R. Alur and T. Henzinger, Reactive modules. Formal Methods in System Design, pp.7-48, 1999.
DOI : 10.1109/lics.1996.561320

E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic verification of finite-state concurrent systems using temporal logic specifications, ACM Transactions on Programming Languages and Systems, vol.8, issue.2, pp.244-263, 1986.
DOI : 10.1145/5397.5399

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. M. Clarke, O. Grumberg, and D. Peled, Model checking, 1999.

E. De-maria, A. Muzy, D. Gaffã©, A. Ressouche, and F. Grammont, Verification of temporal properties of neuronal archetypes using synchronous models, pp.97-112, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01349019

V. , D. Maio, P. Lansky, and R. Rodriguez, Different types of noise in leaky integrate-and-fire model of neuronal dynamics with discrete periodical input, General physiology and biophysics, vol.23, pp.21-38, 2004.

N. Fourcaud and N. Brunel, Dynamics of the Firing Probability of Noisy Integrate-and-Fire Neurons, Neural Computation, vol.19, issue.9, pp.2057-2110, 2002.
DOI : 10.1111/j.1469-7793.1998.715bv.x

S. Gay, S. Soliman, and F. Fages, A graphical method for reducing and relating models in systems biology, Bioinformatics, vol.26, issue.18, pp.575-581, 2010.
DOI : 10.1093/bioinformatics/btq388

URL : https://hal.archives-ouvertes.fr/hal-01431335

N. Halbwachs, Synchronous programming of reactive systems.{T} kluwer academic publishers, 1993.

H. Hansson and B. Jonsson, A logic for reasoning about time and reliability. Formal aspects of computing, pp.512-535, 1994.
DOI : 10.1007/bf01211866

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Kwiatkowska, G. Norman, and D. Parker, Stochastic Model Checking, International School on Formal Methods for the Design of Computer, Communication and Software Systems, pp.220-270, 2007.
DOI : 10.1007/978-3-540-72522-0_6

M. Kwiatkowska, G. Norman, and D. Parker, PRISM 4.0: Verification of Probabilistic Real-Time Systems, Proc. 23rd International Conference on Computer Aided Verification (CAV'11), pp.585-591, 2011.
DOI : 10.1007/3-540-45657-0_17

URL : https://hal.archives-ouvertes.fr/hal-00648035

W. Maass, Networks of spiking neurons: The third generation of neural network models, Neural Networks, vol.10, issue.9, pp.1659-1671, 1997.
DOI : 10.1016/S0893-6080(97)00011-7

J. E. Menke and T. R. Martinez, Artificial neural network reduction through oracle learning, Intelligent Data Analysis, vol.13, issue.1, pp.135-149, 2009.

A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya, Dynamically consistent reduction of logical regulatory graphs, Theoretical Computer Science, vol.412, issue.21, pp.2207-2218, 2011.
DOI : 10.1016/j.tcs.2010.10.021

URL : https://hal.archives-ouvertes.fr/hal-01284743

A. Papoulis, Brownian movement and markoff processes. Probability, random variables, and stochastic processes, pp.515-553, 1984.

R. Development and C. Team, R : A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2008.

F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain., Psychological Review, vol.65, issue.6, p.386, 1958.
DOI : 10.1037/h0042519

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Representations by Error Propagation, 1985.
DOI : 10.1016/B978-1-4832-1446-7.50035-2