2) return move(a1)⊕move(a2)
end

end

we serve σ2 immediately.
Next, consider the case that 0 ∈ [aL(t), aR(t)]

(cases (P2), (A2) and (E2)). Let now σ1 be the
request released first, i.e. t1 ≤ t2, and t = t2
be the current time. We have a lower bound of
|TOPT| ≥ t1 + |a1|+ |a2|, irrespective of whether Opt
serves σ1 or σ2 first. If we serve σ1 first, which we call
the preferred tour (case (P2)), we ensure that the tour
produced by Algorithm 2 is not longer than ρ|TOpt|
by satisfying the inequality

t+ |pt − a1|+ |a1|+ |a2| ≤ ρ(t1 + |a1|+ |a2|).(5.4)

Now assume that Opt serves σ2 first and a new request
σ′1 = (a1; t2 + |a1|+ |a2|) appears at the same position
as σ1 when Opt arrives there. The new request does
not increase the cost for Opt, which is still only
lower bounded by |TOPT| ≥ t2 + |a1|+ |a2|. But our
algorithm, which served σ1 first, may be closer to
σ2 at the time when this new request appears and
now has to go all the way back to the position of a1
after serving σ2. The intuition why it is sufficient to
protect against this worst-case is that if σ′1 appears
at a position further away from the origin, then this
additional distance has to be traveled by Opt as well,
and if σ′1 appears closer to the origin, it only benefits
our algorithm. In order to ensure ρ-competitiveness
in this scenario, the following inequality has to also

be satisfied:

t+ |pt − a1|+ 2(|a1|+ |a2|)
≤ ρ(t2 + |a1|+ |a2|).

(5.5)

If we now define

Lσ1,σ2 := min{ρt1 + (ρ− 1)|a1|+ (ρ− 1)|a2|,
ρt2 + (ρ− 2)|a1|+ (ρ− 2)|a2|},

then Inequalities (5.4) and (5.5) are simultaneously
satisfied if and only if t + |pt − a1| ≤ Lσ1,σ2 . If this
latter inequality is satisfied with some slack, we again
follow the tour T0 until it becomes tight, so that |pt|/t
stays small and we are more flexible to change our
tour when new requests appear.

In case the conditions for the preferred tour are
not satisfied, we try to serve σ2 first. This is called
the anticipated tour (case (A2)). The inequalities
that need to be satisfied in this case are the same as
those for the preferred tour with σ1 and σ2 exchanged.
Moreover, to ensure that |pt|/t is bounded as claimed
in Lemma 5.1, the following inequality also needs to
be satisfied if Algorithm 2 serves σ2 first:

|a2| ≤
3ρ− 5

(2ρ− 2)(7− 3ρ)
(ρt1 + (ρ− 2)|a1|)

≈ 1.21 · t1 + 0.02 · |a1|.
(5.6)

Intuitively, the inequality ensures that σ2 is not too
far from the origin compared to σ1, as otherwise we

would need to start too early to serve the extreme σ2
and would violate the bound on |pt|/t.

Lastly, in case neither the conditions for the
preferred tour nor the anticipated tour are met, we
immediately serve the earlier request σ1 first and
σ2 directly afterwards. This is called the enforced
tour (case (E2)). The main challenge in showing ρ-
competitiveness in the analysis of the algorithm is to
derive a better lower bound on Opt in this case by
considering extremes that must have been released
before.

6 Online Dial-A-Ride on the line

In this section we give a
(
1 +
√

2
)
-competitive algo-

rithm for (preemptive) open online Dial-A-Ride on
the line. Let TOpt

S denote the optimal tour over a
set of requests S, starting at position p0 = 0, and
let Rt denote the set of released but not yet deliv-
ered requests at a time t. Our algorithm works as
follows (cf. Algorithm 3): The server stays at position
p0 until the first request arrives. With every new
arriving request, the server stops its current tour and
returns to p0, or stays at p0 if it is already at the
origin. The server starts following the tour TOpt

Rt
at

time
√

2 · |TOpt
Rt
|. By “unload” we denote the opera-

tion of unloading all requests the server is currently
carrying at the current position. Formally, each such
request (a, b; t′) is changed to (pt, b; t

′).

Algorithm 3: For the open online Dial-A-
Ride problem with c ≥ 0 fixed.

this function is called upon receiving a new
request ;
Input: new request σ, current position pt,

unserved requests Rt
Output: an open tour starting at pt and

serving all requests in Rt
return unload⊕move(p0)

⊕waituntil(
√

2 · |TOpt
Rt
|)⊕ TOpt

Rt

We show that we get back to the origin in time
whenever a new request is released.

Theorem 6.1. Algorithm 3 is (1 +
√

2) ≈ 2.41-
competitive for the preemptive open online Dial-A-
Ride problem with capacity c ≥ 1.

Note 6.1. Algorithm 3 can easily be modified to
solve open Dial-A-Ride in general metric spaces
and upholds the same competitive ratio. The proof
remains the same.

We also provide a lower bound for non-preemptive
closed Dial-A-Ride on the line that improves the
lower bound of 1.70 from [2].

Theorem 6.2. No algorithm for the non-preemptive
closed Dial-A-Ride problem on the line with fixed
capacity c ≥ 1 has competitive ratio lower than ρ =
1.75.

7 The offline problem

Psaraftis et al. [21] show that open offline TSP on the
line with release dates can be solved in quadratic time.
For the closed variant they claim that the optimal
tour has the structure [21, pp. 215–216]:

waituntil()⊕move(AR)⊕move(AL)⊕move(p0)

or

waituntil()⊕move(AL)⊕move(AR)⊕move(p0).

Here the waiting time at the origin is chosen maximally
such that all requests are still served. We contradict
this claim by showing that an optimal server tour may
need to turn around arbitrarily many times.

Theorem 7.1. For every k ∈ N, there is an instance
of closed TSP on the line such that any optimal
solution turns around at least 2k times.

Next, we show a dynamic program that solves
closed offline TSP on the line in quadratic time. It
is inspired by the one of Psaraftis et al. [21] for the
open variant and a dynamic program of Tsitsiklis [22]
for the same problem with deadlines instead of release
times.

The algorithm (cf. Algorithm 4) relies on the fact
that an optimal server tour has a ’zig-zag shape’ with
decreasing amplitude.

We index the requests by increasing positions.
Then we compute for each index pair i < j the
completion time of two tours serving all requests to
positions smaller than position ai and all requests
to positions larger than position aj . We use C+

i,j for

the best such tour ending at position aj and C−i,j
for the best one ending at ai. Starting with the
largest difference j − i and iteratively decreasing it,
we recursively compute C+

i,j and C−i,j .

Theorem 7.2. Algorithm 4 computes the minimum
completion time of a server tour for offline TSP on
the line in time O(n2).

For the non-preemptive Dial-A-Ride problem on the
line we show that the open and closed variant with
release times are NP-hard. Without release times,
we prove they are NP-hard for capacity c ≥ 2. Our
reductions are from the circular arc coloring problem,
which is also used in a reduction for minimizing the
sum of completion times of Dial-A-Ride on the line
with capacity c = 1 [9].

Algorithm 4: Dynamic Program for Closed Offline TSP on the line.

Input: A set of requests σi = (ai; ti) with ti ≥ |ai| for −` ≤ i ≤ r and ai < ai+1 for −` ≤ i < r.
Output: The minimum completion time Cmax of a tour.
C+
−`−1,r ← tr.

C−−`,r+1 ← t−`.

for i = −`, ..., r do
C−i,r+1 ← max{ti, C−i−1,r+1 + ai − ai−1}.

end
for j = r, .., ` do

C+
−`−1,j ← max{tj , C+

`−1,j+1 + aj+1 − aj}.
end
for d = r + `, ..., 0 do

for i = −`, .., r − d do
j ← i+ d.

C−i,j ← max{ti,min{C+
i−1,j + aj − ai, C−i−1,j + ai − ai−1}}.

C+
i,j ← max{tj ,min{C+

i,j+1 + aj+1 − aj , C−i,j+1 + aj − ai}}.
end

end

return Cmax = C+
0,0.

Theorem 7.3. The non-preemptive open and closed
offline Dial-A-Ride problem on the line are NP-
complete. For capacity c ≥ 2 this even holds when all
release times are 0.

In the classification of closed dial-a-ride problems
in [9], offline TSP on the line is the problem 1|s =
t, dj |line|Cmax. De Paepe et al. [9] claim Tsitsiklis [22]
shows a polynomial algorithm, but this is for the
open version. We solve the closed variant by giving
a polynomial algorithm (Theorem 7.2) as well as
a counterexample to the algorithm of Psaraftis et
al. [21]. Our Theorem 7.3 shows the problem
1, cap1|dj |line|Cmax in the same classification scheme
is NP-hard. While this is implicitly claimed in [9],
no proof is given. For the generalization to arbitrary
capacity but without release dates, 1||Cmax, Guan [13]
showed hardness for capacity c = 2 and our new
hardness proof handles any capacity c ≥ 2.

References

[1] Foto Afrati, Stavros Cosmadakis, Christos H. Pa-
padimitriou, George Papageorgiou, and Nadia Pa-
pakostantinou. The complexity of the travelling re-
pairman problem. Informatique Theorique et Appli-
cations, 20(1):79–87, 1986.

[2] Norbert Ascheuer, Sven Oliver Krumke, and Jörg
Rambau. Online Dial-a-Ride problems: Minimizing
the completion time. Proceedings of the 17th Annual
Symposium on Theoretical Aspects of Computer
Science (STACS), pages 639–650, 2000.

[3] Mikhail J. Atallah and S. Rao Kosaraju. Efficient

solutions to some transportation problems with
applications to minimizing robot arm travel. SIAM
Journal on Computing, 17(5):849–869, 1988.

[4] Giorgio Ausiello, Esteban Feuerstein, Stefano
Leonardi, Leen Stougie, and Maurizio Talamo. Serv-
ing requests with on-line routing. In Proceedings of
the 4th Scandinavian Workshop on Algorithm Theory
Aarhus on Algorithm Theory (SWAT), pages 37–48,
1994.

[5] Giorgio Ausiello, Esteban Feuerstein, Stefano
Leonardi, Leen Stougie, and Maurizio Talamo. Com-
petitive algorithms for the on-line traveling salesman.
In Proceedings of the 4th International Workshop
on Algorithms and Data Structures (WADS), pages
206–217, 1995.

[6] Giorgio Ausiello, Esteban Feuerstein, Stefano
Leonardi, Leen Stougie, and Maurizio Talamo. Algo-
rithms for the on-line travelling salesman. Algorith-
mica, 29(4):560–581, 2001.

[7] Michiel Blom, Sven O. Krumke, Willem de Paepe,
and Leen Stougie. The online TSP against fair
adversaries. INFORMS Journal on Computing,
13(2):138–148, 2001.

[8] Moses Charikar and Balaji Raghavachari. The finite
capacity dial-a-ride problem. In Proceedings of the
39th Annual Symposium on Foundations of Computer
Science (FOCS), pages 458–467, 1998.

[9] Willem E. de Paepe, Jan Karel Lenstra, Jiri Sgall,
René A. Sitters, and Leen Stougie. Computer-aided
complexity classification of Dial-a-Ride problems.
INFORMS Journal on Computing, 16(2):120–132,
2004.

[10] Esteban Feuerstein and Leen Stougie. On-line single-
server Dial-a-Ride problems. Theoretical Computer

Science, 268(1):91–105, 2001.
[11] Greg N. Frederickson and Dih Jiun Guan. Nonpre-

emptive ensemble motion planning on a tree. Journal
of Algorithms, 15(1):29–60, 1993.

[12] Paul C. Gilmore and Ralph E. Gomory. Sequencing
a one state-variable machine: A solvable case of the
traveling salesman problem. Operations Research,
12(5):655–679, 1964.

[13] Dih Jiun Guan. Routing a vehicle of capacity greater
than one. Discrete Applied Mathematics, 81(1-3):41–
57, 1998.

[14] Patrick Jaillet and Michael R. Wagner. Generalized
online routing: New competitive ratios, resource
augmentation, and asymptotic analyses. Operations
Research, 56(3):745–757, 2008.

[15] Sven O. Krumke. Online optimization competitive
analysis and beyond, 2001. Habilitation thesis.

[16] Sven O. Krumke, Willem E. de Paepe, Diana
Poensgen, and Leen Stougie. News from the online
traveling repairman. Theoretical Computer Science,
295(1-3):279–294, 2003.

[17] Sven O. Krumke, Luigi Laura, Maarten Lipmann,
Alberto Marchetti-Spaccamela, Willem de Paepe, Di-
ana Poensgen, and Leen Stougie. Non-abusiveness
helps: An O(1)-competitive algorithm for minimizing
the maximum flow time in the online traveling sales-
man problem. In Proceedings of the 5th International
Workshop on Approximation Algorithms for Combi-
natorial Optimization (APPROX), pages 200–214,
2002.

[18] Eugene L. Lawler, Jan Karel Lenstra, Alexander
H. G. Rinnooy Kan, and David B. Shmoys, editors.
The Traveling Salesman Problem; A Guided Tour
of Combinatorial Optimization. Wiley, Chichester,
1985.

[19] Maarten Lipmann. On-Line Rounting. PhD thesis,
Technical University Eindhoven, 2003.

[20] Mark S. Manasse, Lyle A. McGeoch, and Daniel D.
Sleator. Competitive algorithms for server problems.
Journal of Algorithms, 11(2):208–230, 1990.

[21] Harilaos N. Psaraftis, Marius M. Solomon, Thomas L.
Magnanti, and Tai-Up Kim. Routing and scheduling
on a shoreline with release times. Management
Science, 36(2):212–223, 1990.

[22] John N. Tsitsiklis. Special cases of traveling sales-
man and repairman problems with time windows.
Networks, 22(3):263–282, 1992.

