Pareto-optimal coupling conditions for a second order traffic flow model at junctions

Abstract : This article deals with macroscopic traffic flow models on a road network. More precisely, we consider coupling conditions at junctions for the Aw-Rascle-Zhang second order model consisting of a hyperbolic system of two conservation laws. These coupling conditions conserve both the number of vehicles and the composition of traffic through the junction. The proposed Riemann solver is based on assignment coefficients, multi-objective optimization of fluxes and priority parameters. We prove that this Riemann solver is well posed in the case of special junctions, including 1-to-2 diverge and 2-to-1 merge.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01551100
Contributeur : Guillaume Costeseque <>
Soumis le : vendredi 21 juillet 2017 - 21:11:09
Dernière modification le : mardi 25 juillet 2017 - 01:10:54

Fichier

Kolb-Costeseque-Goatin-Goettli...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01551100, version 2
  • ARXIV : 1707.01683

Collections

Citation

Oliver Kolb, Guillaume Costeseque, Paola Goatin, Simone Göttlich. Pareto-optimal coupling conditions for a second order traffic flow model at junctions. 2017. 〈hal-01551100v2〉

Partager

Métriques

Consultations de
la notice

63

Téléchargements du document

19