
UKCF: A New Graphics Driver Cross-platform
Translation Framework for Virtual Machines

Jiang Haitao1, Xu Yun1, Liao Yin1, Jin Guojie2, Chen Guoliang1
1 School of Computer Science and Technology,

University of Science and Technology of China, Hefei, China.
2 Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

E-mail: jhtjht1@mail.ustc.edu.cn

Abstract. Virtual machine with dynamic binary translation system is the key
technology to solve software compatibility problem. But traditional user space
binary translation systems can’t translate hardware drivers such as graphics
drivers in operating system kernel directly, instead, they need translate the
entire operating system. To solve this problem, we designed a new binary
translation framework. This framework has a user space translator and a kernel
space translator working coordinated and can translate graphics drivers directly.
Compared with traditional binary translation systems, this framework can
significantly improve the performance of the virtual machine. Based on our
experiment, the multimedia performance of virtual machines can been
improved about 30%.

Keywords: virtualization; binary translation; operating system; driver; cross-
platform.

1. Introduction

At present, with the innovation of computer architecture, Software compatibility issue
has become increasingly prominent. Virtual machine (VM) can run binary format
software on different architectures without modifying of source code, and thus
become an important technology to solve this problem[1][7]. Graphic driver translation
is a key problem in software compatibility issue because most multimedia softwares
need graphic drivers working with them.

The key technology to run software on different architectures is binary translation
which can translate an instruction stream based on one ISA (Instruction System
Architecture) into the corresponding instruction stream based on another ISA[2]. There
are two kinds of binary translation systems: static binary translation system and
dynamic binary translation system. Interactive virtual machines always use dynamic
translation system, which translates instructions dynamically during execution of
programs.

Traditional virtual machines with dynamic binary translation run upon host
operation system (such as VMware[3], QEMU[5][6], virtualbox[4]), these virtual
machines have some advantages: clean hierarchy, easy to use, easy to migrate from
one compute to another. But, they can’t translate hardware drivers such as graphic
drivers in operating system kernel directly; instead, they need translate the entire

operating system[3][4][5]. This kind of translation mode brings about significant
additional time consuming. At present, large-scale multimedia software usually need
huge amount of computing resources and very high performance requirement, so this
kind of low efficiency translation mode usually can’t meet the demand.

To solve this problem, we designed a new binary translation framework (User
space translator and Kernel space translator Cooperate Framework, UKCF). This
framework has two translators, one works in user space, and the other works in
operating system kernel space to translate the graphic driver directly. Compared with
traditional binary translation systems, UKCF needn’t translate the instructions of the
entire operating system; instead, it only need translate the instructions of the
application software’s operating system kernel module (such as a graphic driver).
UKCF can significantly improve the performance of the virtual machine because it
reduces the number of instructions which need to be translated.

The remainder of this paper is as follows. In section II, we introduce existing
widely used virtual machines, discuss why they can’t translate graphic driver directly.
In section III, we introduce the design and structure of UKCF. The experiment results
and analysis are drawn in section IV.

2. Existing technology

VMware is a widely used business virtual machine. It provides an abstraction of x86
PC hardware to run multiple operating systems at the same time. As a mature business
system used by millions of users, VMware has high stability and efficiency. But, it
has no dynamic binary systems and can’t run application softwares on different ISA,
such as MIPS. So it can’t be used to solve the graphic driver translation problem.

Virtualbox is a powerful x86 virtualization software for enterprise and home use
which is freely available as Open Source Software under the terms of the GNU
General Public License (GPL). It has comparative performance with VMware. It also
has no dynamic binary systems, and is not a solution to graphic driver translation
problem.

QEMU is a multihost, multitarget virtual machine. It can run on multiple host ISA,
such as X86， X86-64, MIPS, PowerPC and so on, and it can emulate multiple guest
ISA too[6]. So it can be used to resolve software compatibility problem. QEMU runs
upon host operating systems and it can only translate the instructions in user space.
Graphic drivers are embedded in operating system kernel space, so it can’t translate
the instructions of graphic drivers directly. Fig. 1 gives a clear view of this problem.

Kernel-based Virtual Machine (KVM)[9], is a subsystem of Linux operating system
which leverages virtualization extensions of commodity x86 processors to add a
virtual machine monitor capability to Linux. Using KVM, multiple virtual machines
can run on Linux operating system. This is an operating system level virtualization
system which can run in kernel space. But it has no dynamic binary translation
module so can’t be used to solve the graphic driver translation problem.

From fig. 1 shows that, to translate graphic drivers directly, we need to translate
and execute the instructions of graphic drivers in operating system kernel space (as fig.

2 shows). In view of this point, we designed UKCF, a new binary translation
framework with an operating system kernel space translator to solve this problem.

Figure 1: the locations of QEMU and graphic drivers

Figure 2: the locations of graphic drivers and kernel translator

3. Design of UKCF

3.1. Workflow of traditional graphic drivers

Graphic drivers are embedded into operating system kernels. When an application
software needs to use the graphic driver, it first calls an operating system kernel API
and traps into the kernel, and then call the functions of the graphic driver. During the
execution of the graphic driver, it may call other operating system kernel functions.
Fig. 3 shows the workflow of graphic drivers.

Two calling processes of fig. 3 must be handled by UKCF, one is the calling
process from the kernel API to the graphic driver, and the other is the calling process
from the graphic driver to the operating system kernel. When a kernel API calls a
function of the graphic driver, UKCF needs intercept the calling action and start the
translation mechanism to execute the instructions of the graphic driver. When the
graphic driver calls a function of the operating system kernel, UKCF needs end the
translation mechanism and give the execution control to the operating system kernel.
The detail method of this switching will be introduced in next section.

Figure	3:	the	workflow	of	graphic	drivers	

3.2. Workflow of the graphic driver in UKCF

In UKCF, instructions of the graphic driver and instructions of the operating system
kernel have incompatible ISA, so, traditional kernel module loading method[8] can’t
embed the graphic driver into the kernel. To embed the graphic driver into the kernel,
we treat the graphic driver as a stream of data and use an array in the operating system
kernel to store it. When a function of the graphic driver is called, UKCF will get the
address of the function, translate and execute the instructions of the function.

During the application software’s execution, only a part of the instructions needs to
be translated, and the other instructions must be executed directly. To solve this
problem, UKCF needs to do two additional works, one is monitoring entrance points
and exit points, and the other is saving and loading the translation context.

When the operating system kernel calls a function of the graphic driver, the
function’s address is an entrance point. We use function shell technology to catch the
entrance point. To work with the operating system kernel, the graphic driver must
register its functions to the kernel[8]. To catch the functions’ calling time, UKCF
doesn’t allow the graphic driver register its functions to the kernel directly, instead,
UKCF register the shelled functions of the graphic driver to the operating system
kernel. Fig. 4 shows this technology.

Figure	4:	the	shelling	technology	of	UKCF	

The shell of a function is another function, it is registered to the calling point of the
shelled function. So when the kernel calls the shelled function, the shell function is
called. When the shell function is called, it sends the address of the shelled function to
UKCF, UKCF loads the translation context and starts the translation. The shell
function also saves the return address of the shelled function, and when the shelled
function ends, UKCF save the translation context and return to this address. This
solves the entrance point monitoring problem.

UKCF monitors all the jump instructions’ target address, if the target address is not
in the content of the graphic driver, this means the target address is a kernel function.
UKCF changes the pc to the target address and gives the control to the kernel. This
solves the exit point monitoring problem.

3.3. Structure of UKCF

Fig. 5 shows the structure of UKCF. It contains six modules: a user space translator, a
kernel space translator, a graphic driver shell, a jump monitor, and two CPU
simulators. The user space translator is the first starting module of UKCF, it loads the
application software and translates it. CPU simulator simulates a guest ISA CPU to
execute the instructions. In UKCF, the CPU simulator is the same as traditional
virtual machines[5]. The graphic driver shell monitors the entrance point of the graphic
driver and gives the entrance address to the kernel space translator. The kernel space
translator works together with the jump monitor, when the jump monitor catches a
call from the graphic driver to the operating system kernel, the kernel space translator
stops translation, saves the translation context, modifies the pc and gives control to
the operating system kernel.

Figure	5:	the	structure	of	UKCF	

4. Experiment and Analysis

Traditional user space binary translation systems can’t translate graphic drivers in
operating system kernel directly, instead, they need translate the entire operating
system. UKCF can translate graphic drivers directly in kernel space, so the number of
instructions needing to be translated is reduced. To analyse the performance of UKCF
quantitatively, we defined the concept of performance loss ratio (PLR), for a given
instruction stream i with execution time t1 on its original ISA platform, if its execution
time on a different ISA platform with a binary translation system is t2, then the
instruction stream PLRi of the binary translation system is:

PLRi = t2/t1 (1)

The PLR of the binary translation system is the average of the PLRi:

 PLR ∑ / (2)

In order to facilitate the presentation, we call the traditional translation mode
(translating the entire operating system) scheme 1, call the UKCF’s translation mode
(translating the graphic driver directly) scheme 2. We use NUM1 to identify the
number of instructions needing to be translated by scheme 1, NUM2 to identify the
number of instructions needing to be translated by scheme 2, t to identify the average
execution time of one instruction, TIME1 to identify the execution time of scheme 1,
TIME2 to identify the execution time of scheme 2, then:

TIME1 = (3)
TIME2 = (4)

So the performance improved percentage of UKCF is:

P = (TIME1 TIME2) / TIME1 = (5)

Formula 5 shows a fact that, the execution time saved depends on the reduction
percentage of the instructions needing to be translated.

We tested the reduction percentage of the instructions needing to be translated, the
host ISA platform is the Loongson 3A platform[10][11], which has a MIPS compatible
ISA. The host operating system is Linux, the guest ISA is x86 IA-32. The compared
binary translation system is QEMU, which has been proven to be a very fast dynamic
binary translation virtual machine[6]. We used mplayer[13] and a group of videos as the
testing set, the results are shown by fig. 6:

Figure	6:	experimental	results:	the	numbers	of	translated	instructions	of	QEMU	

and	UKCF	

Fig. 6 shows that, UKCF only needs to translate about 60% instructions. In our

experiment environment, the PLR of QEMU is about 6. We can compute the
performance improved percentage of UKCF using formula 5, the result is about 33%.
We tested the result based on real videos played by mplayer, the experiment results
are shown by fig. 7:

Figure	7:	experimental	results:	the	performance	compare	of	QEMU	and	UKCF	

From fig. 7 we can see that, during the same time, UKCF can play about 30% more

frames than QEMU, this result confirms the analysis based on formula 5.

0

2

4

6

8

10

20 40 60 80 100

n
u
m
b
e
r
o
f
tr
an

sl
at
e
d

in
st
ru
ct
io
n
s(
b
ill
io
n
)

video time(s)

QEMU

UKCF

0

200

400

600

800

1000

1200

1400

1600

20 40 60 80 100

fr
am

e
s
b
e
e
n
 p
la
ye
d

running time(s)

QEMU

UKCF

5. Conclusion

This paper designed a new graphics driver cross-platform translation framework
named UKCF for virtual machines. Compared with existing dynamic binary
translation system needing translate the entire operating system to run the graphic
driver, UKCF can translate and execute the graphic driver in operating system kernel
directly. Experiment results improved that UKCF runs faster than existing binary
translation systems about 30%.

How to improve the performance is the key problem of binary translation systems.
How to make good use of the advantages of kernel space, such as memory allocation
privilege and direct hardware access privilege, to further improve the performance of
UKCF, is the future research goal.

Reference

1 James E. Smith. “A unified view of virtualization,” Proceedings of the 1st ACM/USENIX
international Conference on Virtual Execution Environments, June 2005.

2 RL Sites, A Chernoff, MB Kirk, et al. “Binary translation,” Communications of the ACM
CACM Homepage archive, vol. 36, 1993.

3 http://www.vmware.com
4 http://www.virtualbox.org
5 http://wiki.qemu.org
6 Fabrice Bellard. “Qemu, a fast and portable dynamic translator,” In Proceedings of the

USENIX 2005 Annual Technical Conference, 2005, pp.41-46.
7 Erik R. Altman, David Kaeli, Yaron Sheffer. “Welcome to the Opportunities of Binary

Translation,” IEEE Computer vol. 33, 2000.
8 http://www.linux.org
9 A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. “kvm: the Linux virtual machine

monitor,” In OLS '07: The 2007 Ottawa Linux Symposium, July 2007, pp.225-230.
10 Hu Wei-wu, Wang Jian, Gao Xiang, et al., “Godson-3: A Scalable Multicore RISC

Processor with x86 Emulation,” IEEE Micro, vol. 29, 17-29, 2009, pp.17-29.
11 Hu Wei-wu, Wang Jian, Gao Xiang, et al. “Micro-architecture of Godson-3 Multi-Core

Processor,” In Proceedings of the 20th Hot Chips, 2008
12 http://www.spec.org
13 http://www.mplayerhq.hu

