H. P. Awad, P. W. Glynn, and R. Y. Rubinstein, Zero-Variance Importance Sampling Estimators for Markov Process Expectations, Mathematics of Operations Research, vol.38, issue.2, pp.358-388, 2013.
DOI : 10.1287/moor.1120.0569

P. Billingsley, Convergence of Probability Measures, volume Second, 1999.

H. Cancela, G. Rubino, and B. Tuffin, MTTF estimation by Monte Carlo methods using Markov models, pp.312-341, 2002.

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, 1986.
DOI : 10.1002/9780470316658

P. Glasserman, Filtered Monte Carlo, Mathematics of Operations Research, vol.18, issue.3, pp.610-634, 1993.
DOI : 10.1287/moor.18.3.610

P. W. Glynn, Importance sampling for markov chains: asymptotics for the variance, Communications in Statistics. Stochastic Models, vol.54, issue.4, pp.701-717, 1994.
DOI : 10.1017/CBO9780511526237

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Goyal, P. Shahabuddin, P. Heidelberger, V. F. Nicola, and P. W. Glynn, A unified framework for simulating Markovian models of highly reliable systems, IEEE Transactions on Computers, issue.41, pp.36-51, 1992.

P. Heidelberger, Fast simulation of rare events in queueing and reliability models, ACM Transactions on Modeling and Computer Simulation, vol.5, issue.1, pp.43-85, 1995.
DOI : 10.1145/203091.203094

S. Juneja and P. Shahabuddin, Fast simulation of Markovian reliability/availability models with general repair policies, [1992] Digest of Papers. FTCS-22: The Twenty-Second International Symposium on Fault-Tolerant Computing, pp.150-159, 1992.
DOI : 10.1109/FTCS.1992.243605

S. Juneja and P. Shahabuddin, Fast Simulation of Markov Chains with Small Transition Probabilities, Management Science, vol.47, issue.4, pp.547-562, 2001.
DOI : 10.1287/mnsc.47.4.547.9827

P. L. Ecuyer and B. Tuffin, Effective approximation of zero-variance simulation in a reliability setting, Proceedings of the 2007 European Simulation and Modeling Conference, pp.48-54, 2007.

P. L. Ecuyer and B. Tuffin, Approximating zero-variance importance sampling in a reliability setting, Annals of Operations Research, vol.189, issue.1, pp.277-297, 2012.

G. Rubino and B. Tuffin, Markovian Models for Dependability Analysis, Rare Event Simulation using Monte Carlo Methods, pp.125-144, 2009.
DOI : 10.1002/9780470745403.ch6

URL : https://hal.archives-ouvertes.fr/hal-00787667

G. Rubino and B. Tuffin, Rare Event Simulation using Monte Carlo Methods, 2009.
DOI : 10.1002/9780470745403

URL : https://hal.archives-ouvertes.fr/hal-00787654

P. Shahabuddin, Fast transient simulation of Markovian models of highly dependable systems, Performance Evaluation, vol.20, issue.1-3, pp.267-286, 1994.
DOI : 10.1016/0166-5316(94)90017-5

P. Shahabuddin, Importance Sampling for the Simulation of Highly Reliable Markovian Systems, Management Science, vol.40, issue.3, pp.333-352, 1994.
DOI : 10.1287/mnsc.40.3.333

P. Shahabuddin, V. F. Nicola, P. Heidelberger, A. Goyal, and P. W. Glynn, Variance reduction in mean time to failure simulations, Proceedings of the 20th conference on Winter simulation , WSC '88, pp.491-499, 1988.
DOI : 10.1145/318123.318239

W. L. Smith, Regenerative Stochastic Processes, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.232, issue.1188, pp.6-31, 1955.
DOI : 10.1098/rspa.1955.0198